JPH07104272A - Reflection type liquid crystal display device - Google Patents
Reflection type liquid crystal display deviceInfo
- Publication number
- JPH07104272A JPH07104272A JP5243026A JP24302693A JPH07104272A JP H07104272 A JPH07104272 A JP H07104272A JP 5243026 A JP5243026 A JP 5243026A JP 24302693 A JP24302693 A JP 24302693A JP H07104272 A JPH07104272 A JP H07104272A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- light
- electrode plate
- display device
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
- Optical Elements Other Than Lenses (AREA)
- Polarising Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、反射型液晶表示装置に
係り、特に、その表示画面の改善が図れる反射型液晶表
示装置の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective liquid crystal display device, and more particularly to an improved reflective liquid crystal display device capable of improving its display screen.
【0002】[0002]
【従来の技術】液晶表示装置は、一般に、電極を備える
一対の電極板と、これ等電極板間に封入された液晶物質
とでその主要部が構成され、上記電極間に電圧を印加し
て液晶物質の配向状態を変化させると共にその配向状態
によりその部位を透過する直線偏光の偏光面を回転さ
せ、この偏光の透過・不透過を偏光フィルムにより制御
して画面表示を行うものである。2. Description of the Related Art Generally, a liquid crystal display device comprises a pair of electrode plates having electrodes and a liquid crystal substance enclosed between the electrode plates, the main part of which is composed of a pair of electrode plates and a voltage applied between the electrodes. The alignment state of the liquid crystal substance is changed, and the polarization plane of the linearly polarized light that passes through the part is rotated according to the alignment state, and the transmission / non-transmission of this polarization is controlled by the polarization film to perform screen display.
【0003】そして、この種の液晶表示装置としては、
液晶表示装置の背面側に位置する電極板(以下背面電極
板と称する)の裏面若しくは側面に光源(ランプ)を配
置し、背面電極板側から光線を入射させるバックライト
型あるいはライトガイド型のランプ内蔵式透過型液晶表
示装置が広く普及している。As a liquid crystal display device of this type,
A back light type or light guide type lamp in which a light source (lamp) is arranged on the back surface or side surface of an electrode plate (hereinafter referred to as the back electrode plate) located on the back side of the liquid crystal display device, and light rays are incident from the back electrode plate side. Built-in transmissive liquid crystal display devices have become widespread.
【0004】しかし、このランプ内蔵式透過型液晶表示
装置においては、そのランプによる消費電力が大きくC
RTやプラズマディスプレイ等他の種類のディスプレイ
と略同等の電力を消費するため、液晶表示装置本来の低
消費電力といった特徴を損ない、また、携帯先での長時
間の利用が困難となるという欠点を有していた。However, in this transmissive liquid crystal display device with a built-in lamp, the power consumed by the lamp is large.
Since it consumes substantially the same amount of power as other types of displays such as RTs and plasma displays, it has the drawback of impairing the inherent low power consumption of liquid crystal display devices and making it difficult to use for a long time at the destination of carrying. Had.
【0005】他方、このようなランプを内蔵することな
く装置の観察者側に位置する電極板(観察者側電極板と
称する)から室内光や自然光等の外光を入射させ、か
つ、この入射光を光反射性背面電極板で反射させると共
に、この反射光で画面表示する反射型液晶表示装置も知
られている。そして、この反射型液晶表示装置ではラン
プを利用しないことから消費電力が小さく、携帯先での
長時間駆動に耐えるという利点を有している。On the other hand, outside light such as room light or natural light is made incident from an electrode plate (referred to as an observer-side electrode plate) located on the observer side of the apparatus without incorporating such a lamp, and this incident light is incident. There is also known a reflection type liquid crystal display device in which light is reflected by a light-reflective back electrode plate and a screen is displayed by this reflected light. In addition, this reflective liquid crystal display device has advantages that it consumes less power because it does not use a lamp and can withstand long-time driving at a portable location.
【0006】このような反射型液晶表示装置としては、
例えば、図4に示すように背面電極板aの裏面に金属反
射板eを配置したものが知られている。尚、図4中、b
は観察者側電極板、cは液晶物質、dは偏光フィルムを
示しており、上記外光を偏光フィルムdで直線偏光に変
え、この直線偏光を金属反射板eで反射させると共に両
電極板a、bの透明電極a2、b2間に電圧を印加して
液晶物質cを駆動させ、上記直線偏光の透過・不透過を
制御して画面表示するものである。As such a reflection type liquid crystal display device,
For example, as shown in FIG. 4, one in which a metal reflection plate e is arranged on the back surface of the back electrode plate a is known. In addition, in FIG. 4, b
Is an observer-side electrode plate, c is a liquid crystal substance, and d is a polarizing film. The external light is converted into linearly polarized light by the polarizing film d, and the linearly polarized light is reflected by the metal reflecting plate e and both electrode plates a are formed. , B to apply a voltage between the transparent electrodes a2 and b2 to drive the liquid crystal substance c, and control the transmission / non-transmission of the linearly polarized light to display a screen.
【0007】また、図5に示す反射型液晶表示装置は、
背面電極板aの電極a2を金属薄膜で構成し、この電極
a2により入射光を反射させて画面表示するものであ
る。Further, the reflection type liquid crystal display device shown in FIG.
The electrode a2 of the back electrode plate a is made of a metal thin film, and the incident light is reflected by this electrode a2 to display a screen.
【0008】[0008]
【発明が解決しようとする課題】ところで、図4に示さ
れる反射型液晶表示装置においては、液晶物質cによっ
て構成された表示画面が上記金属反射板eに映って虚像
を生じ、二重に観察されるという問題点があった。By the way, in the reflection type liquid crystal display device shown in FIG. 4, the display screen composed of the liquid crystal substance c is reflected on the metal reflection plate e to form a virtual image, which is double observed. There was a problem that was done.
【0009】これに対して、図5に示される反射型液晶
表示装置においては、金属電極a2が液晶物質に密着し
ているため上記二重表示を生じることはないが、その反
面、上記電極a2が入射光線を正反射するためその外光
の光源(例えば、蛍光灯)が電極a2に映り、画面内に
その虚像が観察されるという問題点があった。On the other hand, in the reflective liquid crystal display device shown in FIG. 5, since the metal electrode a2 is in close contact with the liquid crystal substance, the double display does not occur, but on the other hand, the electrode a2 is used. Has a problem that the light source (for example, a fluorescent lamp) of the external light is reflected on the electrode a2 because the incident light is specularly reflected, and the virtual image is observed on the screen.
【0010】更に、上記外光は偏光フィルムd表面にお
いても正反射され、一般にその反射率が数%〜10%と
高いため、この偏光フィルムdに起因して上記光源の虚
像が観察されることもあった。Further, the external light is specularly reflected on the surface of the polarizing film d, and its reflectance is generally as high as several% to 10%. Therefore, the virtual image of the light source is observed due to the polarizing film d. There was also.
【0011】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、上記表示画面の
二重映しや光源の虚像を防止して高品質の画面表示を可
能とする反射型液晶表示装置を提供することにある。The present invention has been made by paying attention to such a problem, and its problem is to prevent double display of the display screen and virtual image of the light source to enable high quality screen display. Another object of the present invention is to provide a reflective liquid crystal display device.
【0012】[0012]
【課題を解決するための手段】すなわち、請求項1に係
る発明は、透明電極が配設された観察者側電極板と、こ
の観察者側電極板に対向して配置されかつ電極が配設さ
れた光反射性背面電極板と、これ等両電極板間に封入さ
れた液晶物質と、上記観察者側電極板の外側表面に配置
され外部から入射する外光を直線偏光に変える偏光フィ
ルムとを備え、上記外光を背面電極板で反射させると共
に両電極板の電極間に電圧を印加して液晶物質を駆動さ
せ、上記直線偏光の透過・不透過を制御して画面表示す
る反射型液晶表示装置を前提とし、上記偏光フィルムの
表面に、屈折率が1.6以下の透明樹脂とこの透明樹脂
中に分散されこの透明樹脂よりその屈折率が小さい微粒
子とから成る光散乱層を備えることを特徴とするもので
ある。That is, the invention according to claim 1 is directed to an observer-side electrode plate provided with a transparent electrode and an observer-side electrode plate disposed so as to face the observer-side electrode plate. A light-reflective back electrode plate, a liquid crystal material enclosed between the two electrode plates, and a polarizing film arranged on the outer surface of the viewer-side electrode plate to convert external light incident from the outside into linearly polarized light. A reflection-type liquid crystal that displays the screen by controlling the transmission / non-transmission of the linearly polarized light by reflecting the external light on the back electrode plate and applying a voltage between the electrodes of both electrode plates to drive the liquid crystal substance. On the premise of a display device, a light-scattering layer comprising a transparent resin having a refractive index of 1.6 or less and fine particles dispersed in the transparent resin and having a smaller refractive index than the transparent resin is provided on the surface of the polarizing film. It is characterized by.
【0013】この請求項1に係る発明によれば、外部光
源から入射した外光は上記偏光フィルムの表面に設けら
れた光散乱層で散乱されて液晶物質に入射し、また背面
電極板で反射された光線の出射の際にも上記光散乱層で
散乱されるため、上記背面電極板の光反射性に起因した
表示画面の二重映しと光源の虚像とをいずれも防止する
ことが可能となる。According to the first aspect of the invention, the external light incident from the external light source is scattered by the light scattering layer provided on the surface of the polarizing film to enter the liquid crystal substance, and is reflected by the back electrode plate. Since it is scattered by the light scattering layer even when the emitted light is emitted, it is possible to prevent both the double reflection of the display screen and the virtual image of the light source due to the light reflectivity of the back electrode plate. Become.
【0014】また、上記光散乱層は、屈折率1.6以下
の低屈折率の樹脂とこの樹脂よりその屈折率が小さい微
粒子とで構成されており、全体として極めて低い屈折率
を有するため、光源からの外光の表面反射を防止してこ
の表面反射に起因する上記光源の虚像を防止することが
できる。Further, the light scattering layer is composed of a resin having a low refractive index of 1.6 or less and fine particles having a smaller refractive index than this resin, and has a very low refractive index as a whole, Surface reflection of external light from the light source can be prevented, and a virtual image of the light source due to the surface reflection can be prevented.
【0015】このように背面電極板の光反射性と偏光フ
ィルムの表面に起因した表示画面の二重映しや光源の虚
像をいずれも防止できるため、表示画面の改善を図るこ
とが可能となる。As described above, since it is possible to prevent both the double reflection of the display screen and the virtual image of the light source due to the light reflectivity of the back electrode plate and the surface of the polarizing film, it is possible to improve the display screen.
【0016】ここで、請求項1に係る発明において上記
光散乱層の一部を構成する透明樹脂としては、例えば、
通常塗料に適用されている樹脂が使用できる。このよう
な塗料用樹脂としては非水系樹脂が使用でき、例えば、
ポリエステル系樹脂、アミノ樹脂、ポリウレタン樹脂等
が使用できる。また、上記透明樹脂としてエマルジョン
系樹脂を適用することもできる。このようなエマルジョ
ン樹脂としては、水性合成ラテックス、非水エマルジョ
ン樹脂、水系エマルジョン樹脂が例示できる。また、水
溶性樹脂を適用することも可能である。このような水溶
性樹脂としては、例えば、ポリビニルアルコール、水溶
性ポリエステル樹脂、水溶性アクリル樹脂等が使用でき
る。また、紫外線硬化型アクリル樹脂や電子線硬化型ア
クリル樹脂を適用してもよい。また、その他、塩化ビニ
ル系樹脂、フッ素樹脂、シリコン樹脂、セルロース樹
脂、フェノール樹脂、キシレン樹脂、トルエン樹脂、ポ
リイミド樹脂等を使用することもできる。また、これ等
樹脂にベンゾフェノン系紫外線吸収剤やイミダゾール系
紫外線吸収剤等の紫外線吸収剤を添加したものを使用し
てもよい。Here, in the invention according to claim 1, as the transparent resin constituting a part of the light scattering layer, for example,
The resin usually applied to paint can be used. A non-aqueous resin can be used as such a coating resin, for example,
Polyester resins, amino resins, polyurethane resins, etc. can be used. Further, an emulsion resin can be applied as the transparent resin. Examples of such emulsion resin include aqueous synthetic latex, non-aqueous emulsion resin, and water-based emulsion resin. It is also possible to apply a water-soluble resin. As such a water-soluble resin, for example, polyvinyl alcohol, a water-soluble polyester resin, a water-soluble acrylic resin or the like can be used. Further, an ultraviolet curable acrylic resin or an electron beam curable acrylic resin may be applied. In addition, vinyl chloride resin, fluororesin, silicone resin, cellulose resin, phenol resin, xylene resin, toluene resin, polyimide resin and the like can also be used. Moreover, you may use what added the ultraviolet absorbers, such as a benzophenone type ultraviolet absorber and an imidazole type ultraviolet absorber, to these resins.
【0017】また、上記透明樹脂として接着剤を使用す
ることもできる。このような接着剤としては、例えば、
合成樹脂系接着剤、エマルジョン系接着剤、ホットメル
ト型接着剤、合成ゴム系接着剤が適用できる。そして、
上記合成樹脂系接着剤としては、ユリア樹脂系接着剤、
メラミン樹脂系接着剤、フェノール樹脂系接着剤、エポ
キシ樹脂系接着剤、酢酸ビニル樹脂の溶剤系接着剤、シ
アノアクリレート樹脂系接着剤、ウレタン樹脂系接着
剤、α−オレフィン−無水マレイン酸樹脂水性高分子と
イソシアネート化合物との二液型接着剤、反応型アクリ
ル樹脂系接着剤、紫外線硬化型アクリル樹脂系接着剤、
電子線硬化型アクリル樹脂系接着剤、及び、嫌気性の変
性アクリル樹脂系接着剤等が利用できる。また、上記エ
マルジョン系接着剤としては、酢酸ビニル樹脂系エマル
ジョン接着剤、酢酸ビニル共重合樹脂系エマルジョン接
着剤、エチレン−酢酸ビニル共重合樹脂系エマルジョン
接着剤、及び、アクリル樹脂系エマルジョン接着剤等が
利用できる。この他、ポリイミド樹脂系接着剤、ポリア
ミドイミド樹脂系接着剤、シリコン樹脂系接着剤等の耐
熱性接着剤、ポリビニルアルコール等の水溶性接着剤を
使用することもできる。また、これ等接着剤にベンゾフ
ェノン系紫外線吸収剤やイミダゾール系紫外線吸収剤等
の紫外線吸収剤を添加したものを使用してもよい。Further, an adhesive may be used as the transparent resin. As such an adhesive, for example,
Synthetic resin adhesives, emulsion adhesives, hot melt adhesives, and synthetic rubber adhesives can be applied. And
As the synthetic resin adhesive, a urea resin adhesive,
Melamine resin adhesive, phenol resin adhesive, epoxy resin adhesive, vinyl acetate resin solvent adhesive, cyanoacrylate resin adhesive, urethane resin adhesive, α-olefin-maleic anhydride resin water-based high Two-component adhesive of molecule and isocyanate compound, reactive acrylic resin adhesive, UV-curable acrylic resin adhesive,
An electron beam curable acrylic resin adhesive, an anaerobic modified acrylic resin adhesive, and the like can be used. Examples of the emulsion adhesives include vinyl acetate resin emulsion adhesives, vinyl acetate copolymer resin emulsion adhesives, ethylene-vinyl acetate copolymer resin emulsion adhesives, and acrylic resin emulsion adhesives. Available. In addition, heat-resistant adhesives such as polyimide resin adhesives, polyamideimide resin adhesives, and silicone resin adhesives, and water-soluble adhesives such as polyvinyl alcohol can also be used. Moreover, you may use what added the ultraviolet absorbers, such as a benzophenone type ultraviolet absorber and an imidazole type ultraviolet absorber, to these adhesives.
【0018】次に、このような透明樹脂内に分散させる
微粒子としては、光散乱性を向上させるため上記透明樹
脂の屈折率と0.05以上異なる屈折率を有するものが
望ましく、例えば、MgF2 、CaF2 、LiF、Na
F、BaF2 、あるいはシリカ微粉末、シリカのアエロ
ジル、あるいはPTFE(ポリテトラフルオロエチレ
ン)等のフッ素樹脂の微粉末、アモルファスポリオレフ
ィン微粉末、ポリジビニルベンゼンのビーズ、ポリスチ
レンの中空ビーズ、ポリサルフォン微粉末、溶融石英の
微粉末、FK−6等のフッ化物含有珪酸ガラスの微粉末
等が使用できる。これ等微粒子は、球形、円盤形、碁石
形、多角形、菱形、正方板形等の任意の形状でよい。Next, as the fine particles to be dispersed in such a transparent resin, those having a refractive index different from the refractive index of the transparent resin by 0.05 or more in order to improve the light scattering property are desirable. For example, MgF 2 , CaF 2 , LiF, Na
F, BaF 2 , or silica fine powder, silica aerosil, or fluororesin fine powder such as PTFE (polytetrafluoroethylene), amorphous polyolefin fine powder, polydivinylbenzene beads, polystyrene hollow beads, polysulfone fine powder, Fine powder of fused quartz, fine powder of silicate glass containing fluoride such as FK-6, and the like can be used. These fine particles may have any shape such as a spherical shape, a disc shape, a gostone shape, a polygonal shape, a rhombic shape, and a square plate shape.
【0019】ここで、上記光散乱層は、その表面の正反
射を防止して光源の虚像の発生をより確実に防止するた
め凹凸表面を有することが望ましい。Here, it is preferable that the light scattering layer has an uneven surface in order to prevent regular reflection of the surface thereof and to more reliably prevent generation of a virtual image of the light source.
【0020】請求項2に係る発明はこのような技術的理
由に基づいてなされている。The invention according to claim 2 is based on such a technical reason.
【0021】すなわち、請求項2に係る発明は、請求項
1記載の発明に係る反射型液晶表示装置を前提とし、上
記光散乱層の表面が深さ0.05〜10μmの凹凸を有
することを特徴とするものである。That is, the invention according to claim 2 is premised on the reflective liquid crystal display device according to claim 1, wherein the surface of the light scattering layer has irregularities having a depth of 0.05 to 10 μm. It is a feature.
【0022】尚、上記深さを0.05〜10μmに設定
する理由は、その深さが0.05μm未満の凹凸表面の
場合には反射光の散乱効果が不十分で表面の正反射が大
きくなり、他方、10μmを越える場合には上記光散乱
層を10μmを越える厚さに形成する必要があって非効
率になるからである。尚、好ましくは深さ0.05〜1
μmの凹凸である。The reason why the depth is set to 0.05 to 10 μm is that when the depth is less than 0.05 μm, the effect of scattering reflected light is insufficient and the specular reflection on the surface is large. On the other hand, when the thickness exceeds 10 μm, it is necessary to form the light scattering layer to a thickness exceeding 10 μm, which is inefficient. Incidentally, the depth is preferably 0.05 to 1
The unevenness is μm.
【0023】このような凹凸表面を有する光散乱層は、
適当な粒径の微粒子を選択し、かつ、この微粒子を透明
樹脂に混合して塗布し乾燥することによって形成するこ
とができる。また、これ等微粒子に適当な表面処理を施
して使用することも可能である。このような表面処理と
しては、例えば、透明樹脂やカップリング剤による被覆
処理、アルコールやアミン又は有機酸で表面反応を生じ
させる処理が例示できる。そして、例えば、粒径0.2
μmのMgF2 (屈折率1.38)を9重量%分散させ
たアクリル樹脂(屈折率1.5)を厚さ10μmに塗布
・乾燥させて求めた光散乱層の表面は、深さ0.1〜
0.5μmの凹凸を有している。尚、厚さ200nmの
アルミニウム薄膜を成膜したガラス板の上記アルミニウ
ム薄膜上に、MgF2 を15重量%分散させた上記エポ
キシ樹脂(屈折率1.57)を4μmの厚さに塗布・乾
燥して光散乱層を求め、この光散乱層に垂直な方向から
光線を入射させ、種々の位置でその反射光の輝度(cd
/m2 )を測定した結果を図3に示す。図3において横
軸は視角(測定位置と上記入射光線との角度)θを示し
ている。また、MgF2 の代わりにCaF2 (屈折率
1.43)を使用して同様の測定を行った結果を合わせ
て図3に示す。The light scattering layer having such an uneven surface is
It can be formed by selecting fine particles having an appropriate particle size, mixing the fine particles with a transparent resin, applying the mixture, and drying. It is also possible to use these fine particles after subjecting them to an appropriate surface treatment. Examples of such surface treatment include a coating treatment with a transparent resin or a coupling agent, and a treatment for causing a surface reaction with an alcohol, an amine or an organic acid. And, for example, a particle size of 0.2
The surface of the light-scattering layer obtained by applying and drying an acrylic resin (refractive index 1.5) having a thickness of 10 μm in which 9 wt% of MgF 2 (refractive index 1.38) was dispersed at a depth of 0. 1 to
It has unevenness of 0.5 μm. The epoxy resin (refractive index 1.57) in which 15% by weight of MgF 2 was dispersed was applied to the aluminum thin film of a glass plate on which a 200 nm-thick aluminum thin film was formed to a thickness of 4 μm and dried. The light scattering layer is obtained by making a light beam incident on the light scattering layer in a direction perpendicular to the light scattering layer, and the brightness of the reflected light (cd
/ M 2 ) is shown in FIG. In FIG. 3, the horizontal axis represents the viewing angle (angle between the measurement position and the incident light beam) θ. Further, CaF 2 (refractive index 1.43) was used instead of MgF 2 , and the results of similar measurements were also shown in FIG.
【0024】図3の結果から、光散乱層は、光散乱層を
透過する光線と光散乱層の表面で反射する光線との全体
に対して散乱効果が極めて高く、従って光源の虚像が生
じないことが確認できる。From the results shown in FIG. 3, the light scattering layer has a very high scattering effect on the whole of the light rays passing through the light scattering layer and the light rays reflected on the surface of the light scattering layer, and therefore a virtual image of the light source does not occur. You can confirm that.
【0025】次に、反射型液晶表示装置がSTN(Supe
r Twisted Nematic)液晶表示装置である場合には、液
晶の屈折率異方性に起因する画面の着色を防止するた
め、上記偏光フィルムに上記液晶の屈折率異方性を補償
する位相差フィルムを設けることが望ましい。Next, the reflection type liquid crystal display device is
In the case of a liquid crystal display device, a retardation film for compensating the refractive index anisotropy of the liquid crystal is added to the polarizing film in order to prevent screen coloring due to the refractive index anisotropy of the liquid crystal. It is desirable to provide it.
【0026】請求項3に係る発明はこのような技術的理
由に基づいてなされている。The invention according to claim 3 is based on such a technical reason.
【0027】すなわち、請求項3に係る発明は、請求項
1又は2記載の発明に係る反射型液晶表示装置を前提と
し、上記偏光フィルムが位相差フィルムを備えることを
特徴とするものである。That is, the invention according to claim 3 is premised on the reflective liquid crystal display device according to claim 1 or 2, and the polarizing film is provided with a retardation film.
【0028】このような位相差フィルムとしては、プラ
スチックフィルムを一軸延伸又は二軸延伸してそのフィ
ルムに屈折率異方性を付与したものが使用でき、また、
これ等延伸フィルムをその延伸軸が交差する方向に積層
した多層フィルムを使用することもできる。例えば、ト
リアセチルセルロースフィルム、ポリカーボネートフィ
ルム、ポリエチレンテレフタレートフィルム、ポリスチ
レンフィルム、ポリエチレンフィルム、ポリメタクリル
メチルフィルム、ポリエーテルサルフォンフィルム、ポ
リエーテルケトンフィルム、ポリアリールフィルム等の
フィルムを一軸延伸又は二軸延伸したものである。As such a retardation film, a plastic film which is uniaxially stretched or biaxially stretched to impart refractive index anisotropy to the film can be used.
It is also possible to use a multilayer film in which these stretched films are laminated in the direction in which the stretch axes intersect. For example, a film such as a triacetyl cellulose film, a polycarbonate film, a polyethylene terephthalate film, a polystyrene film, a polyethylene film, a polymethacrylmethyl film, a polyether sulfone film, a polyether ketone film, or a polyaryl film is uniaxially stretched or biaxially stretched. It is a thing.
【0029】この位相差フィルムは別途用意した接着剤
により上記偏光フィルムに貼り合わせることができる。This retardation film can be attached to the above polarizing film with an adhesive agent prepared separately.
【0030】次に、請求項1〜3に係る発明に適用でき
る偏光フィルムとしては、一軸延伸フィルムにヨウ素や
二色性染料等の二色性色素を吸着させてこれ等色素を延
伸方向に配向させたものが使用できる。また、上記偏光
フィルムとして上記色素吸着フィルムの両面に保護フィ
ルムを設けたものや、更にその両面にそれぞれ観察者側
電極板接着用の接着剤層と耐磨耗性のハードコート層と
を設けたものを使用することもできる。また、上記一軸
延伸フィルムとしては、例えば、一軸延伸ポリビニルア
ルコールフィルム、あるいは一軸延伸ポリエチレンテレ
フタレートフィルム、一軸延伸酢酸セルロースフィル
ム、一軸延伸ポリカーボネートフィルム、一軸延伸ポリ
塩化ビニルフィルム等が使用でき、また、保護フィルム
としては、例えば、トリアセチルセルロースフィルム、
ポリカーボネートフィルム、ポリエチレンテレフタレー
トフィルム、ポリスチレンフィルム、ポリエチレンフィ
ルム、ポリメタクリルメチルフィルム、ポリエーテルサ
ルフォンフィルム、ポリエーテルケトンフィルム、ポリ
アリールフィルム、あるいはこれ等のフィルムを互いに
積層した多層のフィルムが使用できる。Next, as a polarizing film applicable to the inventions according to claims 1 to 3, a uniaxially stretched film is adsorbed with a dichroic dye such as iodine or a dichroic dye, and these dyes are oriented in the stretching direction. You can use it. Further, as the polarizing film, a protective film is provided on both sides of the dye adsorbing film, and an adhesive layer for adhering the observer side electrode plate and an abrasion-resistant hard coat layer are further provided on both sides thereof. One can also be used. The uniaxially stretched film may be, for example, a uniaxially stretched polyvinyl alcohol film, or a uniaxially stretched polyethylene terephthalate film, a uniaxially stretched cellulose acetate film, a uniaxially stretched polycarbonate film, a uniaxially stretched polyvinyl chloride film, or the like, and a protective film. As, for example, triacetyl cellulose film,
A polycarbonate film, a polyethylene terephthalate film, a polystyrene film, a polyethylene film, a polymethacrylmethyl film, a polyethersulfone film, a polyetherketone film, a polyaryl film, or a multilayer film in which these films are laminated can be used.
【0031】尚、請求項1〜3に係る発明において上記
光散乱層は、バーコーティング、ロールコーティング、
カーテンコーティング、グラビアコーティング、スピン
コーティング、フレキソ印刷、スクリーン印刷等の方法
で塗布又は印刷して形成することができる。In the invention according to claims 1 to 3, the light scattering layer is bar coating, roll coating,
It can be formed by coating or printing by a method such as curtain coating, gravure coating, spin coating, flexographic printing, screen printing.
【0032】[0032]
【作用】請求項1〜3に係る発明によれば、観察者側電
極板の外側表面に配置された偏光フィルムの表面に光散
乱層を備えるため、外部光源から入射した外光は上記光
散乱層で散乱されて液晶物質に入射し、また、光反射性
背面電極板で反射された光線の出射の際にも上記光散乱
層で散乱されることから、上記背面電極板の光反射性に
起因する表示画面の二重映しと光源の虚像とをいずれも
防止することが可能となる。According to the inventions according to claims 1 to 3, since the light scattering layer is provided on the surface of the polarizing film disposed on the outer surface of the observer-side electrode plate, the external light incident from the external light source is scattered by the light. The light is scattered by the layer and enters the liquid crystal substance, and is also scattered by the light scattering layer when the light beam reflected by the light reflective back electrode plate is emitted. It is possible to prevent both the double reflection of the display screen and the virtual image of the light source that are caused.
【0033】更に、上記光散乱層は、屈折率1.6以下
の低屈折率の樹脂とこれよりその屈折率が小さい微粒子
とで構成されており、全体として極めて低い屈折率を有
するため、光源からの外光の表面反射を防止してこの表
面反射に起因した上記光源の虚像をも防止することが可
能となる。Further, the light scattering layer is composed of a resin having a low refractive index of 1.6 or less and fine particles having a smaller refractive index than the resin, and has a very low refractive index as a whole. It is possible to prevent the surface reflection of the external light from and to prevent the virtual image of the light source due to the surface reflection.
【0034】[0034]
【実施例】以下、図面を参照して本発明の実施例につい
て詳細に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0035】この実施例に係る反射型液晶表示装置は、
図1に示すように厚さ0.7μmのガラス板を基材とし
かつ透明電極31が配設された観察者側電極板3と、画
素パターン状の光反射性アルミニウム薄膜から成る電極
41とこれ等電極41の隙間部位に設けられた光吸収膜
パターン42とを有する背面電極板4と、これ等両電極
板3、4間に封入された液晶物質5と、上記観察者側電
極板3の外側表面に順次積層された偏光フィルム2並び
に光散乱層1とでその主要部が構成されている。尚、上
記偏光フィルム2は、図2に示すようにヨウ素を吸着さ
せた一軸延伸フィルム22と、この表裏に積層されたト
リアセチルセルロースの保護フィルム21、23と、そ
の裏面側に接着剤層24を介して積層されたポリカーボ
ネートの位相差フィルム25と、位相差フィルム25上
に塗布され観察者側電極板に接着する接着剤層26とで
構成されている。また、上記光散乱層1は9重量%のM
gF2 (平均粒径;0.2μm、屈折率;1.38)が
分散されたアクリル樹脂(屈折率;1.5)を上記保護
フィルム21上に10μmの厚さで塗布して形成されて
おり、その表面には深さ0.1〜0.5μmの凹凸を有
している。The reflective liquid crystal display device according to this embodiment is
As shown in FIG. 1, an observer-side electrode plate 3 having a glass plate having a thickness of 0.7 μm as a base material and provided with a transparent electrode 31, an electrode 41 made of a pixel-patterned light-reflective aluminum thin film, and the electrode 41 The back electrode plate 4 having the light absorbing film pattern 42 provided in the gap between the equal electrodes 41, the liquid crystal substance 5 enclosed between the two electrode plates 3 and 4, and the observer-side electrode plate 3 The polarizing film 2 and the light-scattering layer 1, which are sequentially laminated on the outer surface, constitute the main part. The polarizing film 2 is, as shown in FIG. 2, a uniaxially stretched film 22 having adsorbed iodine, triacetyl cellulose protective films 21 and 23 laminated on the front and back surfaces thereof, and an adhesive layer 24 on the back surface side thereof. It is composed of a retardation film 25 made of polycarbonate laminated via the adhesive layer 26, and an adhesive layer 26 applied on the retardation film 25 and adhered to the observer-side electrode plate. Further, the light scattering layer 1 contains 9% by weight of M.
An acrylic resin (refractive index: 1.5) in which gF 2 (average particle size: 0.2 μm, refractive index: 1.38) is dispersed is applied on the protective film 21 to a thickness of 10 μm. And has irregularities with a depth of 0.1 to 0.5 μm on its surface.
【0036】そして、蛍光灯の照明下でこの反射型液晶
表示装置を駆動したところ、表示画面内に上記蛍光灯の
虚像が全く観察されず、コントラストの高い鮮明な表示
画面を観察することができた。When this reflection type liquid crystal display device was driven under the illumination of a fluorescent lamp, no virtual image of the fluorescent lamp was observed in the display screen, and a clear display screen with high contrast could be observed. It was
【0037】[0037]
【発明の効果】請求項1〜3に係る発明によれば、背面
電極板の光反射性に起因した表示画面の二重映しと光源
の虚像とをいずれも防止でき、かつ、偏光フィルムの表
面反射に起因する光源の虚像をも防止することが可能に
なるため、反射型液晶表示装置における表示画面の改善
が図れる効果を有している。According to the inventions of claims 1 to 3, it is possible to prevent both the double reflection of the display screen and the virtual image of the light source due to the light reflectivity of the back electrode plate, and the surface of the polarizing film. Since it is possible to prevent even a virtual image of the light source due to reflection, there is an effect that the display screen of the reflective liquid crystal display device can be improved.
【図1】実施例に係る反射型液晶表示装置の断面図。FIG. 1 is a cross-sectional view of a reflective liquid crystal display device according to an example.
【図2】実施例に係る光散乱層を積層した偏光フィルム
の断面図。FIG. 2 is a cross-sectional view of a polarizing film in which light scattering layers according to examples are laminated.
【図3】光散乱層の散乱効果を示すグラフ図。FIG. 3 is a graph showing the scattering effect of the light scattering layer.
【図4】従来例に係る反射型液晶表示装置の断面図。FIG. 4 is a cross-sectional view of a reflective liquid crystal display device according to a conventional example.
【図5】従来例に係る反射型液晶表示装置の断面図。FIG. 5 is a cross-sectional view of a reflective liquid crystal display device according to a conventional example.
1 光散乱層 2 偏光フィルム 3 観察者側電極板 4 背面電極板 5 液晶物質 21 保護フィルム 22 ヨウ素を吸着させた一軸延伸フィルム 23 保護フィルム 24 接着剤層 25 位相差フィルム 26 接着剤層 31 透明電極 41 光反射性電極 1 Light Scattering Layer 2 Polarizing Film 3 Observer Side Electrode Plate 4 Back Electrode Plate 5 Liquid Crystal Substance 21 Protective Film 22 Iodine-Adsorbed Uniaxially Stretched Film 23 Protective Film 24 Adhesive Layer 25 Retardation Film 26 Adhesive Layer 31 Transparent Electrode 41 Light reflective electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 古賀 修 東京都台東区台東一丁目5番1号 凸版印 刷株式会社内 (72)発明者 西脇 健一 大阪府大東市明美の里町6−6 (72)発明者 村橋 浩一郎 大阪府箕面市百楽荘1−3−3 (72)発明者 森川 昌宏 大阪府大阪市生野区巽南4−7−21 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Koga 1-5-1, Taito, Taito-ku, Tokyo Within Toppan Printing Co., Ltd. (72) Kenichi Nishiwaki 6-6 Akeminosato Town, Daito City, Osaka Prefecture ( 72) Inventor Koichiro Murahashi 1-3-3 Hyakurakuso, Minoh City, Osaka Prefecture (72) Inventor Masahiro Morikawa 4-7-21 Tatsunan, Ikuno-ku, Osaka City, Osaka Prefecture
Claims (3)
この観察者側電極板に対向して配置されかつ電極が配設
された光反射性背面電極板と、これ等両電極板間に封入
された液晶物質と、上記観察者側電極板の外側表面に配
置され外部から入射する外光を直線偏光に変える偏光フ
ィルムとを備え、上記外光を背面電極板で反射させると
共に両電極板の電極間に電圧を印加して液晶物質を駆動
させ、上記直線偏光の透過・不透過を制御して画面表示
する反射型液晶表示装置において、 上記偏光フィルムの表面に、屈折率が1.6以下の透明
樹脂とこの透明樹脂中に分散されこの透明樹脂よりその
屈折率が小さい微粒子とから成る光散乱層を備えること
を特徴とする反射型液晶表示装置。1. An observer-side electrode plate provided with a transparent electrode,
A light-reflective back electrode plate, which is arranged opposite to the observer-side electrode plate and has electrodes, a liquid crystal substance enclosed between the two electrode plates, and an outer surface of the observer-side electrode plate. And a polarizing film for converting external light incident from the outside into linearly polarized light, reflecting the external light on the back electrode plate, and applying a voltage between the electrodes of both electrode plates to drive the liquid crystal substance, In a reflection type liquid crystal display device for controlling transmission / non-transmission of linearly polarized light, a transparent resin having a refractive index of 1.6 or less and a transparent resin dispersed in the transparent resin on the surface of the polarizing film. A reflection type liquid crystal display device comprising a light scattering layer made of fine particles having a small refractive index.
μmの凹凸を有することを特徴とする請求項1記載の反
射型液晶表示装置。2. The depth of the surface of the light scattering layer is from 0.05 to 10.
The reflective liquid crystal display device according to claim 1, wherein the reflective liquid crystal display device has irregularities of μm.
ることを特徴とする請求項1又は2に記載の反射型液晶
表示装置。3. The reflection type liquid crystal display device according to claim 1, wherein the polarizing film comprises a retardation film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5243026A JP2898860B2 (en) | 1993-09-29 | 1993-09-29 | Reflective liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5243026A JP2898860B2 (en) | 1993-09-29 | 1993-09-29 | Reflective liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07104272A true JPH07104272A (en) | 1995-04-21 |
JP2898860B2 JP2898860B2 (en) | 1999-06-02 |
Family
ID=17097770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5243026A Expired - Lifetime JP2898860B2 (en) | 1993-09-29 | 1993-09-29 | Reflective liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2898860B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09258013A (en) * | 1996-03-19 | 1997-10-03 | Nitto Denko Corp | Diffusion plate, laminated polarizing plate, elliptically polarizing plate, and liquid crystal display device |
WO1998005984A1 (en) * | 1996-08-05 | 1998-02-12 | Teijin Limited | Orientated film having pores |
JPH11109112A (en) * | 1997-10-02 | 1999-04-23 | Nippon Synthetic Chem Ind Co Ltd:The | Manufacture of glare preventive treated layer |
US6018379A (en) * | 1995-06-13 | 2000-01-25 | Nec Corporation | Reflective LCD having a particular scattering means |
US6288172B1 (en) | 1995-06-26 | 2001-09-11 | 3M Innovative Properties Company | Light diffusing adhesive |
US6297863B1 (en) | 1997-08-25 | 2001-10-02 | Matsushita Electric Industrial Co. Ltd. | Reflective liquid crystal display device |
US6300990B1 (en) * | 1996-12-05 | 2001-10-09 | Matsushita Electric Industrial Co., Ltd. | Reflective LCD device with low visual angle dependency and high contrast |
US6483561B2 (en) | 1996-06-27 | 2002-11-19 | Nec Corporation | Wide viewing angle liquid crystal display having both optical compensator and optical diffuser |
US6747719B2 (en) | 2000-12-19 | 2004-06-08 | Tomoegawa Paper Co., Ltd. | Light reflecting layer having thin metal film directly or via a primer coating on individual particles of single-layer coating |
US7158197B2 (en) | 1995-07-17 | 2007-01-02 | Seiko Epson Corporation | Reflective type color liquid crystal device and an electronic apparatus using this |
CN100451760C (en) * | 2003-10-02 | 2009-01-14 | 阿尔卑斯电气株式会社 | Reflector and liquid crystal display device using the same |
US8405804B2 (en) | 2007-08-09 | 2013-03-26 | Sharp Kabushiki Kaisha | Liquid crystal display unit |
USRE46606E1 (en) | 2000-04-28 | 2017-11-14 | Sharp Kabushiki Kaisha | Stamping tool, casting mold and methods for structuring a surface of a work piece |
-
1993
- 1993-09-29 JP JP5243026A patent/JP2898860B2/en not_active Expired - Lifetime
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6018379A (en) * | 1995-06-13 | 2000-01-25 | Nec Corporation | Reflective LCD having a particular scattering means |
US6266112B1 (en) | 1995-06-13 | 2001-07-24 | Nec Corporation | Reflective liquid crystal display |
US6288172B1 (en) | 1995-06-26 | 2001-09-11 | 3M Innovative Properties Company | Light diffusing adhesive |
US7286194B2 (en) | 1995-07-17 | 2007-10-23 | Seiko Epson Corporation | Reflective type color liquid crystal device and an electronic apparatus using this |
US7995163B2 (en) | 1995-07-17 | 2011-08-09 | Seiko Epson Corporation | Reflective type color liquid crystal device and an electronic apparatus using this |
US7834958B2 (en) | 1995-07-17 | 2010-11-16 | Seiko Epson Corporation | Reflective type color liquid crystal device and an electronic apparatus using this |
US7304701B2 (en) | 1995-07-17 | 2007-12-04 | Seiko Epson Corporation | Reflective type color liquid crystal device and an electronic apparatus using this |
US7289174B1 (en) | 1995-07-17 | 2007-10-30 | Seiko Epson Corporation | Reflective type color liquid crystal device and an electronic apparatus using this |
US7158197B2 (en) | 1995-07-17 | 2007-01-02 | Seiko Epson Corporation | Reflective type color liquid crystal device and an electronic apparatus using this |
US7209197B2 (en) | 1995-07-17 | 2007-04-24 | Seiko Epson Corporation | Reflective color LCD with color filters having particular transmissivity |
JPH09258013A (en) * | 1996-03-19 | 1997-10-03 | Nitto Denko Corp | Diffusion plate, laminated polarizing plate, elliptically polarizing plate, and liquid crystal display device |
US6483561B2 (en) | 1996-06-27 | 2002-11-19 | Nec Corporation | Wide viewing angle liquid crystal display having both optical compensator and optical diffuser |
US6741306B2 (en) | 1996-06-27 | 2004-05-25 | Nec Lcd Technologies, Ltd. | Wide viewing angle liquid crystal display having both optical compensator and optical diffuser |
WO1998005984A1 (en) * | 1996-08-05 | 1998-02-12 | Teijin Limited | Orientated film having pores |
US6177153B1 (en) | 1996-08-05 | 2001-01-23 | Teijin Limited | Orientated film having pores |
US6300990B1 (en) * | 1996-12-05 | 2001-10-09 | Matsushita Electric Industrial Co., Ltd. | Reflective LCD device with low visual angle dependency and high contrast |
US6426785B2 (en) | 1996-12-05 | 2002-07-30 | Matsushita Electric Industrial Co., Ltd. | Reflective liquid crystal display device |
US6297863B1 (en) | 1997-08-25 | 2001-10-02 | Matsushita Electric Industrial Co. Ltd. | Reflective liquid crystal display device |
JPH11109112A (en) * | 1997-10-02 | 1999-04-23 | Nippon Synthetic Chem Ind Co Ltd:The | Manufacture of glare preventive treated layer |
USRE46606E1 (en) | 2000-04-28 | 2017-11-14 | Sharp Kabushiki Kaisha | Stamping tool, casting mold and methods for structuring a surface of a work piece |
US6747719B2 (en) | 2000-12-19 | 2004-06-08 | Tomoegawa Paper Co., Ltd. | Light reflecting layer having thin metal film directly or via a primer coating on individual particles of single-layer coating |
CN100451760C (en) * | 2003-10-02 | 2009-01-14 | 阿尔卑斯电气株式会社 | Reflector and liquid crystal display device using the same |
US8405804B2 (en) | 2007-08-09 | 2013-03-26 | Sharp Kabushiki Kaisha | Liquid crystal display unit |
Also Published As
Publication number | Publication date |
---|---|
JP2898860B2 (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3507344B2 (en) | Anti-glare film, polarizing plate and transmission type display device | |
JP3515401B2 (en) | Anti-glare film, polarizing plate and transmission type display device | |
JP2003161816A (en) | Optical diffusion sheet, optical element and display device | |
WO2005121847A1 (en) | Wide view angle compensation polarizing plate, liquid crystal panel and liquid crystal display | |
JPH07104272A (en) | Reflection type liquid crystal display device | |
JP2002277615A (en) | Optical film and liquid crystal display | |
JP6058905B2 (en) | Manufacturing method of light diffusion film and manufacturing method of polarizing plate | |
JPH07104127A (en) | Polarizing film for reflection type liquid crystal display device | |
JP2000035508A (en) | Light diffusion layer, optical element and liquid crystal display device | |
JP2003075604A (en) | Antireflective antidazzle film, method for manufacturing the same, optical element and image display device | |
JP2003075603A (en) | Antireflective hard coat sheet, optical element and image display device | |
JP4010542B2 (en) | Light diffusing sheet, optical element and image display device | |
JP2002221610A (en) | Glare-proof film, polarizing plate and transmission display device | |
JPH07261171A (en) | Reflection type liquid crystal display device | |
KR100277753B1 (en) | Semi-transmissive semi-reflective film laminate and its manufacturing method | |
JP3849920B2 (en) | Light diffusing layer, light diffusing sheet, optical element and image display device | |
JP2002182212A (en) | Optical element and liquid crystal display device | |
JP2003270626A (en) | Reflection type liquid crystal element, and method for manufacturing the same | |
JPH09269403A (en) | Sheet having non-glare layer | |
JP2003066207A (en) | Light diffusing sheet, optical element and display device | |
JP2003131016A (en) | Optical diffusive layer, optical diffusive sheet, optical element and display device | |
JP2004008840A (en) | Method for manufacturing coating film sheet, method for manufacturing antireflection sheet, antireflection sheet, optical element, and image display apparatus | |
JP2004024967A (en) | Production method of coated sheet, production method of antireflection sheet, antireflection sheet, optical element, and image displaying device | |
JP2020076919A (en) | Substrate with transparent electrode layer, lighting control film, and liquid crystal display | |
JP2003195053A (en) | Polarizing plate and liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080312 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110312 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120312 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 14 |