[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07103455B2 - Method for manufacturing aluminum-based bearing alloy - Google Patents

Method for manufacturing aluminum-based bearing alloy

Info

Publication number
JPH07103455B2
JPH07103455B2 JP3084749A JP8474991A JPH07103455B2 JP H07103455 B2 JPH07103455 B2 JP H07103455B2 JP 3084749 A JP3084749 A JP 3084749A JP 8474991 A JP8474991 A JP 8474991A JP H07103455 B2 JPH07103455 B2 JP H07103455B2
Authority
JP
Japan
Prior art keywords
aluminum
bearing alloy
based bearing
alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3084749A
Other languages
Japanese (ja)
Other versions
JPH04297558A (en
Inventor
武志 坂井
博巳 松本
Original Assignee
エヌデーシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌデーシー株式会社 filed Critical エヌデーシー株式会社
Priority to JP3084749A priority Critical patent/JPH07103455B2/en
Publication of JPH04297558A publication Critical patent/JPH04297558A/en
Publication of JPH07103455B2 publication Critical patent/JPH07103455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミニウム基軸受合金
の製造方法に係り、詳しくは、最終の加熱処理を僅か9
0秒以内程度付加するのみで、加工性が良く、耐焼付性
が良好で破壊強度に優れた錫−鉛含有アルミニウム基軸
受合金が製造できる方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum-based bearing alloy, and more specifically, the final heat treatment requires only 9
The present invention relates to a method capable of producing a tin-lead-containing aluminum-based bearing alloy having good workability, good seizure resistance, and excellent fracture strength, by only adding within about 0 seconds.

【0002】[0002]

【従来の技術】従来のアルミニウム基合金から成る自動
車用の軸受材料の製造方法の一つとして、例えば特開昭
61−272358号公報に開示される方法がある。
2. Description of the Related Art As one of conventional methods for producing a bearing material for an automobile, which is made of an aluminum-based alloy, there is a method disclosed in, for example, Japanese Patent Application Laid-Open No. 61-272358.

【0003】この方法は、8〜35%Sn、1〜3%C
u、2〜10%Siを、含んで残部がAlから成るアル
ミニウム(以下、単にアルミという。)基合金の軸受材
料の製造方法である。
This method uses 8-35% Sn, 1-3% C
This is a method for producing a bearing material of an aluminum (hereinafter simply referred to as aluminum) base alloy containing u and 2 to 10% Si and the balance being Al.

【0004】しかし、この軸受材料は、2〜10%Si
成分を必須として含み、その上Cu含有量が1〜3%と
高いため、製造工程途中の圧延過程で加工硬化が著し
く、圧延材端部に大きな割れが発生し歩留まりが悪化す
る。
However, this bearing material is 2-10% Si
Ingredients are indispensable, and since the Cu content is as high as 1 to 3%, work hardening is remarkable in the rolling process during the manufacturing process, large cracks are generated at the ends of the rolled material, and the yield is deteriorated.

【0005】とくに、最悪の場合には、圧延後の材料か
ら軸受材料を取り出すことが出来なかったり、圧延の中
間で、加工歪を除去するために熱処理を施さなければな
らないという問題がある。
Particularly, in the worst case, there is a problem that the bearing material cannot be taken out from the material after rolling or that heat treatment must be performed in the middle of rolling in order to remove working strain.

【0006】また、Sn添加量を少なくした場合(9〜
13%Sn)は耐焼付性が悪化し、逆にSn添加量を多
くした場合は(15〜25%Sn)は破壊強度が悪くな
るという問題もあった。
When the amount of addition of Sn is reduced (9-
13% Sn) deteriorates the seizure resistance, and conversely, when the amount of Sn added is increased (15 to 25% Sn), the breaking strength also deteriorates.

【0007】[0007]

【発明が解決しようとする課題】本発明はこの様な従来
の問題点に着目してなされたもので、重量%で少なくと
も8〜18%Snならびに6%未満(0を含まず)Pb
を含むほか、Siはほとんど含むことないとともに、C
uは1%未満(0を含まず)しか含むことなく、しか
も、例えば、90秒以内のように、きわめて短時間の加
熱で十分な溶体化処理効果が得られ、なかでも、圧延段
階での加工硬化が軽減でき、Sn添加量が少なくても耐
焼付性を悪化させることなく破壊強度の良好なアルミ基
軸受合金が製造できる。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to such a conventional problem, and is at least 8 to 18% Sn by weight% and less than 6% (not including 0) Pb.
In addition to containing, Si hardly contains, and C
u contains less than 1% (not including 0), and a sufficient solution treatment effect can be obtained by heating for an extremely short time, for example, within 90 seconds, and in particular, in the rolling stage. It is possible to reduce the work hardening, and it is possible to manufacture an aluminum-based bearing alloy having good fracture strength without deteriorating the seizure resistance even if the amount of Sn added is small.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明方法は
重量%で少なくとも8〜18%Sn、6%〜0.5%P
b、1%〜0.1%Cuを含み残余が実質的にアルミニ
ウムから成るアルミニウム合金を冷間圧延したのちに、
この冷延材を400〜550℃で90秒以内最終の加熱
処理し、その後、180℃/分〜50℃/分以上の速度
で冷却することを特徴とする。
That is, the method of the present invention comprises at least 8-18% Sn and 6% -0.5% P by weight.
b, after cold rolling an aluminum alloy containing 1% to 0.1% Cu and the balance essentially consisting of aluminum,
This cold rolled material is subjected to a final heat treatment at 400 to 550 ° C for 90 seconds or less, and then cooled at a rate of 180 ° C / min to 50 ° C / min or more.

【0009】以下、本発明の手段たる構成ならびにその
作用について説明すると、次の通りである。
The structure and operation of the means of the present invention will be described below.

【0010】一般に、アルミ合金で強度向上の手段とし
て溶体化処理は有効であることが知られている。
It is generally known that solution treatment is effective as a means for improving strength in aluminum alloys.

【0011】しかし、溶体化処理には、高温の加熱時間
は少なくとも4時間以上は必要であると云われ、このた
め、強度向上の手段として用いられていない。
However, it is said that the solution heat treatment requires a high temperature heating time of at least 4 hours or more, and therefore is not used as a means for improving strength.

【0012】これに対し、本発明においては、アルミ合
金に対しSnとともにPbを多く配合する。これらSn
ならびにPbは低融点金属であるところから、比較的低
い温度で液相が多く発生し、極めて短時間、ちなみに、
後記の実施例で示すように90秒以内で十分な溶体化処
理効果が得られる。
On the other hand, in the present invention, a large amount of Pb is added to the aluminum alloy together with Sn. These Sn
Also, since Pb is a low melting point metal, a large amount of liquid phase is generated at a relatively low temperature, and for an extremely short time, by the way,
As shown in the examples described below, a sufficient solution treatment effect can be obtained within 90 seconds.

【0013】また、本発明においては、処理すべきアル
ミ合金中にSnとPbが共存する。このため、液相発生
温度範囲が広くなり、固溶体処理効果を得るために、C
uの含有量を多く、例えば、1%以上にする必要はな
く、Cu1%未満で十分にその効果が達成できる。
Further, in the present invention, Sn and Pb coexist in the aluminum alloy to be treated. For this reason, the temperature range in which the liquid phase is generated becomes wider, and in order to obtain the solid solution treatment effect, C
It is not necessary to increase the content of u, for example, 1% or more, and if it is less than 1% Cu, the effect can be sufficiently achieved.

【0014】従って、Cuが多いと効果が過大となった
り、制御が困難となるが、このような問題がない。
Therefore, when the amount of Cu is large, the effect becomes excessive and the control becomes difficult, but there is no such problem.

【0015】また、Si成分がなくとも、つまり必須成
分としなくとも、アルミ合金の溶体化処理は達成でき
る。
Further, the solution treatment of the aluminum alloy can be achieved without the Si component, that is, without using the essential component.

【0016】そこで、処理すべきアルミ合金の各成分の
限定理由から説明すると、次の通りである。
Therefore, the reason for limiting each component of the aluminum alloy to be treated is as follows.

【0017】このアルミ軸受合金は重量%で少なくとも
8〜18%Sn、6%未満(0を含まず)Pb、1%未
満(0を含まず)Cuを含む。
The aluminum bearing alloy contains, by weight, at least 8 to 18% Sn, less than 6% Pb (not containing 0), Cu less than 1% (not containing 0).

【0018】まず、錫(Sn)は8〜18%添加され、
後記のように添加される鉛(Pb)と相まって、液相発
生温度を低下させるとともに比較的多くの液相を発生さ
せる。このため、後記のように、ちなみに90秒以内の
ような短時間で十分に溶体化処理が達成でき、機械的強
度を向上させることができる。
First, 8 to 18% of tin (Sn) is added,
Together with lead (Pb) added as described later, the liquid phase generation temperature is lowered and a relatively large amount of liquid phase is generated. Therefore, as described later, the solution treatment can be sufficiently achieved in a short time such as 90 seconds or less, and the mechanical strength can be improved.

【0019】すなわち、一般に、軸受合金では、錫(S
n)は主に耐焼付性のために添加される。この意味で
は、18%を超えると、軟質相が多くなり、軸受合金強
度が低下し破壊強度が損なわれ、好ましくない。
That is, in general, in a bearing alloy, tin (S
n) is added mainly for seizure resistance. In this sense, if it exceeds 18%, the soft phase increases, the bearing alloy strength decreases, and the fracture strength deteriorates, which is not preferable.

【0020】しかし、ある程度発生液相量を確保して短
時間で溶体化処理を達成するのには、錫(Sn)は8〜
18%必要であり、8%未満では、発生液相量が少なく
なり、高温短時間での固溶量も少なく、溶体化処理効果
も不十分になり、その上、破壊強度や耐焼付性が確保で
きない。
However, in order to secure the generated liquid phase amount to some extent and achieve the solution treatment in a short time, tin (Sn) is 8 to 10.
18% is required, and if it is less than 8%, the amount of liquid phase generated is small, the amount of solid solution in a short time at high temperature is small, the solution treatment effect is insufficient, and in addition, the breaking strength and seizure resistance are low. Cannot be secured.

【0021】次に、鉛(Pb)は、アルミ軸受合金にお
いては耐焼付性向上成分として添加されるが、本発明で
は、先にのべた通り、錫(Sn)との共存によって液相
発生温度を降下させ、発生液相量を多くして、溶体化処
理の効果を十分に達成させる。
Next, lead (Pb) is added as a seizure resistance improving component in the aluminum bearing alloy, but in the present invention, as described above, the coexistence with tin (Sn) causes the liquid phase generation temperature. And the amount of the generated liquid phase is increased to sufficiently achieve the effect of the solution treatment.

【0022】この場合、少ない銅含有量(1%未満)で
溶体処理効果を確保できる。
In this case, the solution treatment effect can be secured with a small copper content (less than 1%).

【0023】添加量の上限としてはアルミ合金中で著し
い偏析を起こさない範囲として6%未満であり、下限と
しては後の実施例に示すように0.5%は必要である。
The upper limit of the amount added is less than 6% in the range where significant segregation does not occur in the aluminum alloy, and the lower limit is required to be 0.5% as shown in the following examples.

【0024】次に、銅(Cu)はアルミ合金を強化させ
る成分であるが、本発明においてはSnとPbの共存の
もとで高温加熱後急冷する事でアルミ基地中には小量の
Cuでも十分にCuを固溶させることができ、強度と伸
びを大幅に改善し、結果として軸受合金としての破壊強
度を向上させる。
Next, copper (Cu) is a component that strengthens the aluminum alloy. In the present invention, a small amount of Cu is contained in the aluminum matrix by heating at high temperature and then rapidly cooling under the coexistence of Sn and Pb. However, Cu can be sufficiently solid-dissolved, and the strength and elongation are significantly improved, and as a result, the fracture strength as a bearing alloy is improved.

【0025】添加量として、Cuは1%以上では圧延段
階での加工効果が大きくなり、圧延材端部に大きな割れ
が発生し歩留まりが悪化し、それを軽減するために1回
以上の中間熱処理が必要となる。また、Cuが1%以上
だと溶体処理効果が過大となってかえって軸受合金とし
ての特性(異物埋収性等)を阻害したり、効果に対する
熱処理の制御が困難となる。
When Cu is added in an amount of 1% or more, the working effect in the rolling stage becomes large, and large cracks are generated at the end of the rolled material to deteriorate the yield. To reduce it, one or more intermediate heat treatments are performed. Is required. Further, if Cu is 1% or more, the solution treatment effect becomes too large and the characteristics as a bearing alloy (for example, foreign matter embeddability) are impaired, and it becomes difficult to control the heat treatment for the effect.

【0026】添加量の下限としては常温で固溶するCu
量以上が必要なので、0.1%以上が望ましい。
The lower limit of the amount of addition is Cu which forms a solid solution at room temperature.
Since more than the amount is required, 0.1% or more is desirable.

【0027】その他の基地強化成分(Fe、Mn、C
r、Ni) その他の基地成分としては通常の展伸用アルミ合金に含
まれる成分のうち銅以外に固溶体効果のあるMg、Zn
を除く基地強化成分Fe、Mn、Cr、Niのうちから
1種または2種以上を合計で3%を超えない範囲で添加
しても本発明の範囲を逸脱するものではない。
Other matrix strengthening components (Fe, Mn, C
r, Ni) Other base components include Mg, Zn which has a solid solution effect in addition to copper among the components contained in a normal wrought aluminum alloy.
It does not deviate from the scope of the present invention even if one or two or more of the matrix strengthening components except Fe, Mn, Cr and Ni are added within a range not exceeding 3% in total.

【0028】微細化成分(Ti、Zr、V、B、Ga、
Sr) 合計組成の微細化成分としてのTi、Zr、V、B、G
a、Srは合計で0.1%を超えない範囲で添加を妨げ
るものではない。
Finer components (Ti, Zr, V, B, Ga,
Sr) Ti, Zr, V, B, G as a refined component of the total composition
Addition of a and Sr does not hinder addition within a range not exceeding 0.1% in total.

【0029】次に、以上の組成のアルミ合金を鋳造で溶
製し、この鋳造時の歪などを熱処理で除去してから、冷
間圧延し、これに400℃〜550℃×90秒以内の最
終加熱処理を付加し、その後180℃/分〜50℃/分
の冷却速度で冷却する。
Next, the aluminum alloy having the above composition is melted by casting, strains and the like at the time of casting are removed by heat treatment, and then cold rolling is carried out, which is 400 ° C to 550 ° C for 90 seconds or less. A final heat treatment is added, followed by cooling at a cooling rate of 180 ° C / min to 50 ° C / min.

【0030】この場合、最終加熱処理が400℃以下で
あると、後記の実施例にも示す通り、溶体化処理が不十
分で軸受としての破壊強度が得られない。
In this case, if the final heat treatment is 400 ° C. or lower, the solution treatment is insufficient and the fracture strength as a bearing cannot be obtained, as will be shown in Examples described later.

【0031】[0031]

【実施例】以下、実施例について説明する。EXAMPLES Examples will be described below.

【0032】表1に示す所定組成のアルミ合金(ただ
し、No.1〜5が本発明に係り、No.11〜14は
比較例)を鋳造により溶製し、厚さ20mmの板とし
た。この鋳造時の歪を除去するために熱処理(300℃
x4時間)し、鋳肌を除去した。
Aluminum alloys having a predetermined composition shown in Table 1 (however, Nos. 1 to 5 relate to the present invention, Nos. 11 to 14 are comparative examples) were melted by casting to obtain a plate having a thickness of 20 mm. Heat treatment (300 ° C to remove the strain during casting)
x4 hours), and the casting surface was removed.

【0033】その後、1mmの板厚まで冷間圧延した。After that, cold rolling was performed to a plate thickness of 1 mm.

【0034】この冷間圧延途中段階で比較例14は、C
u2%も含まれることもあって、圧延割れが激しく評価
試料は得られなかった。
In the intermediate stage of the cold rolling, Comparative Example 14 was C
Since u2% was also included, rolling cracks were severe and an evaluation sample could not be obtained.

【0035】他のアルミ合金薄板について表1に示す最
終熱処理条件で最終の熱処理を溶体化処理として実施し
た。
For other aluminum alloy thin plates, final heat treatment was carried out as solution treatment under the final heat treatment conditions shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】その後、各試料について、JIS5号試験
片に加工して引張試験機にて破壊強度を測定した。その
結果を表2に示す。本発明例のNo.1〜5は破壊強度
13.7〜17.4Kgf/mmであり、比較例13
はSn5%、Pb0.5%であったが、Cu0.7%を
含むため、破壊強度は17Kgf/mmを示してい
る。
Thereafter, each sample was processed into a JIS No. 5 test piece and the breaking strength was measured by a tensile tester. The results are shown in Table 2. No. 1 of the present invention example. 1 to 5 have a breaking strength of 13.7 to 17.4 Kgf / mm 2 , and Comparative Example 13
Was Sn 5% and Pb 0.5%, but since Cu 0.7% was included, the fracture strength was 17 Kgf / mm 2 .

【0038】次に、鈴木式摩擦摩耗試験機を用いて耐焼
付試験を行なった。焼付試験条件は次の通りである。
Next, a seizure resistance test was conducted using a Suzuki type friction and wear tester. The seizure test conditions are as follows.

【0039】摩擦速度 4m/秒 相手材 材質 S45C 硬さ HRC 55 面粗さ 0.8〜1.0S 使用オイル SAE20W−40 油温 150±5℃ テスト数 各2 焼付荷重 20Kgf/cmから10Kgf/c
毎に面圧を上げていき、焼付をおこした面圧を焼付
荷重とする。 尚、焼付の判定は材料温度が180℃を超えた場合また
は摩擦力が25.5Kgfを超えた場合とする。
Friction speed 4 m / sec Counterpart material S45C Hardness HRC 55 Surface roughness 0.8-1.0S Oil used SAE20W-40 Oil temperature 150 ± 5 ° C Number of tests 2 Each seizure load 20 Kgf / cm 2 to 10 Kgf / c
The surface pressure is increased every m 2 and the surface pressure after the seizure is used as the seizure load. The seizure is judged when the material temperature exceeds 180 ° C. or when the frictional force exceeds 25.5 Kgf.

【0040】その結果を表2に示す。本発明例のすべて
は焼付荷重120〜230Kgfで優れた耐焼付性を示
している。なお、比較例13はPbが少なくSnが5%
と少ないため、焼付荷重は70Kgfときわめて低く、
耐焼付性が劣化していることがわかる。
The results are shown in Table 2. All of the examples of the present invention exhibit excellent seizure resistance under a seizure load of 120 to 230 Kgf. In Comparative Example 13, Pb is small and Sn is 5%.
Therefore, the seizure load is as low as 70 Kgf,
It can be seen that the seizure resistance has deteriorated.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】以上説明した通り、本発明方法は重量%
で少なくとも8〜18%Sn、6%〜0.5%Pb、1
%〜0.1%Cuを含むアルミ軸受合金材を冷間圧延な
どを介して製造する際に、400〜550℃の最終加熱
を90秒以内に行なって、180℃/分〜50℃/分の
速度で冷却する。このため、本発明方法によると、Cu
が少なく加工性が良く、耐焼付性が良好であるほか、溶
体化処理が十分に行なわれるところから、破壊強度に優
れる錫−鉛含有アルミ基軸受合金が製造できる。
As described above, the method of the present invention is used in% by weight.
At least 8-18% Sn, 6% -0.5% Pb, 1
% -0.1% Cu aluminum bearing alloy material is manufactured through cold rolling or the like, final heating at 400 to 550 ° C. is performed within 90 seconds to obtain 180 ° C./min to 50 ° C./min. Cool at the speed of. Therefore, according to the method of the present invention, Cu
The tin-lead-containing aluminum-based bearing alloy having excellent fracture strength can be produced because the solution treatment is sufficiently performed and the solution treatment is sufficiently performed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で少なくとも8〜18%Sn、6
%〜0.5%Pb、1%〜0.1%Cuを含み残余が実
質的にアルミニウムから成るアルミニウム合金を冷間圧
延したのちに、この冷延材を400〜550℃で90秒
以内最終の加熱処理し、その後、180℃/分〜50℃
/分以上の速度で冷却することを特徴とするアルミニウ
ム基軸受合金の製造方法。
1. At least 8-18% Sn, 6 by weight.
% -0.5% Pb, 1% -0.1% Cu, and the balance consisting essentially of aluminum. After cold rolling, this cold rolled material is finished at 400-550 ° C. within 90 seconds. Heat treatment, then 180 ℃ / min ~ 50 ℃
A method for producing an aluminum-based bearing alloy, which comprises cooling at a speed of not less than 1 minute.
【請求項2】 基地強化成分として、Fe、Mn、C
r、Niの内から1種または2種以上を合計で3%を超
えない範囲で含有することを特徴とする請求項1記載の
アルミニウム基軸受合金の製造方法。
2. Fe, Mn, C as a matrix strengthening component
The method for producing an aluminum-based bearing alloy according to claim 1, wherein one or two or more of r and Ni are contained in a range not exceeding 3% in total.
【請求項3】 微細化成分としてTi、Zr、V、B、
Ga、Srの内から1種または2種以上を合計で0.1
%を超えない範囲で含有することを特徴とする請求項1
又は2記載のアルミニウム基軸受合金の製造方法。
3. Ti, Zr, V, B as a refinement component,
One or two or more of Ga and Sr in total is 0.1
% Is contained in the range not exceeding 1.
Alternatively, the method for producing the aluminum-based bearing alloy according to 2 above.
JP3084749A 1991-03-25 1991-03-25 Method for manufacturing aluminum-based bearing alloy Expired - Lifetime JPH07103455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3084749A JPH07103455B2 (en) 1991-03-25 1991-03-25 Method for manufacturing aluminum-based bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3084749A JPH07103455B2 (en) 1991-03-25 1991-03-25 Method for manufacturing aluminum-based bearing alloy

Publications (2)

Publication Number Publication Date
JPH04297558A JPH04297558A (en) 1992-10-21
JPH07103455B2 true JPH07103455B2 (en) 1995-11-08

Family

ID=13839346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3084749A Expired - Lifetime JPH07103455B2 (en) 1991-03-25 1991-03-25 Method for manufacturing aluminum-based bearing alloy

Country Status (1)

Country Link
JP (1) JPH07103455B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4434801A1 (en) * 1994-09-29 1996-04-04 Kolbenschmidt Ag Plain bearing material
CN104789822B (en) * 2015-03-26 2017-01-11 湖北宏鑫复合材料有限公司 Aluminum base alloy of sliding bearing and preparation method for aluminum base alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144883A (en) * 1974-10-16 1976-04-16 Hitachi Ltd Handotaisochi oyobi sonoseizohoho
JPS5814866A (en) * 1981-07-20 1983-01-27 Konishiroku Photo Ind Co Ltd Magnetic brush developing device
JPS59193254A (en) * 1983-04-14 1984-11-01 Taiho Kogyo Co Ltd Preparation of aluminum alloy bearing
GB8513330D0 (en) * 1985-05-28 1985-07-03 Ae Plc Bearing materials

Also Published As

Publication number Publication date
JPH04297558A (en) 1992-10-21

Similar Documents

Publication Publication Date Title
US20120073712A1 (en) Machinable copper-based alloy and method for producing the same
JPS63286557A (en) Production of article from al base alloy
EP0205893B1 (en) Bearing materials
KR101431355B1 (en) Aluminum alloy for slide bearing, slide bearing and method for producing same
US20190062876A1 (en) Copper alloy containing tin, method for producing same, and use of same
JPS6263637A (en) Aluminum bearing alloy
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JP3868630B2 (en) Aluminum alloy for slide bearing and slide bearing
JP2007100666A (en) High strength titanium alloy automotive engine valve
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
CN1400326A (en) Aluminium bronze
JPS62149839A (en) Aluminum alloy with excellent strength and wear resistance for machining
JPH07103455B2 (en) Method for manufacturing aluminum-based bearing alloy
JP3920656B2 (en) High rigidity aluminum alloy containing boron
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JP2592397B2 (en) Aluminum bronze for sliding materials with excellent seizure resistance and wear resistance
JP2001064741A (en) Use of copper-tin-iron alloy high in tin concentration
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JPH0754095A (en) Centrifugal cast composite roll
JPS6056220B2 (en) aluminum bearing alloy
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JP3738534B2 (en) Age-hardening steel bar with excellent cold forgeability
JPS635464B2 (en)
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
JPH04329850A (en) High damping material and its manufacture