JPH0710801A - Production of alpha, beta-unsaturated carboxylic acid - Google Patents
Production of alpha, beta-unsaturated carboxylic acidInfo
- Publication number
- JPH0710801A JPH0710801A JP5153651A JP15365193A JPH0710801A JP H0710801 A JPH0710801 A JP H0710801A JP 5153651 A JP5153651 A JP 5153651A JP 15365193 A JP15365193 A JP 15365193A JP H0710801 A JPH0710801 A JP H0710801A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- essential components
- gas
- unsaturated carboxylic
- carboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、炭素原子数が3〜8個
の脂肪族飽和炭化水素を気相接触酸化させることによ
り、α,β−不飽和カルボン酸を製造する方法に関す
る。TECHNICAL FIELD The present invention relates to a method for producing an α, β-unsaturated carboxylic acid by subjecting an aliphatic saturated hydrocarbon having 3 to 8 carbon atoms to a gas phase catalytic oxidation.
【0002】[0002]
【従来の技術】例えばアクリル酸、メタクリル酸等の
α,β−不飽和カルボン酸類は、各種合成樹脂、塗料、
可塑剤などの原料として工業的に重要である。炭素数3
〜8個のα,β−不飽和カルボン酸のうち、特に工業的
に重要なアクリル酸及びメタクリル酸の製造法について
以下詳しく述べる。アクリル酸及びメタクリル酸の製造
法としては、従来、プロピレン、イソブテン等のオレフ
ィンを、触媒の存在下で酸素と気相において高温で接触
反応させる方法が最も一般的な方法として知られてい
る。2. Description of the Related Art For example, α, β-unsaturated carboxylic acids such as acrylic acid and methacrylic acid are used in various synthetic resins, paints,
It is industrially important as a raw material for plasticizers. Carbon number 3
Among the 8 α, β-unsaturated carboxylic acids, the industrially important method for producing acrylic acid and methacrylic acid will be described in detail below. As a method for producing acrylic acid and methacrylic acid, a method in which an olefin such as propylene or isobutene is catalytically reacted with oxygen in the gas phase at high temperature in the presence of a catalyst is conventionally known as the most general method.
【0003】一方、プロパンとプロピレンとの間の価格
差、あるいは、イソブタンとイソブテンとの間の価格差
のために、プロパン、イソブタン等の脂肪族飽和炭化水
素を出発原料とし、触媒の存在下で気相接触酸化反応さ
せ、一段でアクリル酸、メタクリル酸等を製造する方法
の開発に関心が高まっている。プロパンを気相接触酸化
反応させることにより一段でアクリル酸を製造する報告
の例として、Mo−Sb−P−O系触媒(欧州特許第0
010902号明細書)、V−P−Te−O系触媒(J
ournal of Catalysis,vol.1
01,p389(1986))、Bi−Mo−O系触媒
および/またはV−P−Te−O系触媒(特開平3−1
70445号)が知られており、一方、イソブタンを気
相接触酸化反応させることにより一段でメタクリル酸を
製造する報告の例として、P−Mo−O系触媒(特開昭
63−145249号)が知られている。On the other hand, due to the price difference between propane and propylene or the price difference between isobutane and isobutene, an aliphatic saturated hydrocarbon such as propane and isobutane is used as a starting material in the presence of a catalyst. There is an increasing interest in developing a method for producing acrylic acid, methacrylic acid, etc. in a single step by a gas phase catalytic oxidation reaction. As an example of a report for producing acrylic acid in a single step by subjecting propane to a gas phase catalytic oxidation reaction, a Mo—Sb—P—O catalyst (European Patent No. 0
010902), VP-Te-O based catalyst (J
annual of Catalysis, vol. 1
01, p389 (1986)), a Bi-Mo-O-based catalyst and / or a VP-Te-O-based catalyst (JP-A-3-1-1).
No. 70445), on the other hand, a P-Mo-O catalyst (JP-A-63-145249) is known as an example of a report of producing methacrylic acid in a single step by subjecting isobutane to a gas phase catalytic oxidation reaction. Are known.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、これら
の方法はいずれも目的とするα,β−不飽和カルボン酸
の収率が十分満足できるものではなかったり、また、反
応方式が複雑であるなどの欠点を有する。However, none of these methods is sufficiently satisfactory in the yield of the desired α, β-unsaturated carboxylic acid, and the reaction system is complicated. It has drawbacks.
【0005】[0005]
【課題を解決するための手段】本発明者等は、炭素数3
〜8個の脂肪族飽和炭化水素を原料とする不飽和カルボ
ン酸の製造法について種々検討した結果、ある種の金属
からなる複合金属酸化物触媒の存在下で、炭素数3〜8
個の脂肪族飽和炭化水素、例えばプロパン、n−ブタ
ン、イソブタン等の低級アルカンを気相接触酸化反応さ
せる際、原料ガス中に水蒸気を存在させると、従来法よ
り飛躍的に高い収率で目的とするα,β−不飽和カルボ
ン酸を製造し得ることを見い出し、本発明に到達したも
のである。The present inventors have found that the number of carbon atoms is 3
As a result of various studies on a method for producing an unsaturated carboxylic acid using 8 to 8 aliphatic saturated hydrocarbons as a raw material, in the presence of a composite metal oxide catalyst composed of a certain metal, the number of carbon atoms is 3 to 8
When vapor-phase catalytic oxidation reaction of a single aliphatic saturated hydrocarbon, for example, a lower alkane such as propane, n-butane, and isobutane, is carried out by adding water vapor to the raw material gas, the yield is significantly higher than the conventional method. The present invention has been accomplished by finding that an α, β-unsaturated carboxylic acid having the following formula can be produced.
【0006】すなわち、本発明の要旨は、炭素原子数が
3〜8個の脂肪族飽和炭化水素を複合金属酸化物触媒の
存在下、気相接触酸化反応させて、α,β−不飽和カル
ボン酸を製造する方法において、該複合金属酸化物触媒
が、以下の1)から4)の内1種以上の複合金属酸化物
を含むこと、原料ガスとして上記脂肪族飽和炭化水素と
水蒸気及び酸素含有ガスとを含むものを用いること、並
びに、該原料ガスの組成モル分率が、That is, the gist of the present invention is to subject an aliphatic saturated hydrocarbon having 3 to 8 carbon atoms to a gas phase catalytic oxidation reaction in the presence of a complex metal oxide catalyst to obtain an α, β-unsaturated carboxylic acid. In the method for producing an acid, the complex metal oxide catalyst contains at least one complex metal oxide selected from the following 1) to 4), the above-mentioned saturated aliphatic hydrocarbon, steam and oxygen content as a raw material gas. Using a gas containing gas, and the composition mole fraction of the raw material gas,
【0007】[0007]
【数6】(脂肪族飽和炭化水素):(酸素):(希釈ガ
ス):(H2O)=1:(0.1〜10.0):(0〜
20):(0.2〜70) であることを特徴とするα,β−不飽和カルボン酸の製
造方法に存する。 1)Mo、V、Te、X1および酸素を必須成分とし
(但し、X1は、ニオブ、タンタル、タングステン、チ
タン、アルミニウム、ジルコニウム、クロム、マンガ
ン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、
パラジウム、白金、アンチモン、ビスマス、ホウ素、イ
ンジウムおよびセリウムからなる群から選ばれた1種以
上の元素を表す)、酸素を除く上記必須成分の合計に対
する各必須成分の存在割合が、下記式、[6] (aliphatic saturated hydrocarbon) :( oxygen) :( diluting gas) :( H 2 O) = 1 : (0.1~10.0) :( 0~
20): (0.2 to 70), which is a method for producing an α, β-unsaturated carboxylic acid. 1) Mo, V, Te, X 1 and oxygen as essential components (provided that X 1 is niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel,
Palladium, platinum, antimony, bismuth, boron, indium and cerium one or more elements selected from the group consisting of), the proportion of each essential component relative to the total of the above essential components except oxygen, the following formula,
【0008】[0008]
【数7】0.25 < rMo < 0.98 0.003 < rV < 0.5 0.003 < rTe < 0.5 0.003 < rX1 < 0.5 (ただし、rMo、rV、rTe及びrX1は、それぞれ酸素
を除く上記必須成分の合計モル数に対するMo、V、T
e及びX1のモル分率を表す)であるような複合金属酸
化物。 2)Bi、Mo、X2および酸素を必須成分とし(但
し、X2は、バナジウム、ニオブ、タンタル、タングス
テン、チタン、アルミニウム、ジルコニウム、クロム、
マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッ
ケル、パラジウム、白金、アンチモン、リン、ホウ素、
鉛、ガリウム、インジウム、セリウム、リチウム、ナト
リウム、カリウム、ルビジウム、セシウム、タリウム、
銅および銀からなる群から選ばれた1種以上の元素を表
す)、酸素を除く上記必須成分の合計に対する各必須成
分の存在割合が、下記式、0.25 <r Mo <0.98 0.003 <r V <0.5 0.003 <r Te <0.5 0.003 <r X1 <0.5 (where r Mo , r V , r Te, and r X1 are Mo, V, and T with respect to the total number of moles of the above essential components except oxygen, respectively.
(representing the mole fraction of e and X 1 ). 2) Bi, Mo, X 2 and oxygen as essential components (provided that X 2 is vanadium, niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium,
Manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, phosphorus, boron,
Lead, gallium, indium, cerium, lithium, sodium, potassium, rubidium, cesium, thallium,
Representing one or more elements selected from the group consisting of copper and silver), the proportion of each essential component relative to the total of the above essential components excluding oxygen is calculated by the following formula:
【0009】[0009]
【数8】0.25< sBi <0.83 0.09< sMo <0.66 0.005< sX2 <0.59 (ただし、sBi、sMo、及びsX2はそれぞれ酸素を除く
上記必須成分の合計モル数に対するBi、Mo及びX2
のモル分率を表す)であるような複合金属酸化物。 3)V、X3および酸素を必須成分とし(但し、X3は、
鉄、アンチモン、リン、リチウム、ナトリウム、カリウ
ム、ルビジウム、セシウム、タングステン、チタン、ア
ルミニウム、ジルコニウム、錫、ゲルマニウムおよびイ
ンジウムからなる群から選ばれた1種以上の元素を表
す)、酸素を除く上記必須成分の合計に対する各必須成
分の存在割合が、下記式、0.25 <s Bi <0.83 0.09 <s Mo <0.66 0.005 <s X2 <0.59 (where s Bi , s Mo , and s X2 are oxygen, respectively) Except for the total number of moles of the above essential components, Bi, Mo and X 2
Represents the molar fraction of). 3) V, X 3 and oxygen are essential components (provided that X 3 is
Represents one or more elements selected from the group consisting of iron, antimony, phosphorus, lithium, sodium, potassium, rubidium, cesium, tungsten, titanium, aluminum, zirconium, tin, germanium and indium), and the above essential except oxygen The existence ratio of each essential component to the total of the components is the following formula,
【0010】[0010]
【数9】0.23< tV <1.0 0< tX3 <0.77 (ただし、tV及びtX3はそれぞれ酸素を除く上記必須
成分の合計モル数に対するV及びX3のモル分率を表
す)であるような複合金属酸化物。 4)Fe、X4および酸素を必須成分とし(但し、X
4は、アンチモン、リン、クロム、チタン、モリブデ
ン、アルミニウム、ジルコニウム、錫、ゲルマニウムお
よびインジウムからなる群から選ばれた1種以上の元素
を表す)、酸素を除く上記必須成分の合計に対する各必
須成分の存在割合が、下記式、[Equation 9] 0.23 <t V <1.00 <t X3 <0.77 (where t V and t X3 are the mole fractions of V and X 3 with respect to the total moles of the above essential components excluding oxygen, respectively) (Representing the ratio). 4) Fe, X 4 and oxygen as essential components (provided that X is
4 represents one or more elements selected from the group consisting of antimony, phosphorus, chromium, titanium, molybdenum, aluminum, zirconium, tin, germanium and indium), and each essential component relative to the total of the above essential components except oxygen. The existence ratio of
【0011】[0011]
【数10】0.23< uFe <1.0 0< uX4 <0.77 (ただし、uFe及びuX4はそれぞれ酸素を除く上記必須
成分の合計モル数に対するFe及びX4のモル分率を表
す)であるような複合金属酸化物。[Equation 10] 0.23 <u Fe <1.00 <u X4 <0.77 (where u Fe and u X4 are the mole fractions of Fe and X 4 with respect to the total moles of the above essential components excluding oxygen, respectively) (Representing the ratio).
【0012】以下、本発明につき詳細に説明する。本発
明で用いる複合金属酸化物触媒は、前記したような各種
の複合金属酸化物を含むことができるが、該複合金属酸
化物としては、好ましくは、Mo、V、Te、X1およ
び酸素を必須成分とし(但し、X1は、ニオブ、タンタ
ル、タングステン、チタン、アルミニウム、ジルコニウ
ム、クロム、マンガン、鉄、ルテニウム、コバルト、ロ
ジウム、ニッケル、パラジウム、白金、アンチモン、ビ
スマス、ホウ素、インジウムおよびセリウムからなる群
から選ばれた1種以上の元素を表す)、酸素を除く上記
必須成分の合計に対する各必須成分の存在割合が、下記
式、The present invention will be described in detail below. The mixed metal oxide catalyst used in the present invention may include various kinds of mixed metal oxides as described above, and the mixed metal oxide preferably contains Mo, V, Te, X 1 and oxygen. As an essential component (provided that X 1 is selected from niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth, boron, indium and cerium. Which represents one or more elements selected from the group consisting of:
【0013】[0013]
【数11】0.25 < rMo < 0.98 0.003 < rV < 0.5 0.003 < rTe < 0.5 0.003 < rX1 < 0.5 (ただし、rMo、rV、rTe及びrX1は、それぞれ酸素
を除く上記必須成分の合計モル数に対するMo、V、T
e及びX1のモル分率を表す)であるような複合金属酸
化物を用いる。X1としては、上記元素の中でもNb、
Ta、W及びTiが好ましく、Nbがより好ましい。上
記必須成分のモル分率は、通常上記の範囲にあるが、X
1としてNbを用いた場合、下記に示す範囲が特に好ま
しい。0.25 <r Mo <0.98 0.003 <r V <0.5 0.003 <r Te <0.5 0.003 <r X1 <0.5 (where r Mo , r V , r Te, and r X1 are Mo, V, and T with respect to the total number of moles of the above essential components except oxygen, respectively.
e and represents the mole fraction of X 1 ). X 1 is Nb among the above elements,
Ta, W and Ti are preferable, and Nb is more preferable. The mole fraction of the above essential components is usually in the above range, but X
When Nb is used as 1 , the range shown below is particularly preferable.
【0014】[0014]
【数12】0.35 < rMo < 0.87 0.045 < rV < 0.37 0.020 < rTe < 0.27 0.005 < rNb < 0.35 さらに、Mo、V、Te、X1および酸素を必須成分と
する上記特定組成の複合金属酸化物のうちでも、特定の
結晶構造を有するものが特に好ましい。具体的には、該
複合金属酸化物のX線回折ピーク(X線源としてCu−
Kα線を使用)のパターンとして、特定の回折角2θに
おいて以下に示す5つの主要回折ピ−クが認められるも
のである。[Formula 12] 0.35 <r Mo <0.87 0.045 <r V <0.37 0.020 <r Te <0.27 0.005 <r Nb <0.35 Further, Mo, V, Among the composite metal oxides having the above-mentioned specific compositions containing Te, X 1 and oxygen as essential components, those having a specific crystal structure are particularly preferable. Specifically, the X-ray diffraction peak of the composite metal oxide (Cu-
The following five major diffraction peaks are observed at a specific diffraction angle 2θ as a pattern (using Kα ray).
【0015】[0015]
【表2】 X 線 格 子 面 ────────────────────────────── 回折角2θ(±0.3゜) 間隔中央値(Å) 相対強度 22.1゜ 4.02 100 28.2゜ 3.16 20〜150 36.2゜ 2.48 5〜60 45.2゜ 2.00 2〜40 50.0゜ 1.82 2〜40 X線回折ピ−ク強度は各結晶の測定条件によってずれる
場合があるが、2θ=22.1゜のピ−ク強度を100
とした場合の相対強度は通常上記の範囲にある。また、
一般的には2θ=22.1゜及び28.2゜のピ−ク強
度が大きく表われる。[Table 2] X-ray face plane ────────────────────────────── Diffraction angle 2θ (± 0.3 °) interval Median value (Å) Relative intensity 22.1 ° 4.02 100 28.2 ° 3.16 20-150 36.2 ° 2.48 5-60 45.2 ° 2.00 2-40 50.0 ° 1 The .82 2-40 X-ray diffraction peak intensity may deviate depending on the measurement conditions of each crystal, but a peak intensity of 2θ = 22.1 ° is 100.
The relative intensity in the case of is usually in the above range. Also,
In general, peak strengths of 2θ = 22.1 ° and 28.2 ° are largely expressed.
【0016】触媒組成として特に好ましいMo、V、T
e及びNbからなる複合金属酸化物の調製方法は通常次
のようである。例えば、Moa Vb Tec Nbx On の
場合、所定量のメタバナジン酸アンモニウム塩を含む水
溶液に、テルル酸の水溶液、シュウ酸ニオブアンモニウ
ム塩の水溶液およびパラモリブデン酸アンモニウム塩の
溶液またはスラリ−を各々の金属元素の原子比が所定の
割合となるような量比で順次添加し、蒸発乾固法、噴霧
乾燥法、真空乾燥法等で乾燥させ、最後に、残った乾燥
物を、通常350〜700℃、好ましくは400〜65
0℃の温度で、通常0.5〜30時間、好ましくは1〜
10時間、焼成して目的の複合金属酸化物とする。Mo, V, and T which are particularly preferable as the catalyst composition
The method for preparing the composite metal oxide composed of e and Nb is usually as follows. For example, Mo case of a V b Te c Nb x O n, to an aqueous solution containing a predetermined amount of ammonium metavanadate salt, an aqueous solution of telluric acid, an aqueous solution of ammonium niobium oxalate salt and a solution or slurry of ammonium paramolybdate salt - Are sequentially added in an amount ratio such that the atomic ratio of each metal element becomes a predetermined ratio, dried by evaporation dryness method, spray drying method, vacuum drying method, etc., and finally, the remaining dried product is usually dried. 350-700 ° C, preferably 400-65
At a temperature of 0 ° C., usually 0.5 to 30 hours, preferably 1 to
It is baked for 10 hours to obtain the desired mixed metal oxide.
【0017】また、上記の焼成処理方法については、酸
素雰囲気中で行なう方法が最も一般的であるが、焼成の
雰囲気をむしろ酸素不存在下とすることが好ましい。具
体的には、窒素、アルゴン、ヘリウム等の不活性ガス雰
囲気中、または真空中で実施される。なお、上記の複合
金属酸化物の原料は前述したものに限定されるのではな
く、例えばMoO3,V2O5 ,V2O3 ,TeO2,Nb
2O5 などの酸化物、MoCl5 ,VCl4 ,VOCl3
,NbCl5 などのハロゲン化物またはオキシハロゲ
ン化物、Mo(OC2H5)5 ,Nb(OC2H5)5 ,V
O(OC2H5)3 ,モリブデンアセチルアセトナートな
どのアルコキシド、有機金属化合物等広範に使用可能で
ある。The firing treatment method is most commonly performed in an oxygen atmosphere, but the firing atmosphere is preferably in the absence of oxygen. Specifically, it is carried out in an atmosphere of an inert gas such as nitrogen, argon or helium, or in vacuum. The raw materials of the above-mentioned composite metal oxide are not limited to those described above, but may be, for example, MoO 3 , V 2 O 5 , V 2 O 3 , TeO 2 , Nb.
2 O 5 and other oxides, MoCl 5 , VCl 4 , VOCl 3
, NbCl 5 and other halides or oxyhalides, Mo (OC 2 H 5 ) 5 , Nb (OC 2 H 5 ) 5 , V
O (OC 2 H 5 ) 3 , alkoxides such as molybdenum acetylacetonate, and organometallic compounds can be widely used.
【0018】このようにして得られた複合金属酸化物
は、単独でも固体触媒として用いられるが、周知の担
体、例えば、シリカ、アルミナ、チタニア、アルミノシ
リケート、珪藻土、ジルコニアなどと共に使用すること
もできる。本発明方法は、脂肪族飽和炭化水素の酸化反
応において原料ガス中に水蒸気を含ませることにより、
α,β−不飽和カルボン酸を高い選択率で得る方法であ
る。The composite metal oxide thus obtained can be used alone as a solid catalyst, but it can also be used together with a well-known carrier such as silica, alumina, titania, aluminosilicate, diatomaceous earth or zirconia. . The method of the present invention, by including steam in the raw material gas in the oxidation reaction of the aliphatic saturated hydrocarbon,
This is a method of obtaining an α, β-unsaturated carboxylic acid with high selectivity.
【0019】原料の脂肪族飽和炭化水素は炭素数が3〜
8個のものが用いられるがその純度は特に限られるもの
ではなく、不純物としてメタン、エタン等の低級アルカ
ンおよび/または空気、二酸化炭素等を含有する脂肪族
飽和炭化水素を用いても何等問題はない。また、上述し
た炭素数3〜8個の脂肪族飽和炭化水素の混合物であっ
てもかまわない。The aliphatic saturated hydrocarbon as a raw material has a carbon number of 3 to
Although eight of them are used, the purity is not particularly limited, and no problem occurs even if a lower alkane such as methane or ethane and / or an aliphatic saturated hydrocarbon containing air, carbon dioxide or the like is used as an impurity. Absent. Further, it may be a mixture of the above-mentioned aliphatic saturated hydrocarbons having 3 to 8 carbon atoms.
【0020】本発明での酸化反応の機構の詳細は明らか
ではないが、上述の酸化物中に存在する酸素原子、ある
いは供給ガス中に存在させる分子状酸素によって行なわ
れる。供給ガス中に分子状酸素を存在させる場合、分子
状酸素は純酸素ガスでもよいが、特に純度は要求されな
いので、経済的に有利な空気のような酸素含有ガスを使
用するのが一般的である。反応系への供給原料ガスとし
ては、通常、水蒸気を含む脂肪族飽和炭化水素と酸素含
有ガスの混合ガスを使用するが、水蒸気を含む脂肪族飽
和炭化水素と酸素含有ガスとを交互に反応系に供給して
もよい。なお、用いる水蒸気は反応系において水蒸気ガ
スとして存在すればよく、その導入形態は特に限定され
るものではない。Although the details of the mechanism of the oxidation reaction in the present invention are not clear, it is carried out by oxygen atoms present in the above oxides or molecular oxygen present in the feed gas. When molecular oxygen is present in the feed gas, the molecular oxygen may be pure oxygen gas, but since purity is not particularly required, it is common to use an oxygen-containing gas such as air, which is economically advantageous. is there. As the feed gas for the reaction system, a mixed gas of an aliphatic saturated hydrocarbon containing water vapor and an oxygen-containing gas is usually used, but an aliphatic saturated hydrocarbon containing water vapor and an oxygen-containing gas are alternately used in the reaction system. May be supplied to. The steam to be used may exist as steam gas in the reaction system, and its introduction form is not particularly limited.
【0021】本発明の反応方式は固定床、流動層等のい
ずれも採用できるが、発熱反応であるため、流動層方式
の方が反応温度の制御が容易である。また、本反応は通
常大気圧下で実施されるが、低度の加圧下または減圧下
で行なうこともできる。また、化学量論量以下の分子状
酸素の存在下で脂肪族飽和炭化水素と水蒸気および必要
であれば希釈ガスとを供給ガスとして気相接触反応させ
ることもできる。このような場合は、反応帯域より触媒
の一部を適宜、抜き出して、該触媒を酸化再生器に送り
込み、再生後、触媒を反応帯域に再供給する方法が好ま
しい。触媒の再生方法としては、例えば、酸素、空気、
一酸化窒素等の酸化性ガスを再生器内の触媒に対して、
通常300〜600℃で流通させる方法が挙げられる。The reaction system of the present invention may employ either a fixed bed or a fluidized bed, but the reaction temperature is easier to control in the fluidized bed system because it is an exothermic reaction. In addition, this reaction is usually carried out under atmospheric pressure, but it can also be carried out under low pressure or under reduced pressure. It is also possible to carry out a gas phase catalytic reaction with the saturated aliphatic hydrocarbon, steam and, if necessary, a diluent gas as feed gases in the presence of a stoichiometric amount or less of molecular oxygen. In such a case, it is preferable that a part of the catalyst is appropriately withdrawn from the reaction zone, the catalyst is fed into an oxidation regenerator, and after regeneration, the catalyst is re-supplied to the reaction zone. Examples of the catalyst regeneration method include oxygen, air,
Oxidizing gas such as nitric oxide to the catalyst in the regenerator,
Usually, a method of circulating at 300 to 600 ° C can be mentioned.
【0022】本発明で脂肪族飽和炭化水素として例えば
プロパンを使用する場合について以下さらに詳細に説明
する。原料ガスのモル分率は、The case where propane is used as the saturated aliphatic hydrocarbon in the present invention will be described in more detail below. The mole fraction of the source gas is
【0023】[0023]
【数13】(プロパン):(酸素):(希釈ガス):
(H2O)=1:(0.1〜10.0):(0〜2
0):(0.2〜70) で実施されるのが好ましく、特に好ましいのは、[Formula 13] (Propane): (Oxygen): (Diluting gas):
(H 2 O) = 1: (0.1-10.0) :( 0-2
0): (0.2 to 70), particularly preferably,
【0024】[0024]
【数14】 1:(1〜5.0):(0〜10):(5〜40) である。原料中に水蒸気を供給すると、従来の技術では
原料を希釈する目的で加えられていた窒素、アルゴン、
ヘリウム等の供給とは違い、明らかにアクリル酸の選択
性が向上し、一段の触媒層と接触させるだけでプロパン
からアクリル酸を高収率で得ることができる。しかしな
がら、空間速度と酸素分圧及び水蒸気分圧を調整するた
めの希釈ガスとして窒素、アルゴン、ヘリウム等の不活
性ガスを併用することもできる。## EQU14 ## 1: (1 to 5.0): (0 to 10): (5 to 40). When steam is supplied to the raw material, nitrogen, argon, which was added for the purpose of diluting the raw material in the conventional technology,
Unlike the supply of helium or the like, the selectivity of acrylic acid is obviously improved, and acrylic acid can be obtained in high yield from propane simply by bringing it into contact with a single catalyst layer. However, an inert gas such as nitrogen, argon, or helium may be used together as a diluent gas for adjusting the space velocity, the oxygen partial pressure, and the water vapor partial pressure.
【0025】反応は、通常200〜550℃で実施さ
れ、特に好ましいのは350〜440℃程度である。ま
た、気相反応におけるガス空間速度SVは、通常100
〜10000hr-1、好ましくは300〜6000hr
-1の範囲である。本発明の方法により、部分酸化反応を
行なった場合、アクリル酸の他に、一酸化炭素、二酸化
炭素、酢酸等が副生するが、その生成量はきわめて少な
い。The reaction is usually carried out at 200 to 550 ° C, particularly preferably at 350 to 440 ° C. The gas space velocity SV in the gas phase reaction is usually 100
To 10,000 hr -1 , preferably 300 to 6000 hr
It is in the range of -1 . When the partial oxidation reaction is carried out by the method of the present invention, carbon monoxide, carbon dioxide, acetic acid and the like are by-produced in addition to acrylic acid, but the amount produced is extremely small.
【0026】また、反応条件の選択によってはアクロレ
インが生成することもあるが、これは本発明で述べる複
合金属酸化物触媒で再度気相接触酸化反応させるか、あ
るいは公知の不飽和アルデヒドの気相接触酸化反応触媒
で再度気相接触酸化反応させることにより容易にアクリ
ル酸に変換させることができる。他の脂肪族飽和炭化水
素についても、プロパンの場合の条件に準じて供給ガス
の組成および反応条件を選択することができる。Further, acrolein may be produced depending on the selection of reaction conditions. This may be carried out by the gas phase catalytic oxidation reaction again with the complex metal oxide catalyst described in the present invention, or by the known gas phase of unsaturated aldehyde. It can be easily converted into acrylic acid by carrying out the gas phase catalytic oxidation reaction again with the catalytic oxidation reaction catalyst. For other aliphatic saturated hydrocarbons, the composition of the feed gas and the reaction conditions can be selected according to the conditions for propane.
【0027】[0027]
【実施例】以下、本発明の具体的態様を、実施例を挙げ
てさらに詳細に説明するが、本発明はその要旨を超えな
いかぎりこれらの実施例に限定されるものではない。な
お、以下の実施例における転化率(%)、選択率(%)
および収率(%)は、各々次式で示される。EXAMPLES Hereinafter, specific embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded. The conversion rate (%) and the selectivity rate (%) in the following examples
The yield (%) and the yield (%) are respectively represented by the following equations.
【0028】[0028]
【数15】転化率(%)=(消費した飽和炭化水素のモ
ル数/供給した飽和炭化水素のモル数)×100 選択率(%)=(生成した目的とする不飽和カルボン酸
のモル数/消費した飽和炭化水素のモル数)×(n/
m)×100 収率(%)=(生成した目的とする不飽和カルボン酸の
モル数/供給した飽和炭化水素のモル数)×(n/m)
×100 ただし、式中のmは供給した飽和炭化水素の炭素数であ
り、nは生成した目的とする不飽和カルボン酸の炭素数
を表す。## EQU15 ## Conversion (%) = (moles of saturated hydrocarbons consumed / moles of saturated hydrocarbons supplied) × 100 selectivity (%) = (moles of desired unsaturated carboxylic acid produced) / Mol of saturated hydrocarbon consumed) x (n /
m) × 100 Yield (%) = (moles of the target unsaturated carboxylic acid produced / moles of the saturated hydrocarbon fed) × (n / m)
× 100 However, m in the formula is the number of carbon atoms of the supplied saturated hydrocarbon, and n is the number of carbon atoms of the produced target unsaturated carboxylic acid.
【0029】実施例1 実験式Mo1V0.3Te0.23Nb0.12On (nは他の元素
の酸化状態で決定される)を有する複合金属酸化物を次
のようにして調製した。温水325mlにメタバナジン
酸アンモニウム(NH4VO3)15.7gを溶解し、こ
れにテルル酸(H6TeO6)23.6g、パラモリブデ
ン酸アンモニウム((NH4)6Mo7O2 4・4H2O)7
8.9gを順次添加し、均一な水溶液を調製した。更
に、ニオブの濃度が0.456mol/kgのシュウ酸
ニオブアンモニウム水溶液117.5gを混合し、スラ
リーを調製した。このスラリーを加熱処理することによ
り水分を除去し、固体を得た。この固体を打錠成型器を
用いて5mmφ×3mmLに成型した後、粉砕し、16
〜28メッシュに篩別し、窒素気流中600℃で2時間
焼成した。Example 1 A composite metal oxide having the empirical formula Mo 1 V 0.3 Te 0.23 Nb 0.12 O n (n is determined by the oxidation states of other elements) was prepared as follows. Dissolving ammonium metavanadate (NH 4 VO 3) 15.7g hot water 325 ml, this telluric acid (H 6 TeO 6) 23.6g, ammonium paramolybdate ((NH 4) 6 Mo 7 O 2 4 · 4H 2 O) 7
8.9 g was added sequentially to prepare a uniform aqueous solution. Further, 117.5 g of an aqueous solution of ammonium niobium oxalate having a niobium concentration of 0.456 mol / kg was mixed to prepare a slurry. The slurry was heat-treated to remove water and obtain a solid. This solid was molded into a size of 5 mmφ × 3 mmL using a tablet molding machine and then crushed to obtain 16
The mixture was sieved to ˜28 mesh and baked in a nitrogen stream at 600 ° C. for 2 hours.
【0030】このようにして得た複合金属酸化物の粉末
X線回折測定を行なったところ(X線源としてCu−K
α線を使用)、回折角2θとして、22.1゜(10
0)、28.2゜(57.3)、36.2゜(16.
9)、45.1゜(15.2)、50.0゜(10.
1)に主要回折ピークが観察された(カッコ内の数字
は、22.1゜のピーク強度を100としたときの相対
ピーク強度を示す)。Powder X-ray diffraction measurement of the composite metal oxide thus obtained was performed (Cu-K as X-ray source).
α ray is used), 22.1 ° (10
0), 28.2 ° (57.3), 36.2 ° (16.
9), 45.1 ° (15.2), 50.0 ° (10.
A major diffraction peak was observed in 1) (the numbers in parentheses indicate relative peak intensities when the peak intensity at 22.1 ° is 100).
【0031】このようにして得た触媒0.55gを反応
器に充填し、反応温度390℃、空間速度SV1871
hr-1 、プロパン:空気:H2O=1:15:14のモ
ル比でガスを供給し、気相接触反応を行なった。結果を
表−1に示す。 実施例2 実施例1で得た触媒0.59gを反応器に充填し、反応
温度380℃、空間速度SV1439hr-1 、プロパ
ン:空気:H2O=1:15:7のモル比でガスを供給
し、気相接触反応を行なった。結果を表−1に示す。0.55 g of the catalyst thus obtained was charged into a reactor, the reaction temperature was 390 ° C., and the space velocity was SV1871.
Gas was supplied at a molar ratio of hr −1 and propane: air: H 2 O = 1: 15: 14 to carry out a gas phase catalytic reaction. The results are shown in Table-1. Example 2 0.59 g of the catalyst obtained in Example 1 was charged into a reactor and gas was supplied at a reaction temperature of 380 ° C., a space velocity SV1439 hr −1 , and a molar ratio of propane: air: H 2 O = 1: 15: 7. It was supplied and a gas phase catalytic reaction was carried out. The results are shown in Table-1.
【0032】実施例3 実施例1で得た触媒0.55gを反応器に充填し、反応
温度420℃、空間速度SV3247hr-1 、プロパ
ン:空気:H2O=1:15:36のモル比でガスを供
給し、気相接触反応を行なった。結果を表−1に示す。 実施例4 実施例1で得た触媒30gを乳鉢中で粉砕し、その粉末
を100mlの水に分散させ水溶液スラリーを得た。こ
のスラリーを加熱処理することにより粉末固体を得た。
この固体を打錠成型器を用いて5mmφ×3mmLに成
型した後、粉砕し、16〜28メッシュに篩別し、窒素
気流中600℃で2時間焼成した。このようにして得た
触媒0.61gを反応器に充填し、反応温度380℃、
空間速度SV1861hr-1 、プロパン:空気:H2O
=1:15:14のモル比でガスを供給し、気相接触反
応を行なった。結果を表−1に示す。Example 3 A reactor was charged with 0.55 g of the catalyst obtained in Example 1, the reaction temperature was 420 ° C., the space velocity was SV3247 hr −1 , and the molar ratio was propane: air: H 2 O = 1: 15: 36. The gas was supplied to conduct a gas phase contact reaction. The results are shown in Table-1. Example 4 30 g of the catalyst obtained in Example 1 was ground in a mortar and the powder was dispersed in 100 ml of water to obtain an aqueous slurry. The powder solid was obtained by heat-treating this slurry.
This solid was molded into a size of 5 mmφ × 3 mmL using a tablet molding machine, crushed, sieved to 16 to 28 mesh, and fired at 600 ° C. for 2 hours in a nitrogen stream. The reactor thus obtained was charged with 0.61 g of the catalyst thus obtained, and the reaction temperature was 380 ° C.
Space velocity SV1861 hr -1 , propane: air: H 2 O
Gas was supplied at a molar ratio of = 1: 15: 14 to carry out a gas phase catalytic reaction. The results are shown in Table-1.
【0033】比較例1 実施例1で得た触媒0.55gを反応器に充填し、反応
温度390℃、空間速度SV1871hr-1 、プロパ
ン:空気:窒素=1:15:14のモル比でガスを供給
し、気相接触反応を行なった。結果を表−1に示す。Comparative Example 1 0.55 g of the catalyst obtained in Example 1 was charged into a reactor, and the gas was used at a reaction temperature of 390 ° C., a space velocity SV1871 hr −1 , and a molar ratio of propane: air: nitrogen = 1: 15: 14. Was supplied to carry out a gas phase catalytic reaction. The results are shown in Table-1.
【0034】[0034]
【表3】 実施例5 実施例1で得た触媒0.5gを反応器に充填し反応温度
410℃、空間速度SV1900hr-1、n−ブタン:
空気:H2O=1:24:22のモル比でガスを供給し
気相接触反応を行なった。結果を表−2に示す。[Table 3] Example 5 0.5 g of the catalyst obtained in Example 1 was charged into a reactor, the reaction temperature was 410 ° C., the space velocity SV1900 hr −1 , n-butane:
Gas was supplied at a molar ratio of air: H 2 O = 1: 24: 22 to carry out a gas phase catalytic reaction. The results are shown in Table-2.
【0035】比較例2 実施例1で得た触媒0.5gを反応器に充填し空間速度
SV1000hr-1、n−ブタン:空気=1:24のモ
ル比でガスを供給し気相接触反応を行なった。結果を表
−2に示す。Comparative Example 2 0.5 g of the catalyst obtained in Example 1 was charged in a reactor, gas was supplied at a space velocity SV of 1000 hr −1 and a molar ratio of n-butane: air = 1: 24 to carry out a gas phase catalytic reaction. I did. The results are shown in Table-2.
【0036】[0036]
【表4】 [Table 4]
【0037】[0037]
【発明の効果】本発明方法によれば、炭素数が3〜8個
の脂肪族飽和炭化水素を原料として、一段法により高い
収率で目的とするα,β−不飽和カルボン酸を製造する
ことができる。According to the method of the present invention, the desired α, β-unsaturated carboxylic acid is produced in a high yield by a one-step method using an aliphatic saturated hydrocarbon having 3 to 8 carbon atoms as a raw material. be able to.
Claims (3)
水素を複合金属酸化物触媒の存在下、気相接触酸化反応
させて、α,β−不飽和カルボン酸を製造する方法にお
いて、該複合金属酸化物触媒が、以下の1)から4)の
内1種以上の複合金属酸化物を含むこと、原料ガスとし
て上記脂肪族飽和炭化水素と水蒸気及び酸素含有ガスと
を含むものを用いること、並びに、該原料ガスの組成モ
ル分率が、 【数1】(脂肪族飽和炭化水素):(酸素):(希釈ガ
ス):(H2O)=1:(0.1〜10.0):(0〜
20):(0.2〜70) であることを特徴とするα,β−不飽和カルボン酸の製
造方法。 1)Mo、V、Te、X1および酸素を必須成分とし
(但し、X1は、ニオブ、タンタル、タングステン、チ
タン、アルミニウム、ジルコニウム、クロム、マンガ
ン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、
パラジウム、白金、アンチモン、ビスマス、ホウ素、イ
ンジウムおよびセリウムからなる群から選ばれた1種以
上の元素を表す)、酸素を除く上記必須成分の合計に対
する各必須成分の存在割合が、下記式、 【数2】0.25 < rMo < 0.98 0.003 < rV < 0.5 0.003 < rTe < 0.5 0.003 < rX1 < 0.5 (ただし、rMo、rV、rTe及びrX1は、それぞれ酸素
を除く上記必須成分の合計モル数に対するMo、V、T
e及びX1のモル分率を表す)であるような複合金属酸
化物。 2)Bi、Mo、X2および酸素を必須成分とし(但
し、X2は、バナジウム、ニオブ、タンタル、タングス
テン、チタン、アルミニウム、ジルコニウム、クロム、
マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッ
ケル、パラジウム、白金、アンチモン、リン、ホウ素、
鉛、ガリウム、インジウム、セリウム、リチウム、ナト
リウム、カリウム、ルビジウム、セシウム、タリウム、
銅および銀からなる群から選ばれた1種以上の元素を表
す)、酸素を除く上記必須成分の合計に対する各必須成
分の存在割合が、下記式、 【数3】0.25< sBi <0.83 0.09< sMo <0.66 0.005< sX2 <0.59 (ただし、sBi、sMo、及びsX2はそれぞれ酸素を除く
上記必須成分の合計モル数に対するBi、Mo及びX2
のモル分率を表す)であるような複合金属酸化物。 3)V、X3および酸素を必須成分とし(但し、X3は、
鉄、アンチモン、リン、リチウム、ナトリウム、カリウ
ム、ルビジウム、セシウム、タングステン、チタン、ア
ルミニウム、ジルコニウム、錫、ゲルマニウムおよびイ
ンジウムからなる群から選ばれた1種以上の元素を表
す)、酸素を除く上記必須成分の合計に対する各必須成
分の存在割合が、下記式、 【数4】0.23< tV <1.0 0< tX3 <0.77 (ただし、tV及びtX3はそれぞれ酸素を除く上記必須
成分の合計モル数に対するV及びX3のモル分率を表
す)であるような複合金属酸化物。 4)Fe、X4および酸素を必須成分とし(但し、X
4は、アンチモン、リン、クロム、チタン、モリブデ
ン、アルミニウム、ジルコニウム、錫、ゲルマニウムお
よびインジウムからなる群から選ばれた1種以上の元素
を表す)、酸素を除く上記必須成分の合計に対する各必
須成分の存在割合が、下記式、 【数5】0.23< uFe <1.0 0< uX4 <0.77 (ただし、uFe及びuX4はそれぞれ酸素を除く上記必須
成分の合計モル数に対するFe及びX4のモル分率を表
す)であるような複合金属酸化物。1. A method for producing an α, β-unsaturated carboxylic acid by subjecting an aliphatic saturated hydrocarbon having 3 to 8 carbon atoms to a gas phase catalytic oxidation reaction in the presence of a complex metal oxide catalyst. The composite metal oxide catalyst contains at least one composite metal oxide selected from the following 1) to 4), and contains the above aliphatic saturated hydrocarbon as a raw material gas, steam and an oxygen-containing gas. The use and the composition mole fraction of the raw material gas are as follows: (aliphatic saturated hydrocarbon) :( oxygen) :( diluting gas) :( H 2 O) = 1: (0.1-10 .0): (0 to
20): (0.2 to 70), A process for producing an α, β-unsaturated carboxylic acid. 1) Mo, V, Te, X 1 and oxygen as essential components (provided that X 1 is niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel,
(Representing one or more elements selected from the group consisting of palladium, platinum, antimony, bismuth, boron, indium and cerium), the proportion of each essential component relative to the total of the above essential components excluding oxygen is represented by the following formula: 0.25 <r Mo <0.98 0.003 <r V <0.5 0.003 <r Te <0.5 0.003 <r X1 <0.5 (however, r Mo , r V , r Te and r X1 are each Mo, V and T with respect to the total number of moles of the above essential components except oxygen.
(representing the mole fraction of e and X 1 ). 2) Bi, Mo, X 2 and oxygen as essential components (provided that X 2 is vanadium, niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium,
Manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, phosphorus, boron,
Lead, gallium, indium, cerium, lithium, sodium, potassium, rubidium, cesium, thallium,
(Representing one or more elements selected from the group consisting of copper and silver), and the existence ratio of each essential component to the total of the above essential components excluding oxygen is represented by the following formula: ## EQU3 ## 0.25 <s Bi < 0.83 0.09 <s Mo <0.66 0.005 <s X2 <0.59 (where s Bi , s Mo , and s X2 are Bi with respect to the total number of moles of the above essential components except oxygen, Mo and X 2
Represents the molar fraction of). 3) V, X 3 and oxygen are essential components (provided that X 3 is
Represents one or more elements selected from the group consisting of iron, antimony, phosphorus, lithium, sodium, potassium, rubidium, cesium, tungsten, titanium, aluminum, zirconium, tin, germanium and indium), and the above essential except oxygen excluding the existence ratio of each essential ingredient to the sum of components, the following equation, equation 4] 0.23 <t V <1.0 0 < t X3 <0.77 ( where each is t V and t X3 oxygen (Representing the mole fraction of V and X 3 with respect to the total number of moles of the above essential components)). 4) Fe, X 4 and oxygen as essential components (provided that X is
4 represents one or more elements selected from the group consisting of antimony, phosphorus, chromium, titanium, molybdenum, aluminum, zirconium, tin, germanium and indium), and each essential component relative to the total of the above essential components except oxygen. The abundance ratio of the following formula: 0.23 <u Fe <1.00 <u X4 <0.77 (where u Fe and u X4 are the total number of moles of the above essential components excluding oxygen, respectively) (Representing the mole fraction of Fe and X 4 with respect to).
1および酸素を必須成分とし(但し、X1は、ニオブ、タ
ンタル、タングステン、チタン、アルミニウム、ジルコ
ニウム、クロム、マンガン、鉄、ルテニウム、コバル
ト、ロジウム、ニッケル、パラジウム、白金、アンチモ
ン、ビスマス、ホウ素、インジウムおよびセリウムから
なる群から選ばれた1種以上の元素を表す)、かつ、そ
のX線回折線(X線源としてCu−Kα線使用)におい
て、下記に示す回折角2θに主なX線回折ピークを示す
ことを特徴とする請求項1に記載のα,β−不飽和カル
ボン酸の製造方法。 【表1】 回折角 2θ(±0.3゜) ────────────── 22.1゜ 28.2゜ 36.2゜ 45.2゜ 50.0゜2. The complex metal oxide is Mo, V, Te, X.
1 and oxygen as essential components (provided that X 1 is niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth, boron, Which represents one or more elements selected from the group consisting of indium and cerium), and its X-ray diffraction lines (using Cu-Kα rays as an X-ray source), the main X-rays having a diffraction angle 2θ shown below. It shows a diffraction peak, The manufacturing method of the (alpha), (beta)-unsaturated carboxylic acid of Claim 1 characterized by the above-mentioned. [Table 1] Diffraction angle 2θ (± 0.3 °) ────────────── 22.1 ° 28.2 ° 36.2 ° 45.2 ° 50.0 °
またはブタン類であることを特徴とする請求項1または
2に記載のα,β−不飽和カルボン酸の製造方法。3. The saturated aliphatic hydrocarbon is propane and / or
Or it is butanes, The manufacturing method of the (alpha), (beta)-unsaturated carboxylic acid of Claim 1 or 2 characterized by the above-mentioned.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15365193A JP3237314B2 (en) | 1993-06-24 | 1993-06-24 | Method for producing α, β-unsaturated carboxylic acid |
EP94101067A EP0608838B1 (en) | 1993-01-28 | 1994-01-25 | Method for producing an unsaturated carboxylic acid |
DE69402567T DE69402567T2 (en) | 1993-01-28 | 1994-01-25 | Method of producing an unsaturated carboxylic acid |
US08/187,719 US5380933A (en) | 1993-01-28 | 1994-01-28 | Method for producing an unsaturated carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15365193A JP3237314B2 (en) | 1993-06-24 | 1993-06-24 | Method for producing α, β-unsaturated carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0710801A true JPH0710801A (en) | 1995-01-13 |
JP3237314B2 JP3237314B2 (en) | 2001-12-10 |
Family
ID=15567205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15365193A Expired - Fee Related JP3237314B2 (en) | 1993-01-28 | 1993-06-24 | Method for producing α, β-unsaturated carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3237314B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1057813A (en) * | 1996-08-22 | 1998-03-03 | Mitsubishi Chem Corp | Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof |
WO1998022421A1 (en) * | 1996-11-15 | 1998-05-28 | Mitsubishi Chemical Corporation | Process for the simultaneous preparation of acrylonitrile and acrylic acid |
JPH1142434A (en) * | 1997-05-28 | 1999-02-16 | Mitsubishi Chem Corp | Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same |
JPH11169716A (en) * | 1997-12-09 | 1999-06-29 | Mitsubishi Chemical Corp | Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid |
US5994580A (en) * | 1996-10-21 | 1999-11-30 | Toagosei Co., Ltd. | Process for producing acrylic acid |
US6036880A (en) * | 1997-08-05 | 2000-03-14 | Asahi Kasei Kogyo Kabushiki Kaisha | Niobium-containing aqueous solution for use in producing niobium-containing oxide-catalyst |
JP2003201260A (en) * | 2001-12-04 | 2003-07-18 | Rohm & Haas Co | Improved process for the preparation of olefin, unsaturated carboxylic acid and unsaturated nitrile from alkane |
US6664416B2 (en) | 2001-04-25 | 2003-12-16 | Nippon Shokubai Co., Ltd. | Process for producing (meth)acrylic acid |
JP2004161753A (en) * | 2002-10-18 | 2004-06-10 | Rohm & Haas Co | Preparation of unsaturated carboxylic acid and unsaturated carboxylic ester from alkane and/or alkene |
JP2004526800A (en) * | 2001-05-07 | 2004-09-02 | ビーエーエスエフ アクチェンゲゼルシャフト | Acrylic acid production by heterogeneous catalytic partial oxidation of propane. |
JP2005074377A (en) * | 2003-09-03 | 2005-03-24 | Toagosei Co Ltd | Method for producing metal oxide catalyst |
JP2007514765A (en) * | 2003-12-19 | 2007-06-07 | サウジ ベイシック インダストリーズ コーポレイション | Process for producing unsaturated carboxylic acid from alkane |
JP2007326032A (en) * | 2006-06-07 | 2007-12-20 | Asahi Kasei Chemicals Corp | OXIDE CATALYST CONSISTING MAINLY OF Nb AND MANUFACTURING METHOD FOR UNSATURATED COMPOUND USING THIS |
US7645897B2 (en) | 2004-10-15 | 2010-01-12 | Xinlin Tu | Process for producing metal oxide catalyst |
KR100970084B1 (en) * | 2007-10-16 | 2010-07-16 | 주식회사 엘지화학 | Preparation of catalyst with controlled tellurium contents |
JP2018153773A (en) * | 2017-03-21 | 2018-10-04 | 三菱ケミカル株式会社 | Composite metal oxide catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same |
-
1993
- 1993-06-24 JP JP15365193A patent/JP3237314B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1057813A (en) * | 1996-08-22 | 1998-03-03 | Mitsubishi Chem Corp | Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof |
US5994580A (en) * | 1996-10-21 | 1999-11-30 | Toagosei Co., Ltd. | Process for producing acrylic acid |
US6060422A (en) * | 1996-10-21 | 2000-05-09 | Toagosei Co., Ltd. | Process for producing acrylic acid |
WO1998022421A1 (en) * | 1996-11-15 | 1998-05-28 | Mitsubishi Chemical Corporation | Process for the simultaneous preparation of acrylonitrile and acrylic acid |
JPH1142434A (en) * | 1997-05-28 | 1999-02-16 | Mitsubishi Chem Corp | Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same |
US6036880A (en) * | 1997-08-05 | 2000-03-14 | Asahi Kasei Kogyo Kabushiki Kaisha | Niobium-containing aqueous solution for use in producing niobium-containing oxide-catalyst |
JPH11169716A (en) * | 1997-12-09 | 1999-06-29 | Mitsubishi Chemical Corp | Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid |
US6664416B2 (en) | 2001-04-25 | 2003-12-16 | Nippon Shokubai Co., Ltd. | Process for producing (meth)acrylic acid |
JP2004526800A (en) * | 2001-05-07 | 2004-09-02 | ビーエーエスエフ アクチェンゲゼルシャフト | Acrylic acid production by heterogeneous catalytic partial oxidation of propane. |
JP2003201260A (en) * | 2001-12-04 | 2003-07-18 | Rohm & Haas Co | Improved process for the preparation of olefin, unsaturated carboxylic acid and unsaturated nitrile from alkane |
JP2004161753A (en) * | 2002-10-18 | 2004-06-10 | Rohm & Haas Co | Preparation of unsaturated carboxylic acid and unsaturated carboxylic ester from alkane and/or alkene |
JP2005074377A (en) * | 2003-09-03 | 2005-03-24 | Toagosei Co Ltd | Method for producing metal oxide catalyst |
JP2007514765A (en) * | 2003-12-19 | 2007-06-07 | サウジ ベイシック インダストリーズ コーポレイション | Process for producing unsaturated carboxylic acid from alkane |
US7645897B2 (en) | 2004-10-15 | 2010-01-12 | Xinlin Tu | Process for producing metal oxide catalyst |
JP2007326032A (en) * | 2006-06-07 | 2007-12-20 | Asahi Kasei Chemicals Corp | OXIDE CATALYST CONSISTING MAINLY OF Nb AND MANUFACTURING METHOD FOR UNSATURATED COMPOUND USING THIS |
KR100970084B1 (en) * | 2007-10-16 | 2010-07-16 | 주식회사 엘지화학 | Preparation of catalyst with controlled tellurium contents |
JP2018153773A (en) * | 2017-03-21 | 2018-10-04 | 三菱ケミカル株式会社 | Composite metal oxide catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3237314B2 (en) | 2001-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3500663B2 (en) | Method for producing acrylic acid | |
US6710207B2 (en) | Methods for producing unsaturated carboxylic acids and unsaturated nitriles | |
EP1192982B1 (en) | Zn and/or Ga promoted multi-metal oxide catalyst | |
EP0608838B1 (en) | Method for producing an unsaturated carboxylic acid | |
JP3235177B2 (en) | Nitrile manufacturing method | |
JP3500682B2 (en) | Catalyst for the production of nitriles from alkanes | |
JP3237314B2 (en) | Method for producing α, β-unsaturated carboxylic acid | |
JP2003511344A (en) | Catalytic oxidation of alkanes to the corresponding acids | |
JP3484729B2 (en) | Method for producing ethylene | |
KR20120025471A (en) | A process for producing an unsaturated carboxylic acid from an alkane | |
JP3334296B2 (en) | Method for producing unsaturated carboxylic acid | |
US6034270A (en) | Process for the selective preparation of acetic acid using a molybdenum, palladium, and rhenium catalyst | |
JP4081824B2 (en) | Acrylic acid production method | |
AU612368B2 (en) | Organic acids from alkanols | |
JP4182237B2 (en) | Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same | |
JP3331629B2 (en) | Catalyst for the production of nitriles from alkanes | |
JP3536326B2 (en) | Method for producing catalyst for nitrile production | |
JPH1036311A (en) | Production of alpha, beta-unsaturated carboxylic acid | |
JPH10128112A (en) | Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation | |
JP3855298B2 (en) | Process for producing alkene and / or oxygen-containing compound | |
JPH05331085A (en) | Production of methacrolein and/or methacrylic acid | |
JP2003511213A (en) | Catalyst for catalytic oxidation of propane to acrylic acid, its production and use | |
JPH05279313A (en) | Production of nitrile | |
JP2002030028A (en) | Method for producing unsaturated carboxylic acid | |
JPH06287184A (en) | Production of maleic anhydride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071005 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081005 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081005 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091005 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091005 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |