JPH07105217B2 - Non-aqueous liquid active material battery - Google Patents
Non-aqueous liquid active material batteryInfo
- Publication number
- JPH07105217B2 JPH07105217B2 JP62123143A JP12314387A JPH07105217B2 JP H07105217 B2 JPH07105217 B2 JP H07105217B2 JP 62123143 A JP62123143 A JP 62123143A JP 12314387 A JP12314387 A JP 12314387A JP H07105217 B2 JPH07105217 B2 JP H07105217B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- explosion
- thin
- battery container
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/342—Non-re-sealable arrangements
- H01M50/3425—Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/528—Fixed electrical connections, i.e. not intended for disconnection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Primary Cells (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防爆機能を備えた非水液体活物質電池に関す
る。TECHNICAL FIELD The present invention relates to a non-aqueous liquid active material battery having an explosion-proof function.
塩化チオニル−リチウム電池で代表されるような正極活
物質として塩化チオニル、塩化スルフリル、塩化ホスホ
リルなどのオキシハロゲン化物系液体を用い、負極にリ
チウム、ナトリウム、カリウムなどのアルカリ金属を用
いる電池では、正極活物質やアルカリ金属などが水と非
常に反応しやすいため、電池容器をハーメチックシール
により封口する完全密閉構造が採用されている。A battery using an oxyhalide-based liquid such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride as a positive electrode active material typified by a thionyl chloride-lithium battery and using an alkali metal such as lithium, sodium, or potassium for the negative electrode Since active materials and alkali metals react very easily with water, a completely sealed structure that seals the battery container with a hermetic seal has been adopted.
このようなハーメチックシールを採用した電池では、密
閉性が高く、貯蔵性に優れるという長所を有するもの
の、その反面、密閉性が高いために、高温加熱下にさら
されたり、高電圧で充電されるなどの異常事態に遭遇し
たときに、電池の内部圧力が異常に上昇して電池が破裂
し、大きな破裂音が発生すると共に、電池内容物が周囲
に飛び散って電池使用機器を汚損するおそれがある。Batteries employing such a hermetic seal have the advantages of high airtightness and excellent storability, but on the other hand, because of their high airtightness, they are exposed to high temperature heating and are charged at high voltage. When an abnormal situation such as the above is encountered, the internal pressure of the battery rises abnormally and the battery explodes, creating a loud popping noise, and the battery contents may scatter around and contaminate the equipment using the battery. .
そこで、同様に密閉構造をとるアルカリ電池に関して提
案されているような、電池容器の底部に十字状に溝を形
成することによって電池に防爆機能を備えさせること
が、この非水液体活物質電池においても取り入れること
が必要になる。Therefore, in this non-aqueous liquid active material battery, it is possible to provide the battery with an explosion-proof function by forming a cross-shaped groove in the bottom of the battery container, as is proposed for an alkaline battery having a similar sealed structure. Will also need to be incorporated.
しかしながら、アルカリ電池において提案されている防
爆用の溝は、その断面形状がV字状で、その先端、つま
り溝底部を鋭利な状態にするか(例えば、実公昭58−17
332号公報)、あるいは断面V字状でその溝底部に0.1〜
0.2mmRの丸みをつけたものであり(例えば、実公昭58−
26460号公報)、これらは、以下に詳述するように、溝
形成用のポンチの耐久性面や、防爆性能面から、非水液
体活物質電池には適用することができない。However, the explosion-proof groove proposed in the alkaline battery has a V-shaped cross-section, and its tip, that is, the groove bottom is sharpened (see, for example, Japanese Utility Model Publication No. 58-17).
No. 332), or a V-shaped cross section with 0.1 to
It has a roundness of 0.2mmR (for example,
As described in detail below, these cannot be applied to a non-aqueous liquid active material battery from the viewpoint of durability of the punch for groove formation and the explosion-proof performance.
すなわち、アルカリ電池で提案されている断面形状がV
字状で溝底部が鋭利な溝は、切欠効果は期待できるもの
の、プレス成形により溝を形成する際に、溝形成用のポ
ンチの先端部がすぐに損傷を受け、特に非水液体活物質
電池では、正極活物質の強い腐食性に耐えるために電池
容易にはステンレス鋼などの硬度の高い耐食性金属が使
用されているので、ポンチの損傷が増々激しくなり、ポ
ンチの耐久性面やポンチの損傷によるV字状溝の形状バ
ラツキから工業的には到底採用することができない。一
方、断面形状がV字状で溝底部に丸みをつけたものは、
ポンチの損傷は少なくなると考えられるが、このような
溝底部に丸みをつけた場合は、単に薄肉にいたという効
果が発揮されるだけで、切欠効果などの付加的効果がほ
とんど加わらないため、薄肉部の厚みをよほど薄くしな
いかぎり、安全な圧力範囲内での薄肉部の破壊が生じ
ず、また、薄肉部の厚みを薄くすると、貯蔵中に薄肉部
が腐食を受けて電池機能が失われるおそれがある。That is, the cross-sectional shape proposed for alkaline batteries is V
Although a groove with a sharp groove bottom can be expected to have a notch effect, the tip of the groove-forming punch is immediately damaged when the groove is formed by press molding, especially for non-aqueous liquid active material batteries. In order to withstand the strong corrosiveness of the positive electrode active material, the battery easily uses a corrosion resistant metal such as stainless steel, so the damage to the punch becomes more and more severe, and the durability of the punch and damage to the punch are increased. Due to the variation in the shape of the V-shaped groove, it cannot be industrially adopted. On the other hand, the V-shaped cross-section with rounded groove bottom is
It is thought that the punch will be less damaged, but if the groove bottom is rounded, the effect of simply being thin is exhibited, and the additional effect such as the notch effect is hardly added. Unless the thickness of the thin section is very thin, the thin section does not break within the safe pressure range.If the thin section is thin, the thin section may be corroded during storage and the battery function may be lost. There is.
そのため、電池容器の底部に形成する溝の形状を底部が
平坦状になった断面倒立台形状にし、溝底部の端部に電
池の内部圧力による引張力と曲げによる引張力とが複合
してかかるようにし、薄肉部の厚さをある程度維持して
も、比較的低い圧力で、溝底部の端部から切裂破壊が生
じるようにして、電池に安全性の高い防爆機能を付与す
ることが開発され、本出願人によって既に特許出願され
ている(特願昭61−228760号)。Therefore, the shape of the groove formed in the bottom of the battery container is an inverted trapezoidal cross-section with a flat bottom, and the tensile force due to the internal pressure of the battery and the tensile force due to bending are applied to the ends of the groove bottom. Even if the thickness of the thin wall portion is maintained to some extent, it is possible to develop a highly safe explosion-proof function for the battery by causing a fracture fracture from the end of the groove bottom with a relatively low pressure. The applicant has already applied for a patent (Japanese Patent Application No. 61-228760).
ところで、本発明のごとくオキシハロゲン化物系液体を
正極活物質に用いる電池では、電池が高温下にさらされ
ると、電池内部の圧力(内圧)は第5図に示すような変
化を示し、内圧が50kg/cm2を超えるあたりから急激に増
加するという特徴がある。By the way, in a battery using an oxyhalide-based liquid as a positive electrode active material as in the present invention, when the battery is exposed to a high temperature, the internal pressure (internal pressure) of the battery changes as shown in FIG. It is characterized by a sharp increase from around 50 kg / cm 2 .
すなわち、第5図は電池内の圧力と温度との関係を示す
もので、横軸は温度を、縦軸は電池内の圧力を示してい
るが、この電池では、温度が170℃をすぎる頃から内圧
の上昇が大きくなり、温度が180℃で内圧が50kg/cm2近
くなり、この50kg/cm2を超える頃から、わずかな温度上
昇でも内圧は大きく上昇し、圧力上昇は急激になる。That is, FIG. 5 shows the relationship between pressure and temperature in the battery, where the horizontal axis represents temperature and the vertical axis represents pressure in the battery. In this battery, when the temperature exceeds 170 ° C. The internal pressure rises sharply, the temperature rises to about 50 kg / cm 2 at a temperature of 180 ° C, and even when the temperature rises above 50 kg / cm 2 , the internal pressure rises sharply even with a slight temperature rise, and the pressure rises sharply.
そのため、電池が実際に火災などによって急激な温度上
昇下にさらされた場合、防爆用の薄肉部が開裂しても、
電池の内圧が充分に低下せず、電池の内圧低下よりも電
池の内圧上昇が速くなって、電池が破裂する場合があ
る。これは、防爆用の薄肉部が開裂して防爆機能が作動
しようとするときに、その開口部分の面積が小さすぎ、
電池内容物のセパレータや正極がその開口部分をふさい
でしまうからであると考えられる。つまり、第4図
(b)に示すように、薄肉部4の幅が狭く面積が小さい
場合、電池内圧が高くなってたとえ薄肉部4が開裂して
防爆機能が作動しようとしても、開口面積が小さいため
に、セパレータ、正極などの電池内容物がその開口部分
をふさいでしまう。そのため、内圧の低下が遅く、特に
急激な温度上昇がある場合は、電池内圧の上昇の方が速
くなって、電池破裂にいたるようになるのである。Therefore, if the battery is actually exposed to a sudden rise in temperature due to a fire, etc.
In some cases, the internal pressure of the battery does not decrease sufficiently, the internal pressure of the battery rises faster than the internal pressure of the battery decreases, and the battery may burst. This is because the area of the opening is too small when the explosion-proof thin part is torn open and the explosion-proof function is about to operate.
It is considered that this is because the separator and the positive electrode of the battery contents block the opening. That is, as shown in FIG. 4 (b), when the thin portion 4 has a narrow width and a small area, the opening area is small even if the internal pressure of the battery is increased and the thin portion 4 is torn to activate the explosion-proof function. Since it is small, the battery contents such as the separator and the positive electrode block the opening. Therefore, when the internal pressure drops slowly and the temperature rises particularly rapidly, the internal pressure of the battery rises faster, leading to battery rupture.
本発明は、上記のように従来電池では、たとえ防爆用の
薄肉部が開裂しても、その開口部分がセパレータや正極
などの電池内容物によってふさがれ、防爆機能を発揮す
ることができない場合があったという問題点を解決し、
たとえ急激な温度上昇があったような場合でも、安定し
て防爆機能を発揮できる非水液体活物質電池を提供する
ことを目的とする。The present invention, as described above, in the conventional battery, even if the explosion-proof thin wall portion is cleaved, the opening may be blocked by the battery contents such as the separator and the positive electrode, and the explosion-proof function may not be exhibited. I solved the problem that there was,
It is an object of the present invention to provide a non-aqueous liquid active material battery that can stably exhibit an explosion-proof function even if there is a rapid temperature rise.
本発明は、防爆用の薄肉部が開裂したときにその開口部
分が電池内容物によってふさがれて防爆機能が発揮でき
なくなるのを防止するため、防爆用の薄肉部の面積に検
討を加え、防爆用の薄肉部の面積を電池容器の底部面積
の0.7〜5.2%にすることによって、たとえ急激な温度上
昇下にさらされても、安定して防爆機能が発揮できるよ
うにしたものである。In order to prevent the opening portion from being blocked by the battery contents and preventing the explosion-proof function from being exerted when the explosion-proof thin-wall portion is cleaved, the present invention examines the area of the explosion-proof thin-wall portion, By making the area of the thin portion for use to be 0.7 to 5.2% of the area of the bottom of the battery container, the explosion-proof function can be stably exhibited even when exposed to a sudden temperature rise.
すなわち、第4図(a)に示すように、防爆用の薄肉部
4の幅を広く、つまり面積を広くしておくと、薄肉部4
が開裂したときにその開口部分が広くなり、該開口部分
がセパレータ、正極などの電池内容物によってふさがれ
ることが少なくなり、安定して防爆機能が発揮されるよ
うになる。そこで、本発明では、この防爆機能が安定し
て発揮されるようにするためには、まず、上記防爆用の
薄肉部の面積を電池容器の底部面積に対してどの程度以
上にすべきかを検討し、防爆用の薄肉部の面積を電池容
器の底部面積の0.7%以上に特定したのである。しか
し、薄肉部の幅があまり広くなりすぎると、薄肉部の開
裂圧力が高くなってしまい、所望の圧力範囲内で望爆機
能が発揮されなくなるおそれがある。すなわち、薄肉部
の開裂は、電池内圧が上昇して電池容器の底部が膨ら
み、溝の底部の端部に電池の内部圧力による引張力と曲
げによる引張力とが複合してかかり、溝底部の端部(つ
まり、薄肉部の端部)で生じるのであるが、薄肉部の幅
が広いと、溝底部の端部にかかる応力が分散され、切裂
効果が小さくなって、所望とする圧力範囲内での開裂が
生じなくなるのである。そこで、本発明では薄肉部の幅
を広く、面積を広くしていったときにどの程度まで、あ
れば、防爆機能が所望とする圧力範囲で作動し得るかを
検討し、防爆用の薄肉部の面積の上限を電池容器の底部
面積に対して5.2%に特定したのである。That is, as shown in FIG. 4A, when the width of the explosion-proof thin portion 4 is wide, that is, the area is wide, the thin portion 4 is
When the resin is cleaved, the opening becomes wider, the opening is less likely to be blocked by the battery contents such as the separator and the positive electrode, and the explosion-proof function can be stably exhibited. Therefore, in the present invention, in order to stably exhibit this explosion-proof function, first, it is examined how much the area of the thin wall portion for explosion-proof should be larger than the area of the bottom portion of the battery container. However, the area of the thin wall for explosion protection was specified to be 0.7% or more of the bottom area of the battery container. However, if the width of the thin portion is too wide, the cleavage pressure of the thin portion becomes high, and the explosive function may not be exerted within the desired pressure range. That is, in the cleavage of the thin portion, the internal pressure of the battery rises and the bottom of the battery container swells, and the tensile force due to the internal pressure of the battery and the tensile force due to bending are combined on the end of the bottom of the groove, and the groove bottom It occurs at the end (that is, the end of the thin part), but if the width of the thin part is wide, the stress applied to the end of the groove bottom is dispersed, the cutting effect becomes small, and the desired pressure range No internal cleavage occurs. Therefore, in the present invention, the width of the thin-walled portion is widened, and when the area is widened, the extent to which the explosion-proof function can operate in the desired pressure range is examined, and the thin-walled portion for explosion-proof is examined. The upper limit of the area is specified to be 5.2% of the bottom area of the battery container.
薄肉部の幅が0.05mm、0.07mm、0.1mm、0.15mm、0.3mm、
0.5mm、0.6mmと異なる電池容器を作製し、該電池容器を
用いて第3図に示す構造で単3形の塩化チオニル−リチ
ウム電池を作製した。電池の各構成部材について説明す
ると次の通りである。The width of the thin part is 0.05mm, 0.07mm, 0.1mm, 0.15mm, 0.3mm,
A battery container having a size different from 0.5 mm and 0.6 mm was prepared, and an AA thionyl chloride-lithium battery having a structure shown in FIG. 3 was prepared using the battery container. Each component of the battery will be described as follows.
1は電池容器であり、この電池容器1には第1〜2図に
詳述するように、電池に防爆機能を付与するための溝3
が形成され、該溝3の形成により電池容器1の底部2は
部分的に薄肉にされ、薄肉部4が形成されている。11は
アルカリ金属よりなる負極で、本実施例ではリチウム板
を上記電池容器1の内周面に圧着することにより形成さ
れており、そのため、この電池では、電池容器1は負極
端子としての機能を有している。12はセパレータであ
り、このセパレータ12はガラス繊維不織布からなり、円
筒状をしていて、前記円筒状の負極11と円柱状の正極13
とを隔離している。正極13はアセチレンブラックを主成
分とする炭素質で形成された炭素多孔質成形体よりな
り、14は正極集電体で、ステンレス鋼棒よりなる。15は
電池蓋で、ステンレス鋼で形成されていて、その立ち上
がった外周部が電池容器1の開口端部と溶接により接合
され、電池蓋15の内周側には正極端子17との間にガラス
層16が介設されている。ガラス層16は電池蓋15と正極端
子17とを絶縁すると共に、その外周面でその構成ガラス
が電池蓋15の内周面に融着し、その内周面でその構成ガ
ラスが正極端子17の外周面に融着して、電池蓋15と正極
端子17との間をシールし、電池容器1の開口部はいわゆ
るハーメチックシールにより封口されている。正極端子
17はステンレス鋼製で電池組立時はパイプ状をしてい
て、電界液注入口として使用され、その上端部を電解液
注入後にその中空部内に挿入された正極集電体14の上部
と溶接して封止したものである。18は電解液で、この電
解液18は塩化チオニルに支持電解質としての四塩化アル
ミニウムリチウムを1.2mol/溶解したもので、塩化チ
オニルは上記のように電解液の溶媒であると共に、この
電池では正極活物質でもあり、正極13の表面で、この塩
化チオニルと負極11からイオン化したリチウムイオンと
が反応を起こす。そして、19および20はそれぞれガラス
繊維不織布からなる底部隔離材と上部隔離材であり、21
は空気室である。Reference numeral 1 denotes a battery container, and a groove 3 for imparting an explosion-proof function to the battery is provided in the battery container 1 as described in detail in FIGS.
The bottom portion 2 of the battery container 1 is partially thinned by the formation of the groove 3, and the thin portion 4 is formed. Reference numeral 11 denotes a negative electrode made of an alkali metal, which is formed by pressing a lithium plate onto the inner peripheral surface of the battery container 1 in this embodiment. Therefore, in this battery, the battery container 1 functions as a negative electrode terminal. Have 12 is a separator, and this separator 12 is made of glass fiber nonwoven fabric and has a cylindrical shape, and the cylindrical negative electrode 11 and the cylindrical positive electrode 13
And are isolated. The positive electrode 13 is made of a carbon porous molded body formed of carbonaceous material containing acetylene black as a main component, and 14 is a positive electrode current collector made of a stainless steel rod. Reference numeral 15 denotes a battery lid, which is made of stainless steel and whose rising outer peripheral portion is joined to the opening end portion of the battery container 1 by welding, and the inner peripheral side of the battery lid 15 is connected to the positive electrode terminal 17 by a glass. The layer 16 is interposed. The glass layer 16 insulates the battery lid 15 and the positive electrode terminal 17 from each other, and at the outer peripheral surface thereof, the constituent glass is fused to the inner peripheral surface of the battery lid 15, and at the inner peripheral surface, the constituent glass of the positive electrode terminal 17 is formed. The outer peripheral surface is fused and sealed between the battery lid 15 and the positive electrode terminal 17, and the opening of the battery container 1 is sealed by a so-called hermetic seal. Positive terminal
17 is made of stainless steel and has a pipe shape at the time of assembling the battery, and is used as an inlet for the electrolytic solution, and its upper end is welded to the upper part of the positive electrode current collector 14 inserted into the hollow part after the electrolytic solution is injected. It has been sealed. 18 is an electrolytic solution, and this electrolytic solution 18 is thionyl chloride in which 1.2 mol / mol of lithium aluminum tetrachloride as a supporting electrolyte is dissolved.Thionyl chloride is a solvent of the electrolytic solution as described above, and in this battery, it is a positive electrode. It is also an active material, and on the surface of the positive electrode 13, this thionyl chloride reacts with lithium ions ionized from the negative electrode 11. 19 and 20 are a bottom separator and a top separator made of glass fiber non-woven fabric, respectively.
Is an air chamber.
電池容器1は、厚さ0.3mmのステンレス鋼板から作製さ
れ、電池組立前は第1図に示すように有底円筒状をして
おり(ただし、第1図は電池容器を倒立させた状態で示
しているので、底部2が上側にきている)、その底部2
の中央部の凸出部2aには、第1図(a)に示すように平
面形状が十字状の溝3が形成されている。溝3は第2図
に詳示するように、断面形状が底部3aが平坦な倒立台形
状( 形状で、この倒立台形状という表現は、溝底部3aが下側
に配置したときの形状を表現したものである)をしてお
り、溝形成角度θは60゜にされている。4は薄肉部で、
この薄肉部4は上記溝3の形成により電池容器1の底部
2に十字状に設けられたものであり、薄肉部4の厚みt
は0.07mmで、その幅Wは前記のように電池容器によって
0.05mm、0.07mm、0.1mm、0.15mm、0.3mm、0.5mm、0.6mm
と変えられており、各溝3の長さは8mmで、2本で十字
状に形成されていることより、このときの薄肉部4の面
積はそれぞれ8mm2、1.1mm2、1.6mm2、2.4mm2、4.8mm2、
8mm2、9.6mm2である。また、電池容器の底部面積は153.
9mm2であることから、これら薄肉部4の面積はそれぞれ
電池容器の底部面積の0.5%、0.7%、0.10%、1.6%、
3.1%、5.2%、6.2%に相当する。なお、本実施例で
は、リード端子の取付けがしやすいように、電池容器1
の底部2の中央部に凸出部2aを設けているので、溝3は
該凸出部2aに形成されているが、凸出部2aは必ずしも必
要なものではなく、電池容器1の底部2は平坦なもので
あってもよい。その場合、溝3は電池容器1の平坦な底
部2の中央部に形成すればよいが、そのようにしても、
凸出部2aに溝3を形成した場合と比較して、特に防爆機
能が低下するようなことはない。The battery container 1 is made of a stainless steel plate having a thickness of 0.3 mm, and has a bottomed cylindrical shape as shown in FIG. 1 before the battery is assembled (however, FIG. 1 shows an inverted state of the battery container. The bottom 2 is on the upper side, as shown),
A groove 3 having a cross shape in a plan view is formed in the projecting portion 2a at the central portion of the, as shown in FIG. 1 (a). As shown in detail in FIG. 2, the groove 3 has an inverted trapezoidal cross-section with a flat bottom 3a ( The shape of the inverted trapezoid is a shape when the groove bottom portion 3a is arranged on the lower side), and the groove forming angle θ is set to 60 °. 4 is the thin part,
The thin portion 4 is provided in a cross shape on the bottom portion 2 of the battery container 1 by forming the groove 3, and the thickness t of the thin portion 4 is t.
Is 0.07 mm and its width W depends on the battery case as described above.
0.05mm, 0.07mm, 0.1mm, 0.15mm, 0.3mm, 0.5mm, 0.6mm
It has been changed and, by the length of each groove 3 is 8 mm, than that formed in a cross shape with two, an area of each of the thin portion 4 8 mm 2 at this time, 1.1 mm 2, 1.6 mm 2, 2.4mm 2 , 4.8mm 2 ,
It is 8 mm 2 and 9.6 mm 2 . The bottom area of the battery container is 153.
Since it is 9 mm 2 , the area of these thin portions 4 is 0.5%, 0.7%, 0.10%, 1.6% of the bottom area of the battery container,
Equivalent to 3.1%, 5.2%, 6.2%. In this embodiment, the battery container 1 is designed so that the lead terminals can be easily attached.
Since the protrusion 2a is provided at the center of the bottom 2 of the battery, the groove 3 is formed in the protrusion 2a, but the protrusion 2a is not always necessary, and the bottom 2 of the battery container 1 is not necessarily required. May be flat. In that case, the groove 3 may be formed in the central portion of the flat bottom portion 2 of the battery container 1, but even in that case,
Compared with the case where the groove 3 is formed in the protruding portion 2a, the explosion-proof function is not particularly deteriorated.
上記電池を火中に投入し、電池が大きな破裂音を伴って
破裂するか否かを調べた。その結果を第1表に示す。ま
た、上記電池容器に内圧を加え、その薄肉部が開裂する
ときの圧力を測定し、その結果も第1表に併せて記載し
た。The battery was placed in a fire and examined whether the battery exploded with a loud popping sound. The results are shown in Table 1. Further, the internal pressure was applied to the battery container, and the pressure when the thin portion was cleaved was measured, and the results are also shown in Table 1.
第1表に示すように、薄肉部の幅Wが0.30mm以下で、電
池容器の底部面積に対する薄肉部の面積が3.1%以下の
範囲では、いずれの場合も、電池容器の薄肉部の開裂圧
力は62〜80kg/cm2の範囲内であり、防爆機能は62〜80kg
/cm2の範囲で作動するものと考えられるが、実際に電池
を組み立てて火中に投入すると、電池容器の底部面積に
対して薄肉部の面積が0.5%の場合は、試験に供した10
個の試料中2個に電池破裂が生じ、防爆機能が充分に発
揮されなかったが、薄肉部の面積が電池容器の底部面積
に対して0.7%以上になると、火中破裂がなくなり、安
定した防爆機能が発揮されるようになった。一方、薄肉
部の幅が広くなり、電池容器の底部面積に対する薄肉部
の面積が大きくなると、薄肉部の開裂圧力が高くなり、
電池容器の底部面積に対する薄肉部の面積が5.2%の場
合では、薄肉部の開裂圧力が135kg/cm2で、火中破裂が
生じなかったが、電池容器の底部面瀬に対する薄肉部の
面積が6.2%になると、薄肉部の開裂圧力は280kg/cm2に
なり、火中破裂が10個の試料中、6個も生じた。 As shown in Table 1, when the width W of the thin-walled portion is 0.30 mm or less and the area of the thin-walled portion with respect to the bottom area of the battery container is 3.1% or less, the cleavage pressure of the thin-walled portion of the battery container is in any case. is in the range of 62~80kg / cm 2, explosion-proof function is 62~80kg
It is thought that it will operate in the range of / cm 2 , but when the battery was actually assembled and put into fire, when the area of the thin wall part was 0.5% of the bottom area of the battery container, it was subjected to the test 10
Explosion-proof function was not fully exhibited due to battery rupture in two of the samples, but when the area of the thin part was 0.7% or more of the bottom area of the battery container, rupture in fire disappeared and became stable. Explosion-proof function came to be exhibited. On the other hand, when the width of the thin portion becomes wide and the area of the thin portion relative to the bottom area of the battery container becomes large, the cleavage pressure of the thin portion becomes high,
When the area of the thin portion relative to the bottom area of the battery container was 5.2%, the cracking pressure of the thin portion was 135 kg / cm 2 and no fire burst occurred, but the area of the thin portion relative to the bottom surface of the battery container was At 6.2%, the cracking pressure of the thin portion became 280 kg / cm 2 , and 6 out of 10 samples burst in fire.
以上の試験結果から、防爆用の薄肉部の面積としては、
電池容器の底部面積の0.7〜5.2%が適当であるといえ
る。From the above test results, as the area of the thin wall for explosion protection,
It can be said that 0.7 to 5.2% of the bottom area of the battery container is suitable.
なお、上記実施例では溝3の形成角度θを60゜とし、薄
肉部4の厚みtを0.07mmとしたが、溝3の形成角度θは
一般に50〜80゜の範囲にするのが好ましく、また、薄肉
部4の厚みtは一般に0.04〜0.12mmの範囲にするのが好
ましい。Although the forming angle θ of the groove 3 is 60 ° and the thickness t of the thin portion 4 is 0.07 mm in the above embodiment, the forming angle θ of the groove 3 is preferably in the range of 50 to 80 °. The thickness t of the thin portion 4 is generally preferably in the range of 0.04 to 0.12 mm.
また、上記実施例では、十字状の溝を形成した場合につ
いて説明したが、溝としては複数本でそれらの溝が少な
くとも1箇所で交わるものであればよく、その平面形状
としては、実施例で示した十字状以外にも、例えば第6
図に示すように、X字状(第6図(a)参照)、Y字状
(第6図(b)参照)、アスタリスク(*)状(第6図
(c)参照)、H字状(第6図(d)参照)などがあげ
られる。特に電池に内圧がかかったときに電池容器の底
部中心部の変形が最も大きくなるので、電池容器の底部
中心部に交点を持つ十字状、その変形であるX字状、Y
字状、アスタリスク状などが好ましい。また、溝はその
中間部で交わっていることは要求されずY字状のごと
く、溝の端部が交わっているものであってもよい。そし
て、上記溝の形成によって電池容器の底部に設けられる
防爆用の薄肉部も、実施例に例示の十字状のものに限ら
れることなく、溝と同様の各種平面形状がとり得る。Further, in the above-mentioned embodiment, the case where the cross-shaped groove is formed has been described. However, as long as there are a plurality of grooves and those grooves intersect at at least one location, the planar shape is the same as in the embodiment. Other than the cross shape shown, for example, the sixth
As shown in the figure, an X shape (see FIG. 6A), a Y shape (see FIG. 6B), an asterisk (*) shape (see FIG. 6C), an H shape (See FIG. 6 (d)). In particular, when the internal pressure is applied to the battery, the center of the bottom of the battery container is most deformed.
A letter shape, an asterisk shape and the like are preferable. Further, the groove is not required to intersect at the middle portion thereof, and the end portions of the groove may intersect such as a Y shape. The explosion-proof thin-walled portion provided at the bottom of the battery container by forming the groove is not limited to the cross shape illustrated in the embodiment, and may have various planar shapes similar to the groove.
なお、本発明においては、溝は複数本形成し、該複数本
の溝が少なくとも1箇所交わるようにしているが、これ
は、溝を複数本にして、それらの溝が交点を持つように
しておくと、電池の内部圧力が該交点に集中してかかる
ようになり、電池の内部圧力上昇に正確に対応して防爆
機能が作動するようになるからである。In addition, in the present invention, a plurality of grooves are formed, and the plurality of grooves intersect at at least one position. However, this is achieved by forming a plurality of grooves so that the grooves have intersection points. If this is done, the internal pressure of the battery will be concentrated on the intersection, and the explosion-proof function will operate accurately in response to the increase in the internal pressure of the battery.
以上説明したように、本発明では、電池容器の底部に設
ける防爆用の薄肉部の面積を電池容器の底部面積の0.7
〜5.2%にすることによって、薄肉部開裂時の電池内容
物による開口部分の閉塞を防止し、防爆機能を安定して
発揮させることができるようになった。As described above, in the present invention, the area of the explosion-proof thin portion provided at the bottom of the battery container is 0.7% of the bottom area of the battery container.
By setting the content to ~ 5.2%, it is possible to prevent the opening portion from being blocked by the battery contents when the thin-walled portion is cleaved and to stably exhibit the explosion-proof function.
第1図は本発明の電池に用いられる電池容器を倒立させ
た状態で示すもので、第1図(a)はその平面図で、第
1図(b)は第1図(a)のX−X線における断面図で
ある。第2図は本発明において電池容器の底部に設けら
れた溝とその近傍の拡大断面図である。第3図は本発明
の一実施例を示すもので、第1〜2図に示す電池容器を
用いて組み立てた塩化チオニル−リチウム電池を示す断
面図である。第4図は電池容器の底部に設けられた防爆
用の薄肉部が開裂したときの状態を模式的に示すもの
で、第4図(a)は薄肉部の幅が広い場合を示し、第4
図(b)は薄肉部の幅が狭い場合を示す。第5図は塩化
チオニル−リチウム電池における電池内の圧力と温度と
の関係を示す図である。第6図は本発明の電池に使用す
る電池容器の十字状溝以外の溝の平面形状を概略的に例
示するもので、上段はそれぞれの電池容器の概略正面図
で、下段はそれぞれの概略底面図である。 1……電池容器、2……底部、3……溝、 3a……溝の底部、4……薄肉部、11……負極、 12……セパレータ、13……正極、15……電池蓋、 16……ガラス層、18……電解液FIG. 1 shows the battery container used in the battery of the present invention in an inverted state. FIG. 1 (a) is a plan view thereof, and FIG. 1 (b) is an X of FIG. 1 (a). It is a sectional view taken along the line X-. FIG. 2 is an enlarged cross-sectional view of the groove provided in the bottom portion of the battery container and its vicinity in the present invention. FIG. 3 shows an embodiment of the present invention and is a sectional view showing a thionyl chloride-lithium battery assembled using the battery container shown in FIGS. FIG. 4 schematically shows a state in which the explosion-proof thin portion provided at the bottom of the battery container is cleaved, and FIG. 4 (a) shows a case where the thin portion has a wide width.
Figure (b) shows the case where the width of the thin portion is narrow. FIG. 5 is a diagram showing the relationship between pressure and temperature in the thionyl chloride-lithium battery. FIG. 6 schematically illustrates a planar shape of a groove other than the cross-shaped groove of the battery container used for the battery of the present invention. The upper stage is a schematic front view of each battery container, and the lower stage is a schematic bottom face of each. It is a figure. 1 ... Battery container, 2 ... bottom, 3 ... groove, 3a ... groove bottom, 4 ... thin-walled part, 11 ... negative electrode, 12 ... separator, 13 ... positive electrode, 15 ... battery lid, 16 ... glass layer, 18 ... electrolyte
フロントページの続き (72)発明者 横山 賢一 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)発明者 植谷 慶雄 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内Front page continued (72) Inventor Kenichi Yokoyama 1-1-88, Tora, Ibaraki-shi, Osaka Hitachi Maxell Co., Ltd. (72) Inventor Yoshio Uetani 1-1-88, Tora, Ibaraki-shi, Osaka In the company
Claims (1)
フリル、塩化ホスホリルなどのオキシハロゲン化物系液
体を用い、負極にリチウム、ナトリウム、カリウムなど
のアルカリ金属を用い、電池容器をハーメチックシール
により封口する非水液体活物質電池において、電池容器
の底部に、底部が平坦な断面倒立台形状で少なくとも1
箇所の交点を有する複数本の溝を形成することにより、
防爆用の薄肉部が設けられ、該防爆用の薄肉部の面積が
電池容器の底部面積の0.7〜5.2%であることを特徴とす
る非水液体活物質電池。1. A positive electrode active material comprising an oxyhalide liquid such as thionyl chloride, sulfuryl chloride or phosphoryl chloride, an alkaline metal such as lithium, sodium or potassium as a negative electrode, and a hermetically sealed battery container. In a water-liquid active material battery, at least one cross-section inverted trapezoidal shape with a flat bottom is provided at the bottom of the battery container.
By forming a plurality of grooves having intersections of points,
A non-aqueous liquid active material battery characterized in that an explosion-proof thin portion is provided, and the area of the explosion-proof thin portion is 0.7 to 5.2% of the bottom area of the battery container.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62123143A JPH07105217B2 (en) | 1987-05-19 | 1987-05-19 | Non-aqueous liquid active material battery |
US07/101,259 US4842965A (en) | 1986-09-27 | 1987-09-25 | Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof |
DE8787114076T DE3779996T2 (en) | 1986-09-27 | 1987-09-26 | EXPLOSION-PROTECTED ARRANGEMENT FOR A NON-AQUEOUS ELECTROCHEMICAL CELL AND METHOD FOR THE PRODUCTION THEREOF. |
EP87114076A EP0266541B1 (en) | 1986-09-27 | 1987-09-26 | Explosion-proof arrangement for a non-aqueous electrochemical cell, and method for the production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62123143A JPH07105217B2 (en) | 1987-05-19 | 1987-05-19 | Non-aqueous liquid active material battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63285859A JPS63285859A (en) | 1988-11-22 |
JPH07105217B2 true JPH07105217B2 (en) | 1995-11-13 |
Family
ID=14853255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62123143A Expired - Lifetime JPH07105217B2 (en) | 1986-09-27 | 1987-05-19 | Non-aqueous liquid active material battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07105217B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01241750A (en) * | 1988-03-23 | 1989-09-26 | Bridgestone Corp | Lithium storage battery |
EP0881697B1 (en) * | 1996-02-15 | 2002-09-18 | TOYO KOHAN Co., Ltd | Cladding material for a safety valve |
JP6031336B2 (en) * | 2012-11-15 | 2016-11-24 | ニチコン株式会社 | Capacitor |
JP6227742B2 (en) * | 2016-10-24 | 2017-11-08 | ニチコン株式会社 | Capacitor |
JP7174331B2 (en) * | 2019-03-18 | 2022-11-17 | トヨタ自動車株式会社 | battery cover |
-
1987
- 1987-05-19 JP JP62123143A patent/JPH07105217B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63285859A (en) | 1988-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6159631A (en) | Overcharge safety vents on prismatic cells | |
US4842965A (en) | Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof | |
US4028478A (en) | Safety switch for sealed galvanic cells | |
EP1623472B1 (en) | End cap seal assembly for an electrochemical cell | |
JP2001143664A (en) | Cell | |
JP2653832B2 (en) | Sealed battery | |
JP2653833B2 (en) | Sealed battery | |
JPH07105217B2 (en) | Non-aqueous liquid active material battery | |
US6569562B1 (en) | Electrochemical cell with novel header assembly | |
JPH04349347A (en) | Sealed battery | |
US6168879B1 (en) | Cap assembly for secondary battery | |
JP2521441B2 (en) | Hermetically sealed liquid active material battery | |
JPH0637567Y2 (en) | Non-aqueous liquid active material battery | |
JPH07105219B2 (en) | Non-aqueous liquid active material battery | |
JPH07105220B2 (en) | Non-aqueous liquid active material battery | |
CA2165152A1 (en) | Safety vent for a sealed prismatic electrical device | |
JPH09167605A (en) | Safety structure of sealed battery | |
JP2870067B2 (en) | Sealed battery | |
JPH0587814U (en) | Square sealed battery | |
JPH07105221B2 (en) | Method for manufacturing non-aqueous liquid active material battery | |
JPH07105216B2 (en) | Non-aqueous liquid active material battery | |
JPH0789482B2 (en) | Method for manufacturing battery container used for explosion-proof sealed battery | |
JPH0636209U (en) | Sealed battery | |
JPS6386246A (en) | Manufacture of battery container for explosion-proof type sealed battery | |
JPH07105218B2 (en) | Method for manufacturing battery container used for explosion-proof sealed battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071113 Year of fee payment: 12 |