[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0699831B2 - Sn-Ni alloy or Sn-Co alloy plating method - Google Patents

Sn-Ni alloy or Sn-Co alloy plating method

Info

Publication number
JPH0699831B2
JPH0699831B2 JP62004456A JP445687A JPH0699831B2 JP H0699831 B2 JPH0699831 B2 JP H0699831B2 JP 62004456 A JP62004456 A JP 62004456A JP 445687 A JP445687 A JP 445687A JP H0699831 B2 JPH0699831 B2 JP H0699831B2
Authority
JP
Japan
Prior art keywords
alloy
plating
bath
alloy plating
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62004456A
Other languages
Japanese (ja)
Other versions
JPS63171894A (en
Inventor
修 吉岡
宗男 小平
良三 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62004456A priority Critical patent/JPH0699831B2/en
Publication of JPS63171894A publication Critical patent/JPS63171894A/en
Publication of JPH0699831B2 publication Critical patent/JPH0699831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はSn-Ni合金またはSn-Co合金めっきを安定的に得
ることができるSn-Ni合金またはSn-Co合金めっき方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a Sn-Ni alloy or Sn-Co alloy plating method capable of stably obtaining Sn-Ni alloy or Sn-Co alloy plating.

<従来技術> Sn-Ni合金めっきまたはSn-Co合金めっきは装飾性があ
り、また耐食性にも優れていることから、各種電気器
具、音響機器の摩擦部のような耐食性、耐薬品性を要求
される部分に広く用いられている。
<Prior art> Sn-Ni alloy plating or Sn-Co alloy plating is decorative and has excellent corrosion resistance, so it requires corrosion resistance and chemical resistance such as friction parts of various electric appliances and audio equipment. It is widely used in parts where

一般に、Sn-Ni合金めっきまたはSn-Co合金めっきは、フ
ッ化物浴やピロリン酸浴から得られるもので、特にフッ
化物浴からはSnとNiあるいはSnとCoが同数同時に電着し
て得られるので、得られためっき合金の組成は原子量の
関係からSn-Ni合金めっきの場合Sn:67wt%,Ni:33wt%と
なる。このSn-Ni合金めっき層はめっきの化学式NiSnで
表わされる擬安定相で電着していると言われている。こ
の擬安定相が優れた耐食性、耐変色性を示す性質をもっ
ている。ここでSn-Ni合金とSn-Co合金とはほぼ同種の浴
組成から得られるので、以下Sn-Ni合金めっきについて
代表的に説明する。
Generally, Sn-Ni alloy plating or Sn-Co alloy plating is obtained from a fluoride bath or pyrophosphoric acid bath, and in particular, the same number of Sn and Ni or Sn and Co can be electrodeposited from the fluoride bath at the same time. Therefore, the composition of the obtained plated alloy is Sn: 67 wt% and Ni: 33 wt% in the case of Sn-Ni alloy plating due to the relation of atomic weight. It is said that this Sn-Ni alloy plating layer is electrodeposited in a quasi-stable phase represented by the chemical formula NiSn of plating. This metastable phase has the property of exhibiting excellent corrosion resistance and discoloration resistance. Here, the Sn-Ni alloy and the Sn-Co alloy can be obtained from almost the same bath composition, so the Sn-Ni alloy plating will be representatively described below.

Sn-Ni合金めっき浴のうち代表的なフッ化物浴の浴組成
を表1に示す。
Table 1 shows the bath composition of a typical fluoride bath among the Sn-Ni alloy plating baths.

表1に示すめっき浴A、BおよびCからは、上述したよ
うなSn:67wt%,Ni:33wt%(SnとNiの原子比=1:1)の合
金組成が得られる。これはSnイオンがフッ化物浴中で錯
化して、SnとNiの電極電位が近づくために安定した組成
のめっき層が得られるようになるのである。そしてSnと
Niのの電極電位は浴温が50℃以上でなければ近づかない
ことから、一般には浴温60℃以上でめっきが行われる。
From the plating baths A, B and C shown in Table 1, the alloy composition of Sn: 67 wt% and Ni: 33 wt% (Sn: Ni atomic ratio = 1: 1) as described above can be obtained. This is because the Sn ions are complexed in the fluoride bath and the electrode potentials of Sn and Ni are close to each other, so that a plating layer having a stable composition can be obtained. And with Sn
Since the electrode potential of Ni does not approach unless the bath temperature is 50 ° C or higher, plating is generally performed at a bath temperature of 60 ° C or higher.

このようにフッ化物浴より得られるSn-Ni合金めっき
は、錯化作用による両金属の電極電位の近似から成り立
っているので、微量の有機物、特に界面活性剤の混入
は、電極電位、特にNiの析出電位に強く影響を及ぼす。
従って、浴への光沢剤の添加は困難であり、通常は行わ
れていない。
Thus, Sn-Ni alloy plating obtained from the fluoride bath consists of an approximation of the electrode potentials of both metals due to the complexing action, so that the inclusion of a trace amount of organic matter, especially a surfactant, may cause the electrode potential, especially Ni. Strongly influences the deposition potential of.
Therefore, the addition of brighteners to the bath is difficult and not usually done.

ところで、酸性浴、あるいはアルカリ浴を用いた純Snめ
っき、またはSnを含有する、Sn-Zn,Sn-Cu、Sn-Pb等のSn
系合金めっきを行う場合には、めっき液中に存在するSn
イオンの酸化によるSnイオンの価数の変動が問題とな
る。
By the way, pure Sn plating using an acid bath or an alkaline bath, or Sn-containing Sn such as Sn-Zn, Sn-Cu, Sn-Pb
When performing system alloy plating, Sn present in the plating solution
The fluctuation of the valence of Sn ions due to the oxidation of ions becomes a problem.

このことは、フッ化物からなるSn-Ni合金めっき浴の場
合でも同様である。即ち、酸性のめっき液中では、2価
のSnが空気に接触して酸化され、4価のSnになるが、Sn
イオンは被めっき物に対し2価のSnから析出し、4価の
Snイオンからは析出しないため、4価のSnは不用な存在
であり、また浴中に4価のSnが増加すると、フッ化物を
消費して、めっき液中のフッ化物が不足することとなり
めっき浴の安定性を阻害する。
This also applies to the Sn-Ni alloy plating bath made of fluoride. That is, in an acidic plating solution, divalent Sn comes into contact with air and is oxidized to form tetravalent Sn.
Ions are deposited from divalent Sn on the object to be plated, and tetravalent
Since it does not precipitate from Sn ions, tetravalent Sn is an unnecessary existence, and when tetravalent Sn increases in the bath, fluoride is consumed and the fluoride in the plating solution becomes insufficient, resulting in plating. Inhibits bath stability.

そこで、めっき浴中におけるSnの酸化(4価のSn量の増
大)を抑制するため、酸性のSnめっき浴では、一般にめ
っき液の攪拌をできるだけ抑えたり、めっき液の循環を
少なくする工夫がなされているが、Sn-Ni合金めっきの
場合には、上述したように浴温が60℃以上と高温である
ため、Snの酸化が促進される傾向にあり、Snめっきまた
は他のSn系合金めっきの場合と比べ浴中の酸化されたSn
量を減少させることが困難であるのが現状である。
Therefore, in order to suppress the oxidation of Sn (increasing the amount of tetravalent Sn) in the plating bath, in acidic Sn plating baths, in general, the stirring of the plating solution is suppressed as much as possible and the circulation of the plating solution is reduced. However, in the case of Sn-Ni alloy plating, since the bath temperature is as high as 60 ° C or higher as described above, the oxidation of Sn tends to be promoted, and Sn plating or other Sn-based alloy plating Compared with the case of oxidized Sn in the bath
At present, it is difficult to reduce the amount.

<発明が解決しようとする問題点> 本発明の目的は、上述した従来技術の欠点を解消し、Sn
-Ni合金またはSn-Co合金めっき浴の安定性を大幅に向上
することができるSn-Ni合金またはSn-Co合金めっき方法
を提供することにある。
<Problems to be Solved by the Invention> An object of the present invention is to solve the above-mentioned drawbacks of the prior art by using Sn.
An object of the present invention is to provide a Sn-Ni alloy or Sn-Co alloy plating method capable of significantly improving the stability of a -Ni alloy or Sn-Co alloy plating bath.

<問題点を解決するための手段> Sn-Ni合金またはSn-Co合金めっきにおいては、上述した
ように、めっき液中に4価のSnが増加するとめっき浴の
安定性を阻害することがわかっているが、本発明者らは
更に研究を重ねた結果、めっき液中の4価のSn量が多い
とめっきの耐食性が低下することを見い出した。
<Means for Solving Problems> In Sn-Ni alloy or Sn-Co alloy plating, as described above, it has been found that when tetravalent Sn increases in the plating solution, the stability of the plating bath is hindered. However, as a result of further studies, the present inventors have found that when the amount of tetravalent Sn in the plating solution is large, the corrosion resistance of the plating decreases.

そこで、Sn-Ni合金またはSn-Co合金めっき液中の2価の
Snが酸化されて4価のSnになるのを防止する方法を鋭意
検討した結果、めっき液中に所定の還元剤としてハイド
ロキノン、ピロカテコールのうち少なくとも1種を添加
することを知見し、本発明に至った。
Therefore, in the Sn-Ni alloy or Sn-Co alloy plating solution,
As a result of extensive studies on a method for preventing Sn from being oxidized to tetravalent Sn, it was found that at least one of hydroquinone and pyrocatechol was added as a predetermined reducing agent to the plating solution. Came to.

即ち、本発明はSn-Ni合金またはSn-Co合金めっき浴に、
ハイドロキノン、ポロカテコールのうち少なくとも1種
の塩を添加してめっきを行うことを特徴とするSn-Ni合
金またはSn-Co合金めっき方法を提供するものである。
That is, the present invention, Sn-Ni alloy or Sn-Co alloy plating bath,
The present invention provides a Sn-Ni alloy or Sn-Co alloy plating method, characterized in that at least one salt of hydroquinone and porocatechol is added for plating.

以下、本発明のSn-Ni合金またはSn-Co合金めっき方法に
ついて詳細に説明する。なお、Sn-Ni合金めっきとSn-Co
合金めっきとは、その性質が近似しているため、以下の
説明では、特に記述がない限り、代表的にSn-Ni合金め
っきについて述べる。
Hereinafter, the Sn-Ni alloy or Sn-Co alloy plating method of the present invention will be described in detail. In addition, Sn-Ni alloy plating and Sn-Co
Since the properties of the alloy plating are similar to those of the alloy plating, Sn-Ni alloy plating will be representatively described below unless otherwise specified.

本発明におけるめっき浴としては、フッ化物浴、ホウフ
ッ化物浴、ピロリン酸浴等が可能である。
The plating bath in the present invention may be a fluoride bath, a borofluoride bath, a pyrophosphoric acid bath, or the like.

めっき浴中に添加する還元剤としては、ハイドロキノ
ン、ピロカテコールのうち少なくとも1種である。これ
らの還元剤を添加することによって、めっき液中の2価
のSnが4価のSnになることを防止することができる。
The reducing agent added to the plating bath is at least one of hydroquinone and pyrocatechol. By adding these reducing agents, divalent Sn in the plating solution can be prevented from becoming tetravalent Sn.

上記還元剤の添加量は、合計で0.01〜1g/l程度が好まし
い。その理由は、0.01g/l未満であると2価のSnの酸化
防止作用が不足することとなり、また1g/lを超えると有
機物による合金めっき膜質が低下することとなるからで
ある。なお、上記還元剤は、めっきの進行に伴って随時
補給を行ってもよい。
The total amount of the reducing agent added is preferably about 0.01 to 1 g / l. The reason is that if it is less than 0.01 g / l, the antioxidant effect of divalent Sn will be insufficient, and if it exceeds 1 g / l, the quality of the alloy plating film due to organic matter will be deteriorated. The reducing agent may be replenished at any time with the progress of plating.

なお、本発明法の適用対象となる被めっき物としては、
銅、銅系合金(C151、C505等)、鉄、鉄系合金(ステン
レス鋼、42合金等)、またはこれらの複合材料(例えば
Cu/42合金クラッド材)等いかなる材料でもよく、また
その形態も、板材、条材、管材、帯状長尺物等いかなる
ものでもよい。
In addition, as the object to be plated to which the method of the present invention is applied,
Copper, copper-based alloys (C151, C505, etc.), iron, iron-based alloys (stainless steel, 42 alloys, etc.), or composite materials of these (for example,
Cu / 42 alloy clad material), and the form thereof may be any material such as a plate material, a strip material, a pipe material, and a long strip.

また、本発明によるめっきの形態は、電解めっき、無電
解めっきのいずれでもよい。
The form of plating according to the present invention may be either electrolytic plating or electroless plating.

<実施例> (実験1) 前記表1に示すA浴に還元剤として抱水ヒドラジンを0.
3g/lの濃度で添加し、浴温60℃、pH=2.5、電流密度1A/
dm2、通電電流15Aの条件で銅板に2μm厚のSn-Ni合金
電気めっきを連続的に施した。めっきの継続中に、200
時間経過毎に0.2g/lの抱水ヒドラジン(還元剤)の補給
を行った。
<Example> (Experiment 1) In the bath A shown in Table 1, hydrazine hydrate was added as a reducing agent in an amount of 0.
Add at a concentration of 3g / l, bath temperature 60 ℃, pH = 2.5, current density 1A /
A copper plate was continuously electroplated with a Sn—Ni alloy having a thickness of 2 μm under conditions of dm 2 and a current of 15 A. 200 during plating
Replenishment of 0.2 g / l hydrazine hydrate (reducing agent) was performed every time.

一方、従来法として、A浴に還元剤を添加をしない以外
は上記と同様の条件でSn-Ni合金電気めっきを行った。
On the other hand, as a conventional method, Sn-Ni alloy electroplating was performed under the same conditions as above except that no reducing agent was added to the bath A.

これらの各めっき液について、所定の時間経過後にめっ
き液中のトータルSn濃度およびSn4 +濃度を測定し、トー
タルSn量中のSn4 +量の比を求めた。その結果を表2に示
す。
With respect to each of these plating solutions, the total Sn concentration and the Sn 4 + concentration in the plating solution were measured after a predetermined time, and the ratio of the Sn 4 + amount in the total Sn amount was obtained. The results are shown in Table 2.

この場合、いずれの時間においてもめっき液中の2価の
Snの濃度は12〜30g/lの範囲に、Ni+ +の濃度は60〜80g/l
の範囲に入るように調整した。
In this case, at any time the divalent value in the plating solution
Sn concentration in the range of 12~30g / l, Ni + + concentrations 60~80g / l
Adjusted to fall within the range.

このようにして得られた各時間経過段階におけるSn-Ni
合金めっきの耐食性を調べた。その方法は、6Nの塩酸を
煮沸しておき、その煮沸液中に各試験片を浸漬しSn-Ni
合金めっき層が溶解して銅の素地が露出するまでの時間
により評価した。その結果を表2に示す。
The Sn-Ni obtained at each time-lapse step thus obtained
The corrosion resistance of the alloy plating was investigated. The method is to boil 6N hydrochloric acid, immerse each test piece in the boiling liquid, and Sn-Ni
The evaluation was performed by the time until the alloy plating layer was melted and the copper substrate was exposed. The results are shown in Table 2.

なお、耐食性の判定は、Sn-Ni合金めっき層の溶解時間
が長いものほど耐食性が優れるものとし、○:10分以
上、△:6分以上10分未満、×:6分未満で分類した。
The corrosion resistance was judged as the one having a longer dissolution time of the Sn-Ni alloy plating layer was more excellent in corrosion resistance, and was classified into ◯: 10 minutes or more, Δ: 6 minutes or more and less than 10 minutes, and ×: less than 6 minutes.

表2の結果からわかるように、Sn-Ni合金めっき液中に
還元剤(抱水ヒドラジン)を添加した本実験では、めっ
き液中の2価のSnの4価のSnへの酸化反応が著しく抑制
され、めっき液の寿命が大幅に(4倍以上)延びてお
り、その結果、Sn-Ni合金めっきの耐食性も安定して良
好であることが確認された。
As can be seen from the results in Table 2, in the present experiment in which the reducing agent (hydrazine hydrate) was added to the Sn-Ni alloy plating solution, the oxidation reaction of divalent Sn to tetravalent Sn in the plating solution was remarkable. It was confirmed that the life of the plating solution was suppressed (extended by 4 times or more), and as a result, the corrosion resistance of the Sn-Ni alloy plating was stable and good.

(実験2−本発明の実施例1) めっき液中に添加する還元剤を次の各〜とした以外
は実験1と同様の条件でSn-Ni合金電気めっきを行い、
同様の方法でめっき液中のSn4 +量の比およびSn-Ni合金
めっきの耐食性を調べた。
(Experiment 2-Example 1 of the present invention) Sn-Ni alloy electroplating was carried out under the same conditions as in Experiment 1 except that the reducing agents added to the plating solution were changed to
By the same method, the ratio of Sn 4 + content in the plating solution and the corrosion resistance of Sn-Ni alloy plating were investigated.

ハイドロキノン (添加量0.2g/l) ピロカテコール (添加量0.2g/l) 上記〜のいずれの還元剤を添加した場合も、前記表
2の結果と同様の結果が得られた。
Hydroquinone (addition amount: 0.2 g / l) Pyrocatechol (addition amount: 0.2 g / l) When any of the above reducing agents (1) to (4) was added, the same results as those in Table 2 were obtained.

(実験3) 下記組成のめっき浴Dに還元剤として抱水ヒドラジンを
0.3g/lの濃度で添加し、浴温60℃、pH=2.5、電流密度1
A/dm2の条件で銅板に2μm厚のSn-Co合金電気めっきを
連続的に施した。めっきの継続中に、200時間経過毎に
0.2g/lの抱水ヒドラジン(還元剤)の補給を行った。
(Experiment 3) Hydrazine hydrate was added as a reducing agent to the plating bath D having the following composition.
Add at a concentration of 0.3g / l, bath temperature 60 ℃, pH = 2.5, current density 1
A copper plate was continuously electroplated with a thickness of 2 μm of Sn—Co alloy under the condition of A / dm 2 . Every 200 hours during continuous plating
Replenishment of 0.2 g / l hydrazine hydrate (reducing agent) was performed.

〔めっき浴D〕[Plating bath D]

塩化第一錫 (SnCl2.2H2O): 50g/l 塩化コバルト (CoCl2.6H2O): 300g/l フッ化ナトリウム (NaF): 28g/l 酸性フッ化アンモニウム (NH4F・HF): 35g/l 一方、従来法として、D浴に還元剤を添加しない以外は
上記と同様の条件でSn-Co合金電気めっきを行った。
Stannous chloride (SnCl 2 .2H 2 O): 50g / l of cobalt chloride (CoCl 2 .6H 2 O): 300g / l sodium fluoride (NaF): 28g / l ammonium bifluoride (NH 4 F · HF ): 35 g / l On the other hand, as a conventional method, Sn-Co alloy electroplating was performed under the same conditions as above except that no reducing agent was added to the D bath.

実験1と同様の方法でめっき液中のSn4 +量の比およびSn
-Co合金めっきの耐食性を調べた。ところ、前記表2の
結果と同様の結果が得られた。
In the same manner as in Experiment 1, the Sn 4 + amount ratio and Sn in the plating solution
-The corrosion resistance of Co alloy plating was investigated. However, the same results as those in Table 2 were obtained.

(実験4−本発明の実施例2) めっき液中に添加する還元剤を次の各〜とした以外
は実験3と同様の条件でSn-Co合金電気めっきを行い、
同様の方法でめっき液中のSn4 +量の比およびSn-Co合金
めっきの耐食性を調べた。
(Experiment 4-Example 2 of the present invention) Sn-Co alloy electroplating was performed under the same conditions as in Experiment 3 except that the reducing agents added to the plating solution were changed to
By the same method, the ratio of Sn 4 + amount in the plating solution and the corrosion resistance of Sn-Co alloy plating were investigated.

ハイドロキノン (添加量0.2g/l) ピロカテコール (添加量0.2g/l) 上記〜のいずれの還元剤を添加した場合も、前記表
2の結果と同様の結果が得られた。
Hydroquinone (addition amount: 0.2 g / l) Pyrocatechol (addition amount: 0.2 g / l) When any of the above reducing agents (1) to (4) was added, the same results as those in Table 2 were obtained.

<発明の効果> 本発明のSn-Ni合金またはSn-Co合金めっき方法によれ
ば、めっき液中に所定の還元剤を添加することにより、
めっき液中に存在する2価のSnが4価のSnに変化するの
を抑制し、よって安定しためっきを行うことができ、し
かもめっき液の寿命を大幅に延ばすことができるととも
に、得られためっきの耐食性が著しく向上する。
<Effects of the Invention> According to the Sn-Ni alloy or Sn-Co alloy plating method of the present invention, by adding a predetermined reducing agent to the plating solution,
The divalent Sn present in the plating solution was suppressed from changing to tetravalent Sn, so that stable plating could be performed, and further, the life of the plating solution could be significantly extended and obtained. The corrosion resistance of plating is significantly improved.

その結果、めっき液の消費量が節約され、めっきコスト
の低減が図れるとともに、Sn-Ni合金またはSn-Co合金め
っきを施した製品の品質が向上する。
As a result, the consumption of the plating solution is saved, the plating cost can be reduced, and the quality of the product plated with Sn-Ni alloy or Sn-Co alloy is improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Sn-Ni合金またはSn-Co合金めっき浴に、ハ
イドロキノンまたはピロカテコールのうち少なくとも1
種の塩を添加してめっきを行うことを特徴とするSn-Ni
合金またはSn-Co合金めっき方法。
1. At least one of hydroquinone and pyrocatechol in a Sn-Ni alloy or Sn-Co alloy plating bath.
Sn-Ni characterized by adding various kinds of salts for plating
Alloy or Sn-Co alloy plating method.
JP62004456A 1987-01-12 1987-01-12 Sn-Ni alloy or Sn-Co alloy plating method Expired - Fee Related JPH0699831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004456A JPH0699831B2 (en) 1987-01-12 1987-01-12 Sn-Ni alloy or Sn-Co alloy plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004456A JPH0699831B2 (en) 1987-01-12 1987-01-12 Sn-Ni alloy or Sn-Co alloy plating method

Publications (2)

Publication Number Publication Date
JPS63171894A JPS63171894A (en) 1988-07-15
JPH0699831B2 true JPH0699831B2 (en) 1994-12-07

Family

ID=11584651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004456A Expired - Fee Related JPH0699831B2 (en) 1987-01-12 1987-01-12 Sn-Ni alloy or Sn-Co alloy plating method

Country Status (1)

Country Link
JP (1) JPH0699831B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732972B2 (en) * 1991-12-20 1998-03-30 日鉱金属 株式会社 Reflow tin or reflow tin alloy plating bath
JP6016402B2 (en) * 2012-03-27 2016-10-26 株式会社Kanzacc Cage
WO2013175591A1 (en) * 2012-05-23 2013-11-28 株式会社Kanzacc Plating structure and coating method
JP2015142976A (en) * 2014-01-31 2015-08-06 セーレン株式会社 Metal foil laminate, and manufacturing method thereof
CN104562107A (en) * 2014-12-23 2015-04-29 佛山科学技术学院 Highly-corrosion-resistant environment-friendly black tin-cobalt alloy electroplating liquid and electroplating method thereof.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444653A (en) * 1977-09-09 1979-04-09 Idemitsu Kosan Co Ltd 1-n-halogenosulfonyladmantamine and its preparation
JPS572158A (en) * 1980-06-05 1982-01-07 Oki Electric Ind Co Ltd Optical print head

Also Published As

Publication number Publication date
JPS63171894A (en) 1988-07-15

Similar Documents

Publication Publication Date Title
US5039576A (en) Electrodeposited eutectic tin-bismuth alloy on a conductive substrate
DE69808497T2 (en) CYANIDE-FREE, MONOVALENT COPPER ELECTRIC COATING SOLUTION
US3940319A (en) Electrodeposition of bright tin-nickel alloy
US4033835A (en) Tin-nickel plating bath
US6998036B2 (en) Electrolyte and method for depositing tin-silver alloy layers
US5552031A (en) Palladium alloy plating compositions
JPS6254397B2 (en)
KR910004972B1 (en) Manufacturing method of tin-cobalt, tin-nickel, tin-lead binary alloy electroplating bath and electroplating bath manufactured by this method
JPS60169588A (en) Acidic zinc plating bath, acidic zinc alloy plating bath and process
TW573071B (en) Tin-copper alloy composition deposited on substrate and plating method for the same
US5143544A (en) Tin lead plating solution
JPH0699831B2 (en) Sn-Ni alloy or Sn-Co alloy plating method
NL8105601A (en) COMPOSITIONS AND METHODS FOR ELECTROLYTIC DEPOSITION OF PALLADIUM AND PALLADIUM ALLOYS.
US20040007472A1 (en) Lead-free chemical nickel alloy
JPH0158273B2 (en)
JP2000234195A (en) Tin-bismuth alloy plating bath and plating method using the same
US4111760A (en) Method and electrolyte for the electrodeposition of cobalt and cobalt-base alloys in the presence of an insoluble anode
US6726827B2 (en) Electroplating solution for high speed plating of tin-bismuth solder
US3984291A (en) Electrodeposition of tin-lead alloys and compositions therefor
EP0397663A4 (en) A method, bath and cell for the electrodeposition of tin-bismuth alloys
JPS61223194A (en) Electrodeposition bath of gold/tin alloy film
US20070037005A1 (en) Tin-silver electrolyte
JP3462338B2 (en) Brightness adjuster for semi-gloss silver plating
CA1045577A (en) Electrodeposition of bright tin-nickel alloy
JP2732972B2 (en) Reflow tin or reflow tin alloy plating bath

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees