[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07102998A - Fuel supply control method for gas turbine - Google Patents

Fuel supply control method for gas turbine

Info

Publication number
JPH07102998A
JPH07102998A JP24934193A JP24934193A JPH07102998A JP H07102998 A JPH07102998 A JP H07102998A JP 24934193 A JP24934193 A JP 24934193A JP 24934193 A JP24934193 A JP 24934193A JP H07102998 A JPH07102998 A JP H07102998A
Authority
JP
Japan
Prior art keywords
gas
control valve
signal
fuel
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24934193A
Other languages
Japanese (ja)
Inventor
Kozo Toyama
浩三 外山
Norikazu Miyamoto
典一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24934193A priority Critical patent/JPH07102998A/en
Publication of JPH07102998A publication Critical patent/JPH07102998A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent fluctuation of a load, misfire of a burner, and damage of high temperature part by determining a mixing ratio through previous setting of calory, multiplying a fuel control signal of a gas turbine thereby, controlling an opening of a fuel rate control valve previously based on the signal, and correcting the mixing ratio based on the feedback signal from a calorimeter. CONSTITUTION:A low heat generation gas (B gas) main pipe 16 is connected to a mixer 21 through a B gas interruption valve 17. A calorimeter 30 is arranged on a down course of an electric dust collector 18. A high heat generation gas (M gas) mother pipe 25 is connected to an inlet of the mixer 21 sequentially through an M gas flowmeter 24, a flow rate control valve 20, and a gas interruption valve 15a. In order to mix the B gas with the M gas through the flow rate control valve 20, a mixing ratio is previously determined by calory setting. A fuel control signal of a gas turbine is multiplied thereby. According to the signal, an opening of the flow rate control valve is previously controlled, and the mixing ratio is corrected by a feedback signal from the calorimeter 30. It is thus possible to prevent fluctuation of a load, misfire of a burner, and damage of high temperature parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉ガス等の低発熱量
ガスを主燃料とするガスタービンの燃料供給制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply control method for a gas turbine which uses a low calorific value gas such as blast furnace gas as a main fuel.

【0002】[0002]

【従来の技術】ガスタービンのガス燃料としては、天然
ガス,液化天然ガス(LNG),液化石油ガス(LP
G),石油副性ガス,コークス炉ガス,坑内メタンガ
ス,高炉ガス,石炭ガス化ガス等が使用される。このう
ち高炉ガスは発熱量が低く、600kcal/Nm3 LHV台
である。このため燃料ガスの流量が大きく、広い負荷範
囲に対応して安定燃焼をさせるために、燃焼負荷率を下
げた単筒かん型燃焼器が採用されている。
Gas turbine gas fuels include natural gas, liquefied natural gas (LNG) and liquefied petroleum gas (LP).
G), petroleum secondary gas, coke oven gas, underground methane gas, blast furnace gas, coal gasification gas, etc. are used. Of these, blast furnace gas has a low calorific value and is on the order of 600 kcal / Nm 3 LHV. For this reason, a single-cylinder can-type combustor with a low combustion load factor is used in order to achieve a stable combustion in a wide load range with a large flow rate of fuel gas.

【0003】図5は高炉ガス焚きガスタービンの系統図
である。空気圧縮機1,タービン2,燃焼器3は単純1
軸ガスタービン4を構成する。ガスタービンは主歯車装
置5を介して発電機6と高炉ガス(以下Bガスと言う)
圧縮機7を駆動し、発電機軸端には補機歯車装置8及び
クラッチ9を介して、起動原動機10が結合されてい
る。
FIG. 5 is a system diagram of a blast furnace gas-fired gas turbine. Air compressor 1, turbine 2 and combustor 3 are simple 1
The shaft gas turbine 4 is configured. The gas turbine is connected to the generator 6 and the blast furnace gas (hereinafter referred to as B gas) via the main gear unit 5.
The compressor 7 is driven, and the starting prime mover 10 is coupled to the shaft end of the generator via the auxiliary gear device 8 and the clutch 9.

【0004】Bガス圧縮機7の吐出ガスは危急遮断弁1
3を経て、燃焼器3へ導かれるが、その一部は流量制御
弁11,圧力制御弁12,ガス冷却器14,遮断弁15
を経てBガス母管16へ還流する。Bガス母管からは遮
断弁17,電気集じん器18を経てBガスがガス圧縮機
7へ送られる。
The discharge gas of the B gas compressor 7 is an emergency shutoff valve 1.
3 is led to the combustor 3, and a part of it is introduced into the flow control valve 11, the pressure control valve 12, the gas cooler 14, and the shutoff valve 15.
It is refluxed to the B gas mother pipe 16 via. From the B gas mother pipe, B gas is sent to the gas compressor 7 via the shutoff valve 17 and the electrostatic precipitator 18.

【0005】またガスタービン排ガスは排ガスボイラ1
9へ送られて、蒸気発生に供される。
Further, the gas turbine exhaust gas is an exhaust gas boiler 1.
9 and sent to steam generation.

【0006】本系統での起動方式は、高発熱量ガス
(油)を使用するパイロット系統にて着火し、次にBガ
スを主体とする低発熱量ガスを使用するメイン系統を着
火させる。
In the starting system of this system, a pilot system that uses a high calorific value gas (oil) is ignited, and then a main system that uses a low calorific value gas mainly containing B gas is ignited.

【0007】運転時においては、パイロット系統は種火
の役目を果たし、ガスタービンが失火するのを防止す
る。
In operation, the pilot system acts as a pilot fire and prevents the gas turbine from misfiring.

【0008】[0008]

【発明が解決しようとする課題】上記従来装置におい
て、燃焼器として単筒かん型を使用するも、燃料の燃焼
過程で下記のような問題点があった。
In the above-mentioned conventional apparatus, although the single cylinder can type is used as the combustor, there are the following problems in the fuel combustion process.

【0009】(1) 燃料の発熱量が不安定になると負
荷が変動して安定した運転ができない。
(1) If the calorific value of the fuel becomes unstable, the load fluctuates and stable operation cannot be performed.

【0010】(2) 発熱量が過小になると燃焼器が失
火し、過大になると燃焼器での燃焼ガス温度が上昇し、
ガスタービン高温部品が損傷する。
(2) If the calorific value becomes too small, the combustor will misfire, and if it becomes too large, the combustion gas temperature in the combustor will rise.
Gas turbine hot parts are damaged.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention takes the following means in order to solve the above problems.

【0012】(1) 低発熱量ガスを主燃料とするガス
タービンにおいて、上記低発熱量ガスに高発熱量ガスを
流量制御弁を介して混合するとき、予めカロリー設定に
よって混合比を決め、それに上記ガスタービンの燃料制
御信号を掛け、その信号により先行的に上記流量制御弁
の開度を制御し、カロリーメータからのフィードバック
信号により上記混合比を補正するガスタービンの燃料供
給制御方法。
(1) In a gas turbine using a low calorific value gas as a main fuel, when mixing a low calorific value gas with a high calorific value gas through a flow control valve, a mixing ratio is determined in advance by calorie setting, and A fuel supply control method for a gas turbine, wherein a fuel control signal for the gas turbine is applied, the opening of the flow control valve is controlled in advance by the signal, and the mixing ratio is corrected by a feedback signal from a calorimeter.

【0013】(2) 上記(1)記載のガスタービンの
燃料供給制御方法において、流量制御弁に不安定混合比
を改善するための弁差圧補正を行ったガスタービンの燃
料供給制御方法。
(2) In the fuel supply control method for a gas turbine according to the above (1), a fuel pressure control method for a gas turbine in which a valve differential pressure is corrected in a flow control valve to improve an unstable mixing ratio.

【0014】[0014]

【作用】[Action]

(1) 発明1において、低発熱量ガスを主燃料とする
ガスタービンの低発熱量ガスに、高発熱量ガスがその流
量制御弁を介して供給混合される。そのとき予めカロリ
ー設定によって混合比が決められる。そしてそれにガス
タービンの燃料制御信号が掛け算され、その信号により
先行的に流量制御弁の開度が制御される。また、混合後
のカロリーを検出するカロリーメータからのフィードバ
ック信号により混合比が補正される。
(1) In the invention 1, the high calorific value gas is supplied and mixed with the low calorific value gas of the gas turbine which uses the low calorific value gas as the main fuel through the flow control valve. At that time, the mixing ratio is determined in advance by the calorie setting. Then, it is multiplied by the fuel control signal of the gas turbine, and the opening of the flow control valve is controlled in advance by the signal. Further, the mixing ratio is corrected by the feedback signal from the calorie meter that detects the calories after mixing.

【0015】従って、低発熱量ガスの発熱量が不安定で
あっても、予めカロリー設定によって混合比が決めら
れ、その信号により先行的に流量制御弁の開度が制御さ
れ、高発熱量ガスが混合される。さらに混合はフィード
バックにより補正される。このためガスタービンへの混
合燃料の発熱量が所定値に維持され、ガスタービンの出
力(負荷)が安定する。
Therefore, even if the calorific value of the low calorific value gas is unstable, the mixture ratio is determined in advance by the calorie setting, and the opening of the flow control valve is controlled in advance by the signal, and the high calorific value gas is controlled. Are mixed. Further mixing is corrected by feedback. Therefore, the calorific value of the mixed fuel to the gas turbine is maintained at a predetermined value, and the output (load) of the gas turbine becomes stable.

【0016】また、負荷状態から無負荷状態に突変した
場合にも、混合比に掛けられる燃料制御信号が低下する
ため、流量制御弁が絞られる。一方、燃料制御信号によ
り低発熱量ガスの流量制御弁も絞られるので、混合後の
混合比は一定に保たれる。このことにより無負荷運転を
維持するための、最低カロリーが保たれ、無負荷運転へ
の円滑な移行が行われる。
Further, even when the load state suddenly changes to the no-load state, the fuel control signal applied to the mixing ratio decreases, so that the flow control valve is throttled. On the other hand, since the flow control valve for the low heat value gas is also throttled by the fuel control signal, the mixing ratio after mixing is kept constant. As a result, the minimum calorie for maintaining the no-load operation is maintained, and the smooth transition to the no-load operation is performed.

【0017】(2) 発明2において、流量制御弁の入
出側の弁差圧が検出され、その信号により弁差圧補正が
行われる。
(2) In the second aspect of the invention, the valve differential pressure on the inlet and outlet sides of the flow control valve is detected, and the signal is used to correct the valve differential pressure.

【0018】従って、高発熱量ガスおよび低発熱量ガス
の供給圧力が変動しても、変動に応じて流量特性が補正
され、常に安定した混合が行われる。
Therefore, even if the supply pressures of the high calorific value gas and the low calorific value gas fluctuate, the flow rate characteristics are corrected according to the fluctuation, and stable mixing is always performed.

【0019】[0019]

【実施例】本発明の一実施例を図1〜図4により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.

【0020】なお、従来例で説明した部分は同一の番号
をつけ説明を省略し、この発明に関する部分を主体に説
明する。
The parts described in the conventional example are denoted by the same reference numerals and the description thereof will be omitted, and the parts relating to the present invention will be mainly described.

【0021】図1にて、低発熱ガス(Bガス)母管16
はBガス遮断弁17を経て混合器21につながれる。混
合器21の出口は電気集じん器18を経てガス圧縮機1
につながれる。カロリーメータ30は電気集じん器18
の後流側に設けられる。
In FIG. 1, a low exothermic gas (B gas) mother tube 16
Is connected to the mixer 21 via the B gas cutoff valve 17. The outlet of the mixer 21 passes through the electrostatic precipitator 18 and the gas compressor 1
Connected to. The calorimeter 30 is an electric dust collector 18
It is installed on the downstream side.

【0022】ガスタービンのガス圧縮機1の出口は燃焼
器3につながれる。また分岐して燃料ガス流量弁11,
圧力制御弁12を経て、遮断弁17の出口につながれ
る。
The outlet of the gas compressor 1 of the gas turbine is connected to the combustor 3. The fuel gas flow valve 11 is also branched to
It is connected to the outlet of the shutoff valve 17 via the pressure control valve 12.

【0023】高発熱ガス(Mガス)母管25はMガス流
量計24,流量制御弁20,ガス遮断弁15aを順次経
て混合器21の入口につながれる。また流量制御弁20
の出入口間には制御弁差圧計22が設けられる。さらに
遮断弁15aの出入口間にはガス起動弁23を持つバイ
パスラインがつながれる。
The high exothermic gas (M gas) mother pipe 25 is connected to the inlet of the mixer 21 through the M gas flow meter 24, the flow control valve 20, and the gas cutoff valve 15a in this order. Also, the flow control valve 20
A control valve differential pressure gauge 22 is provided between the inlet and outlet of the valve. Further, a bypass line having a gas starting valve 23 is connected between the inlet and outlet of the shutoff valve 15a.

【0024】Mガス流量制御弁20の制御回路ブロック
図を図2に示す。
A block diagram of the control circuit of the M gas flow control valve 20 is shown in FIG.

【0025】カロリー設定器31の出力31s(混合ガ
ス発熱量Cs)は減算器32へ送られる。また減算器3
2にはカロリーメータ30の出力が減算入力される。減
算器32の出力は乗算器33,PI演算器34,加算器
35を順次経て乗算器36へ送られる。また乗算器36
には燃料制御信号(CSO)60sが入力される。乗算
器36の出力は弁開度設定器37,乗算器38,I/E
変換器39を順次経て流量制御弁20へ送られる。
The output 31s (calorific value Cs of mixed gas) of the calorie setting unit 31 is sent to the subtractor 32. Also subtractor 3
The output of the calorimeter 30 is subtracted and input to 2. The output of the subtractor 32 is sequentially sent to the multiplier 36 through the multiplier 33, the PI calculator 34, and the adder 35. Also, the multiplier 36
A fuel control signal (CSO) 60s is input to the. The output of the multiplier 36 is the valve opening setting device 37, the multiplier 38, the I / E.
It is sent to the flow control valve 20 through the converter 39 in sequence.

【0026】また流量制御弁20の出入口の差圧検出器
22の出力はE/I変換器40,関数発生器41を順次
経て乗算器38へ送られる。さらに弁開度設定器37に
はSG43,SG44の出力が2連リレー42を経て入
力される。
The output of the differential pressure detector 22 at the inlet and outlet of the flow control valve 20 is sent to the multiplier 38 through the E / I converter 40 and the function generator 41 in sequence. Further, the outputs of SG43 and SG44 are input to the valve opening setting device 37 via the double relay 42.

【0027】CSO信号60sは関数発生器47を経て
乗算器33へ送られる。またCs信号31sは減算器4
8を経て除算器50へ送られる。また減算器48にはB
ガス発熱量CB を発生するSG49の出力が入力されて
いる。さらに除算器50には、Mガス発熱量CM からC
B を引いた信号を発生するSG51が入力されている。
除算器50の出力はP演算器,乗算器53,加算器54
を順次経て加算器35へ送られる。
The CSO signal 60s is sent to the multiplier 33 via the function generator 47. Further, the Cs signal 31s is subtracted from the subtracter 4
It is sent to the divider 50 via 8. In addition, the subtractor 48 has B
The output of SG49 that generates gas calorific value C B is input. Further, the divider 50 has the M gas calorific value C M to C
SG51 which generates the signal which subtracted B is inputted.
The output of the divider 50 is the P calculator, the multiplier 53, and the adder 54.
Are sequentially transmitted to the adder 35.

【0028】またCSO信号60sは関数発生器55を
経て乗算器へ送られる。さらに回転数信号61sは関数
発生器56を経て加算器54へ送られる。
Further, the CSO signal 60s is sent to the multiplier through the function generator 55. Further, the rotation speed signal 61s is sent to the adder 54 via the function generator 56.

【0029】ガスタービン4は運転状態によって、安定
燃焼に必要なカロリーの下限界は変化する。すなわちガ
スタービン起動昇速時には燃料噴射量が少なく、燃焼が
不安定になりがちであるので高いカロリーを必要とす
る。しかし定格負荷運転時には燃料噴射量も最大とな
り、燃焼が最も安定するのでカロリーは下げられる。し
かし電気事故等で一瞬にして無負荷状態になる事がある
ため、負荷運転中でも無負荷状態で必要とする最低カロ
リー以上を維持しておかねばならない。
The lower limit of calories required for stable combustion changes depending on the operating condition of the gas turbine 4. That is, when the gas turbine is started up and accelerated, the amount of fuel injection is small and combustion tends to be unstable, so high calories are required. However, during rated load operation, the amount of fuel injection is also maximum and combustion is most stable, so calories can be reduced. However, since there is a moment when the vehicle goes into a no-load state due to an electric accident or the like, it is necessary to maintain at least the minimum calorie required in a no-load state even under load operation.

【0030】ガスタービン起動前には、カロリーUP入
操作により、燃料を着火に必要なカロリーに到達するま
で着火前増熱制御を行う。起動前増熱制御では、シーケ
ンス制御に基づいてSG43がMガス流量制御弁開度設
定信号を出力し、2連リレー42を経て、弁開度設定器
37へ送られる。この信号によりループ内にMガスが混
入されて増熱が図られる。すなわちMガス流量制御弁2
0の開度は設定開度に制御され、所定の熱量に達すると
弁は自動的に閉じられる(図2(A),図3参照)。
Before starting the gas turbine, the pre-ignition heat increase control is performed by the calorie UP input operation until the fuel reaches the calorie required for ignition. In the pre-start heat increase control, the SG 43 outputs an M gas flow rate control valve opening setting signal based on the sequence control, and is sent to the valve opening setting device 37 via the double relay 42. Due to this signal, M gas is mixed in the loop to increase heat. That is, M gas flow rate control valve 2
The opening degree of 0 is controlled to the set opening degree, and when the predetermined amount of heat is reached, the valve is automatically closed (see FIGS. 2A and 3).

【0031】混合器21,ガス圧縮機1,燃料ガス流量
制御弁11,圧力制御弁12を通るループは、着火前増
熱制御により増熱され、着火昇速に必要な高発熱量燃料
を供給する。
A loop passing through the mixer 21, the gas compressor 1, the fuel gas flow rate control valve 11 and the pressure control valve 12 is heated by the pre-ignition heat increase control to supply a high calorific value fuel necessary for ignition acceleration. To do.

【0032】着火前増熱時のカロリー設定はBガス燃料
の場合、一般に1150kcal/Nm3/LHV 程度とされ
る。
The calorie setting at the time of heat increase before ignition is generally about 1150 kcal / Nm 3 / LHV for B gas fuel.

【0033】運転時にはカロリー設定に対して流量比を
制御する先行制御と、カロリー設定と、カロリーメータ
からの信号を比較して、その偏差を制御するカロリー補
正が行われる(図2(H)参照)。
During operation, the preceding control for controlling the flow rate ratio with respect to the calorie setting, the calorie setting, and the signal from the calorimeter are compared, and calorie correction is performed to control the deviation (see FIG. 2 (H)). ).

【0034】先行制御は下記の演算式によって、カロリ
ー設定に対して、Mガスの流量比が演算される。
In the preceding control, the flow rate ratio of M gas is calculated with respect to the calorie setting by the following calculation formula.

【0035】 FM /FS =(CS −CB )/(CM −CB ) ──── 但し FM :Mガス流量 FS :混合ガス流量 CS :混合ガス発熱量 CB :Bガス発熱量 CM :Mガス発熱量 この演算に基づいてMガスとしての必要量が先行的に求
められる(図2(C)参照)。
[0035] F M / F S = (C S -C B) / (C M -C B) ──── where F M: M gas flow F S: mixed gas flow rate C S: mixed gas calorific value C B : B gas calorific value C M : M gas calorific value The required amount of M gas is obtained in advance based on this calculation (see FIG. 2C).

【0036】カロリー補正時、CSO信号60sがカロ
リー補正の感度補正信号として使用される。これはCS
Oが小さいとき、つまり、燃料量が少ない時には補正感
度を小さくする為である(図2(G)参照)。
During calorie correction, the CSO signal 60s is used as a sensitivity correction signal for calorie correction. This is CS
This is because the correction sensitivity is reduced when O is small, that is, when the fuel amount is small (see FIG. 2G).

【0037】また燃料の必要カロリーは運転状態によっ
て変化する為、カロリー設定については、昇速時には回
転数に従って自動設定される(図2(B)参照)。
Further, since the required calorie of the fuel changes depending on the operating state, the calorie is automatically set according to the number of revolutions when the speed is increased (see FIG. 2 (B)).

【0038】以上により求めたMガスの流量比にCSO
信号60sが掛けられ、Mガス流量制御弁20が制御さ
れる。
The flow rate ratio of M gas obtained as described above is set to CSO.
The signal 60s is applied to control the M gas flow rate control valve 20.

【0039】これにより、負荷遮断時等の燃料量突変時
にも、CSO信号60sが絞り込まれる為、Mガス流量
制御弁20が絞り込まれ、BガスとMガスの混合比を一
定に保つことができる(図2(E)参照)。
As a result, even when the fuel amount suddenly changes such as when the load is cut off, the CSO signal 60s is narrowed down, so that the M gas flow control valve 20 is narrowed down and the mixing ratio of B gas and M gas can be kept constant. Yes (see FIG. 2 (E)).

【0040】昇速時はガス圧縮機の吐出流量が少ないた
め、圧縮機バイパス位置の流量制御弁が閉じ勝手とな
り、燃料量が少ないにもかかわらずCSOが大きくな
る。このためカロリー設定に対する先行制御とカロリー
補正だけでは、増熱量が大きすぎるため、起動昇速時に
限って回転数に対する補正が行われる(図2(F)参
照)。
Since the discharge flow rate of the gas compressor is small during acceleration, the flow rate control valve at the compressor bypass position is closed at will, and the CSO becomes large despite the small amount of fuel. For this reason, since the amount of heat increase is too large only by the advance control and the calorie correction for the calorie setting, the correction for the rotational speed is performed only at the time of starting and accelerating the speed (see FIG. 2F).

【0041】Mガス及びBガスの供給圧力が変動する
と、流量特性がずれて流量が正しく制御されない。この
ためMガス流量制御弁20の差圧が計測され、この信号
でフィードバック補正を行って、流量特性のずれが補正
される(図2(D)参照)。
If the supply pressures of the M gas and the B gas fluctuate, the flow rate characteristics deviate and the flow rate is not controlled correctly. Therefore, the differential pressure of the M gas flow rate control valve 20 is measured, and feedback correction is performed using this signal to correct the deviation of the flow rate characteristic (see FIG. 2D).

【0042】以上のようにして、Bガスの発熱量が不安
定になっても、ガスタービン4の出力(負荷)は一定に
維持される。また発熱量が過小になっても燃焼器3が失
火しなくなる。さらに過大になっても燃焼器3での燃焼
ガス温度が上昇しなくなる。
As described above, the output (load) of the gas turbine 4 is maintained constant even if the calorific value of the B gas becomes unstable. Further, even if the calorific value becomes too small, the combustor 3 will not misfire. Even if it becomes excessive, the temperature of the combustion gas in the combustor 3 will not rise.

【0043】なお、Mガス流量制御弁、燃料ガス流量及
び圧力制御弁を複数個設置するのは、弁制御特性の向上
のためである。
A plurality of M gas flow rate control valves, fuel gas flow rate and pressure control valves are provided for the purpose of improving valve control characteristics.

【0044】[0044]

【発明の効果】以上に説明したように、本発明によれば
Bガスのような低発熱量ガスを燃料とするガスタービン
において、Mガスを混合制御することにより、従来発生
していた負荷の変動や燃焼器の失火,高温部品の損傷等
のトラブルがなくなり、この種ガスタービンの信頼性が
向上する。
As described above, according to the present invention, in a gas turbine that uses a low calorific value gas such as B gas as fuel, by mixing and controlling M gas, the load that has been conventionally generated can be reduced. Problems such as fluctuations, misfires in combustors, and damage to high-temperature parts are eliminated, and the reliability of this type of gas turbine is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例の構成系統図である。FIG. 1 is a configuration system diagram of an embodiment of the present invention.

【図2】図2は同実施例のMガス系の制御ブロック図で
ある。
FIG. 2 is a control block diagram of an M gas system of the same embodiment.

【図3】図3は同実施例の着火前増熱のフローチャート
である。
FIG. 3 is a flow chart of pre-ignition heat increase of the same embodiment.

【図4】図4は同実施例の昇速時のCSOと回転数の特
性図である。
FIG. 4 is a characteristic diagram of CSO and rotation speed at the time of speed increase of the embodiment.

【図5】図5は従来例のBガス焚きガスタービンの系統
である。
FIG. 5 is a system of a conventional B gas-fired gas turbine.

【符号の説明】[Explanation of symbols]

1 空気圧縮機 2 タービン 3 燃焼器 4 ガスタービン 5 主歯車装置 6 発電機 7 Bガス圧縮機 8 補機歯車装置 9 クラッチ 10 起動原動機 11 流量制御弁 12 圧力制御弁 13 危急遮断弁 14 ガス冷却器 15,17 遮断弁 16 Bガス母管 18 電気集じん器 19 排ガスボイラ 20 Mガス流量制御弁 21 混合器 22 差圧計(差圧検出
器) 23 Mガス起動弁 24 流量計 25 Mガス母管 30 カロリーメータ 31 カロリー設定器 32,48 減算器 33,36,38,53 乗算器 34 PI演算器 35,54 加算器 37 弁開度設定器 39 I/E変換器 40 E/I変換器 41,45,47,55,56 関数発生器 42 2連リレー 43,44,49,51, SG 46 トラッキング器 50 除算器 52 P演算器
DESCRIPTION OF SYMBOLS 1 Air compressor 2 Turbine 3 Combustor 4 Gas turbine 5 Main gear unit 6 Generator 7 B Gas compressor 8 Auxiliary gear unit 9 Clutch 10 Start prime mover 11 Flow control valve 12 Pressure control valve 13 Emergency shutoff valve 14 Gas cooler 15, 17 Shutoff valve 16 B gas mother tube 18 Electrostatic precipitator 19 Exhaust gas boiler 20 M gas flow control valve 21 Mixer 22 Differential pressure gauge (differential pressure detector) 23 M gas start valve 24 Flow meter 25 M gas mother tube 30 Calorimeter 31 Calorie setter 32,48 Subtractor 33,36,38,53 Multiplier 34 PI calculator 35,54 Adder 37 Valve opening setting device 39 I / E converter 40 E / I converter 41,45 , 47, 55, 56 Function generator 42 Double relay 43, 44, 49, 51, SG 46 Tracker 50 Divider 52 P calculator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低発熱量ガスを主燃料とするガスタービ
ンにおいて、上記低発熱量ガスに高発熱量ガスを流量制
御弁を介して混合するとき、予めカロリー設定によって
混合比を決め、それに上記ガスタービンの燃料制御信号
を掛け、その信号により先行的に上記流量制御弁の開度
を制御し、カロリーメータからのフィードバック信号に
より上記混合比を補正することを特徴とするガスタービ
ンの燃料供給制御方法。
1. In a gas turbine using a low calorific value gas as a main fuel, when mixing the low calorific value gas with the high calorific value gas through a flow control valve, a mixing ratio is determined in advance by calorie setting, and Fuel supply control of a gas turbine, characterized in that a fuel control signal of a gas turbine is applied, the opening of the flow control valve is controlled in advance by the signal, and the mixing ratio is corrected by a feedback signal from a calorimeter. Method.
【請求項2】 請求項1記載のガスタービンの燃料供給
制御方法において、流量制御弁に不安定混合比を改善す
るための弁差圧補正を行うことを特徴とするガスタービ
ンの燃料供給制御方法。
2. The fuel supply control method for a gas turbine according to claim 1, wherein a valve differential pressure correction for improving an unstable mixing ratio is performed on the flow control valve. .
JP24934193A 1993-10-05 1993-10-05 Fuel supply control method for gas turbine Withdrawn JPH07102998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24934193A JPH07102998A (en) 1993-10-05 1993-10-05 Fuel supply control method for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24934193A JPH07102998A (en) 1993-10-05 1993-10-05 Fuel supply control method for gas turbine

Publications (1)

Publication Number Publication Date
JPH07102998A true JPH07102998A (en) 1995-04-18

Family

ID=17191583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24934193A Withdrawn JPH07102998A (en) 1993-10-05 1993-10-05 Fuel supply control method for gas turbine

Country Status (1)

Country Link
JP (1) JPH07102998A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065073A (en) * 2001-08-24 2003-03-05 Meidensha Corp Gas turbine power generating system
DE10308384A1 (en) * 2003-02-27 2004-09-09 Alstom Technology Ltd Operating procedure for a gas turbine
JP2009270572A (en) * 2008-05-05 2009-11-19 General Electric Co <Ge> Single manifold dual gas turbine fuel system
JP4545289B2 (en) * 2000-06-27 2010-09-15 新日本石油化学株式会社 Fuel supply facility for gas turbine and supply method using the same
JP2010209332A (en) * 2009-03-10 2010-09-24 General Electric Co <Ge> Fuel gas with low heating value and blending control
WO2012023302A1 (en) 2010-08-20 2012-02-23 三菱重工業株式会社 System for supplying fuel to gas turbine combustor and method for supplying fuel to gas turbine combustor
JP2013060946A (en) * 2011-08-24 2013-04-04 Mitsubishi Heavy Ind Ltd Gas turbine plant, control apparatus therefor, and control method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545289B2 (en) * 2000-06-27 2010-09-15 新日本石油化学株式会社 Fuel supply facility for gas turbine and supply method using the same
JP2003065073A (en) * 2001-08-24 2003-03-05 Meidensha Corp Gas turbine power generating system
DE10308384A1 (en) * 2003-02-27 2004-09-09 Alstom Technology Ltd Operating procedure for a gas turbine
US7516608B2 (en) 2003-02-27 2009-04-14 Alstom Technology Ltd. Method for operating a gas turbine
JP2009270572A (en) * 2008-05-05 2009-11-19 General Electric Co <Ge> Single manifold dual gas turbine fuel system
JP2010209332A (en) * 2009-03-10 2010-09-24 General Electric Co <Ge> Fuel gas with low heating value and blending control
WO2012023302A1 (en) 2010-08-20 2012-02-23 三菱重工業株式会社 System for supplying fuel to gas turbine combustor and method for supplying fuel to gas turbine combustor
US9222414B2 (en) 2010-08-20 2015-12-29 Mitsubishi Hitachi Power Systems, Ltd. Fuel supply system for gas turbine combustor and fuel supply method for gas turbine combustor
JP2013060946A (en) * 2011-08-24 2013-04-04 Mitsubishi Heavy Ind Ltd Gas turbine plant, control apparatus therefor, and control method therefor

Similar Documents

Publication Publication Date Title
US7730726B2 (en) Method and apparatus for controlling the combustion in a gas turbine
JP4454153B2 (en) Dynamic control system and method for catalytic combustion processes and gas turbine engines utilizing them
KR100394754B1 (en) METHOD FOR OPERATING GAS TURBINE POWER DEVICE AND ENGINE CONTROLLER
JP6190670B2 (en) Gas turbine combustion system
US8117823B2 (en) Method and system for increasing modified wobbe index control range
US5551227A (en) System and method of detecting partial flame out in a gas turbine engine combustor
US3902315A (en) Starting fuel control system for gas turbine engines
JP4353562B2 (en) Control method of gas turbine mechanism
US20120036863A1 (en) Method, apparatus and system for delivery of wide range of turbine fuels for combustion
US20120017600A1 (en) Combustor Control Method and Combustor Controller
WO2012132062A1 (en) Method for operating gas compressor, and gas turbine provided with gas compressor
JPH07102998A (en) Fuel supply control method for gas turbine
US3977182A (en) Gas turbine control
KR960003682B1 (en) Acceleration controller for a gas turbine engine
JPH09317499A (en) Control method for blast furnace gas monofuel combustion gas turbine
JP2005240585A (en) Method and device for controlling combustion of gas engine
JP2000314326A (en) Gas turbine system
JPH0988631A (en) Gas fuel burning gas turbine misfire preventing method
JP4738426B2 (en) Gas engine control method and apparatus
JPH0693880A (en) Gas turbine facility and operation thereof
JP3894816B2 (en) Gas turbine equipment
JPH03249337A (en) Fuel feeding method and device for gas turbine engine
JP3703615B2 (en) Gas turbine equipment
JP2010174767A (en) Gas turbine, control device for gas turbine, and ignition control method for gas turbine
JPS6133978B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226