[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0697187B2 - Flame monitoring device using optical fiber - Google Patents

Flame monitoring device using optical fiber

Info

Publication number
JPH0697187B2
JPH0697187B2 JP59251671A JP25167184A JPH0697187B2 JP H0697187 B2 JPH0697187 B2 JP H0697187B2 JP 59251671 A JP59251671 A JP 59251671A JP 25167184 A JP25167184 A JP 25167184A JP H0697187 B2 JPH0697187 B2 JP H0697187B2
Authority
JP
Japan
Prior art keywords
optical fiber
flame
light
diameter
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59251671A
Other languages
Japanese (ja)
Other versions
JPS61130831A (en
Inventor
晃二 山本
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP59251671A priority Critical patent/JPH0697187B2/en
Priority to US06/800,178 priority patent/US4709155A/en
Priority to AU50297/85A priority patent/AU585552B2/en
Publication of JPS61130831A publication Critical patent/JPS61130831A/en
Publication of JPH0697187B2 publication Critical patent/JPH0697187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/14Flame sensors using two or more different types of flame sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/18Flame sensor cooling means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は光フアイバを用いた火炎監視装置に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a flame monitoring device using an optical fiber.

<従来の技術及びその問題点> 事業所の大型ボイラを始めとして、各種の燃焼装置にお
いて、その燃焼状態を正確に検知することは経済性,安
全性の見地からきわめて重要なことである。発電所用大
型ボイラを例に説明すると、ボイラの大容量化に伴うバ
ーナ設置本数の増加、大型ボイラの中間負荷運用化に伴
うバーナ点火,消火回数の増加、窒素酸化物(NOx)を
低減する燃焼方法の実施,さらには燃料の多様化に伴う
燃焼挙動の変化等により、バーナの火炎検出の信頼性の
より一層の向上が望まれている。
<Prior art and its problems> It is extremely important from the viewpoint of economy and safety to accurately detect the combustion state of various combustion devices including large boilers at business establishments. Taking a large boiler for a power plant as an example, the number of burners installed increases with the capacity of the boiler, the number of burner ignitions and the number of extinguishments increases with the intermediate load operation of the large boiler, and combustion that reduces nitrogen oxides (NOx) Due to the implementation of the method and the change in combustion behavior due to the diversification of fuels, further improvement in the reliability of flame detection of burners is desired.

ここで火炎検出器としては火炎の有する熱、光,電気的
性質のいづれかを検出して火炎を検知するものである
が、このうち光を検出して火炎を検知する方法は、単に
火炎の有無を検知するのみでなく、火炎の発する光の周
波数等を分析することにより火炎の性状を分析すること
が基本的には可能であるため形成火炎について多くの情
報を得ることができる。
Here, the flame detector detects the flame by detecting any of the heat, light, and electrical properties of the flame, but the method of detecting the flame by detecting the light is simply the presence or absence of the flame. It is basically possible not only to detect the above, but also to analyze the properties of the flame by analyzing the frequency of the light emitted by the flame, etc., so that a lot of information about the formed flame can be obtained.

従来型の光学的火炎検出器は、筒状体たるヘツドの先端
に対して耐熱性の鏡またはレンズ等を配置し、ヘツドを
介してこれら鏡等に検知された光をボイラ外部に導き、
火炎の有無を検知していた。しかしながらこの方法は、
鏡やレンズを取り付けた角度により視野が一つに限定さ
れ、火炎の一部を検知することはできても、火炎全体の
輝度の分布は検知することはできず、火炎の性状を検知
することは事実上不可能であつた。また、視野の狭さ
は、他の火炎からの光と検知を行うべきバーナの火災の
光との識別を困難にさせ、しばしば検知ミスを起す原因
ともなつている。さらに低NOx燃焼の実施により火炎形
成部近傍には相当量の未燃分が浮遊しており、火炉全体
の透過度が低下しているため、単一視野の従来型装置で
は信頼性が一層低下しているのが実情である。
The conventional optical flame detector has a heat-resistant mirror or lens arranged at the tip of the head, which is a tubular body, and guides the light detected by these mirrors to the outside of the boiler via the head.
The presence or absence of flame was detected. However, this method
The field of view is limited to one by the angle at which the mirror or lens is attached, and although it is possible to detect a part of the flame, it is not possible to detect the brightness distribution of the entire flame, and to detect the nature of the flame. Was virtually impossible. Further, the narrow field of view makes it difficult to distinguish the light from other flames from the light of the fire of the burner to be detected, and often causes a detection error. Furthermore, due to the implementation of low NOx combustion, a considerable amount of unburned matter floats near the flame formation part, which lowers the permeability of the entire furnace, further reducing the reliability of conventional equipment with a single field of view. It is the actual situation.

<本発明の目的> 本発明は上述した問題に鑑み、火炎の検知を正確に行
え、かつ装置の保守を良好に行える火炎監視装置を提供
することにある。
<Object of the present invention> In view of the above-mentioned problems, the present invention provides a flame monitoring device capable of accurately detecting a flame and maintaining the device favorably.

<本発明の概要> 要するにこの発明は、複数本の光フアイバにより火炎の
光を広角度に検知し、この光を所定の機器に対し伝達す
る火炎監視装置において、各光ファイバを中心部分のコ
ア部とその外側のクラツド部よりなる光フアイバとする
とともに、それぞれの光フアイバの受光先端部が火炎に
直面する採光用光フアイバと、該採光用光フアイバに接
続される後続の光フアイバとにより構成し、かつ採光用
光フアイバは火炎に直面する先端が複数方向を指向する
ように設定され、採光用光フアイバの径を後続の光フア
イバの径よりも大きくし、かつ小径の光フアイバの先端
部は、大径の光フアイバの後端部のうちのコア部分に収
まるように構成したことを特徴とする光フアイバを用い
た火炎監視装置である。
<Outline of the Present Invention> In short, the present invention is a flame monitoring apparatus for detecting a wide range of flame light by a plurality of optical fibers and transmitting the light to a predetermined device. And an optical fiber consisting of a cladding part on the outside of the optical fiber. In addition, the lighting fiber is set so that the tip facing the flame is oriented in multiple directions. Is a flame monitoring device using an optical fiber, characterized in that it is configured to fit in the core portion of the rear end of a large diameter optical fiber.

先ず本発明の実施例を説明するのに先立つて本発明を好
適に実施し得る火炎監視装置(本発明者等が別途出願)
の構造につき具体的に説明する。
First, prior to describing the embodiments of the present invention, a flame monitoring device capable of suitably implementing the present invention (the present inventors separately apply)
The structure will be specifically described.

第2図において、符号1は装置本体を構成する外筒、2
は外筒1内の先端部近傍に支持部材3を介して取り付け
た採光ヘツドである。この採光ヘツド2の先端部には先
端開口部2aに向つて異る角度で3本の溝が形成してあ
り、各々の溝に対して3本の採光用光フアイバ(4a,4b,
4cとして各々を示す)が収納配置してあり、各々が線5
a,5b,5cを中心として一定の視野を有するよう配置して
ある。
In FIG. 2, reference numeral 1 is an outer cylinder constituting the main body of the apparatus, 2
Is a daylighting head mounted in the outer cylinder 1 in the vicinity of the tip through a support member 3. At the tip of the daylighting head 2, three grooves are formed at different angles toward the tip opening 2a, and three daylighting fibers (4a, 4b,
4c), each shown as 4c), and each line 5
It is arranged so as to have a constant visual field centering on a, 5b, and 5c.

次に符号6は外筒1内に一定の空間を介して配置した内
筒、7は内筒6内に配置したコネクタであり前記3本の
採光用光フアイバ4はこのコネクタ7を経て外筒1の基
部に取り付けたウインドボツクス8を経て外部に取り出
される。またウインドボツクス8からは冷却用空気Aが
本体1側に供給され、光フアイバの冷却が行える。
Next, reference numeral 6 is an inner cylinder arranged in the outer cylinder 1 through a certain space, 7 is a connector arranged in the inner cylinder 6, and the three light-collecting optical fibers 4 are connected to the outer cylinder via the connector 7. It is taken out through the wind box 8 attached to the base of No. 1. Further, the cooling air A is supplied from the window box 8 to the main body 1 side to cool the optical fiber.

<実施例> 以下本発明の実施例につき具体的に説明する。<Examples> Examples of the present invention will be specifically described below.

第1図において、符号10は採光ヘツドに取り付ける採光
用光フアイバ(第1図で符号4a,4b,4cとして示すものに
対応)であり、全ての光フアイバのうち最も外径が大き
く、例えばコア10aの周囲に形成したクラツド10bの外径
は約800μmとする。次に符号11は監視装置本体を構成
する外筒1(第1図参照)内に収納した中継用光フアイ
バであり採光用光フアイバ10に比較して外径は小さく、
例えばクラツド11bの外径は約500μmとする。ここで採
光用光フアイバの径を大きく取つてあるのは、採光すべ
き光の量を多くすることの外に、後続する小なるコアを
もつ中継用光フアイバ11との接続を容易に行え、これに
より中継用光フアイバは、振動、伝熱の影響があつて
も、採光用光フアイバ10の接続側端面内に中継用光フア
イバ11の接続する端面が位置し、採光用光フアイバに入
つた光は全量ではなくその接続部端面面積比による一定
の割合で中継用光ファイバに伝えられ、この光信号によ
る火炎監視処理を正しいものにし、誤作動を生ずること
はない。つまり、これら光フアイバは装置の出し入れ、
熱による応力等により損傷する虞れがあるため、分割
し、各光フアイバの端部を接続し、損傷が生じた場合、
光フアイバの接続部を分離して損傷の生じた光フアイバ
のみを交換し得るように構成している。この場合、交換
作業は必ずしも作業環境が良好な場所で行れるとは限ら
ず、光フアイバの径を相違させておけば小径の光フアイ
バの端部は大径の光フアイバの端部のうちコアの部分許
容範囲であれば、たとえ芯がずれても両光フアイバ端部
同士の接触面積は常に一定であり、光の伝達量は減るが
後続する光フアイバは常に該光フアイバの接続端面全て
(面積一定)を介して伝達されるため信号として信頼性
の高いものとなるので、両者の厳密な芯合せは不用とな
り接続作業は簡略化することができる。なお、中継用光
フアイバ11の外周部には四フツ化エチレン(PTFE)等の
保護層11cを形成してもよい。ちなみに採光用光フアイ
バ10は火炎からの熱放射を相当量受けるので、耐熱性の
あまり高くない保護層は形成しないのが望ましい。図示
の場合も保護層を有しない構造としている。
In FIG. 1, reference numeral 10 is a light-collecting optical fiber (corresponding to those shown as reference numerals 4a, 4b, 4c in FIG. 1) attached to the light-collecting head, and has the largest outer diameter of all the optical fibers, for example, the core. The outer diameter of the cladding 10b formed around 10a is about 800 μm. Next, reference numeral 11 is a relay optical fiber housed in an outer cylinder 1 (see FIG. 1) that constitutes the main body of the monitoring device, and has an outer diameter smaller than that of the daylighting optical fiber 10,
For example, the outer diameter of the cladding 11b is about 500 μm. Here, the diameter of the light-collecting optical fiber is set to be large, in addition to increasing the amount of light to be collected, it is possible to easily connect to the relay optical fiber 11 having a small core that follows, As a result, even if the relay optical fiber is affected by vibration and heat transfer, the end face to which the relay optical fiber 11 is connected is located within the connection side end face of the daylighting optical fiber 10 and enters the daylighting optical fiber. The light is transmitted not to the total amount but to the relay optical fiber at a constant rate depending on the area ratio of the end face of the connection portion, corrects the flame monitoring process by this optical signal, and does not cause malfunction. In other words, these optical fibers are in and out of the device,
Since there is a risk of damage due to heat stress, etc., divide it and connect the end of each fiber, and if damage occurs,
The connection portion of the optical fiber is separated so that only the damaged optical fiber can be replaced. In this case, the replacement work is not always performed in a place where the working environment is good, and if the diameters of the optical fibers are different, the end of the small-diameter optical fiber is the core of the end of the large-diameter optical fiber. Even if the cores are displaced, the contact area between the end portions of both optical fibers is always constant, and the amount of transmitted light is reduced, but the succeeding optical fiber always has the entire connection end surface of the optical fiber ( Since the signal is transmitted via a constant area), the signal becomes highly reliable, so strict centering of both is unnecessary, and the connection work can be simplified. A protective layer 11c made of ethylene tetrafluoride (PTFE) or the like may be formed on the outer peripheral portion of the relay optical fiber 11. Incidentally, since the light-collecting optical fiber 10 receives a considerable amount of heat radiation from the flame, it is desirable not to form a protective layer having not so high heat resistance. Also in the illustrated case, the structure does not have a protective layer.

次に符号12は中継用光フアイバ11と後続する光フアイバ
であり、前述と同様の理由により中継用光フアイバより
もさらに小径(最小径)のフアイバとする。12aはこの
光フアイバの周囲に形成したナイロン等の合成樹脂から
成る保護層である。
Next, reference numeral 12 is an optical fiber following the optical fiber 11 for relay, which is smaller in diameter (minimum diameter) than the optical fiber for relay for the same reason as described above. 12a is a protective layer made of synthetic resin such as nylon formed around the optical fiber.

このようにして径が大、中、小と変化する光ファイバを
接続して単位の光フアイバを形成する。
In this way, the optical fibers whose diameters change from large to medium and small are connected to form a unit optical fiber.

なおこの光フアイバには通常複数本(第1図の装置の場
合は3本)を一つにまとめてケーブルとして構成され、
強度を高めるよう構成してある。
It should be noted that this optical fiber is usually composed of a plurality of cables (three in the case of the device of FIG. 1) and is configured as a cable.
It is configured to increase strength.

<効果> 本発明を実施することにより、光フアイバの一部に損傷
が生じても、損傷の生じた光フアイバのみを交換するこ
とができ経済的であり、かつ各フアイバの径を相違させ
てあるので接続を容易にでき、光信号により、バーナ火
炎の点火、燃焼、失火を正確に把握でき、かつこの光信
号の好適な伝達により火炎監視の信頼性は高くなるとい
う効果を奏するものである。
<Effects> By implementing the present invention, even if a part of the optical fiber is damaged, only the damaged optical fiber can be replaced, which is economical, and the diameter of each fiber is different. Therefore, the connection can be facilitated, the ignition, the combustion, and the misfire of the burner flame can be accurately grasped by the optical signal, and the suitable transmission of the optical signal has the effect of increasing the reliability of the flame monitoring. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す光フアイバの縦断面
図、第2図は火炎監視装置の縦断面図である。 10……採光用光フアイバ 11……中継用光フアイバ 12……最小径光フアイバ
FIG. 1 is a vertical sectional view of an optical fiber showing an embodiment of the present invention, and FIG. 2 is a vertical sectional view of a flame monitoring device. 10 …… Optical fiber for lighting 11 …… Optical fiber for relay 12 …… Optical fiber for minimum diameter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数本の光フアイバにより火炎の光を広角
度に検知し、この光を所定の機器に対し伝達する火炎監
視装置において、各光ファイバを中心部分のコア部とそ
の外側のクラツド部よりなる光フアイバとするととも
に、それぞれの光ファイバの受光先端部が火炎に直面す
る採光用光フアイバと、該採光用光フアイバに接続され
る後続の光フアイバとにより構成し、かつ採光用光フア
イバは火炎に直面する先端が複数方向を指向するように
設定され、採光用光フアイバの径を後続の光フアイバの
径よりも大きくし、かつ小径の光フアイバの先端部は、
大径の光フアイバの後端部のうちのコア部分に収まるよ
うに構成したことを特徴とする光フアイバを用いた火炎
監視装置。
1. A flame monitoring device for detecting flame light at a wide angle by a plurality of optical fibers and transmitting the light to a predetermined device, wherein each optical fiber has a central core portion and a cladding outside the core portion. And a light-collecting optical fiber whose light-receiving tip of each optical fiber faces a flame, and a subsequent optical fiber connected to the light-collecting optical fiber. The fiber is set so that the tip facing the flame is directed in multiple directions, the diameter of the light-collecting optical fiber is made larger than the diameter of the following optical fiber, and the tip of the small-diameter optical fiber is
A flame monitoring device using an optical fiber, characterized in that it is configured so that it can be fitted into the core portion of the rear end of a large-diameter optical fiber.
JP59251671A 1984-11-22 1984-11-30 Flame monitoring device using optical fiber Expired - Lifetime JPH0697187B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59251671A JPH0697187B2 (en) 1984-11-30 1984-11-30 Flame monitoring device using optical fiber
US06/800,178 US4709155A (en) 1984-11-22 1985-11-20 Flame detector for use with a burner
AU50297/85A AU585552B2 (en) 1984-11-22 1985-11-22 Flame detector for use with a burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251671A JPH0697187B2 (en) 1984-11-30 1984-11-30 Flame monitoring device using optical fiber

Publications (2)

Publication Number Publication Date
JPS61130831A JPS61130831A (en) 1986-06-18
JPH0697187B2 true JPH0697187B2 (en) 1994-11-30

Family

ID=17226285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251671A Expired - Lifetime JPH0697187B2 (en) 1984-11-22 1984-11-30 Flame monitoring device using optical fiber

Country Status (1)

Country Link
JP (1) JPH0697187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169835A (en) * 2007-01-12 2008-07-24 Rosemount Aerospace Inc Combustion condition monitoring device for gas turbine engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708761B2 (en) * 1987-11-05 1998-02-04 バブコツク日立株式会社 Flame monitoring device
JP2014055851A (en) * 2012-09-12 2014-03-27 Babcock-Hitachi Co Ltd Flame detector, and burner ignition torch equipped with the same
JP6879879B2 (en) * 2017-10-10 2021-06-02 株式会社フジクラ Photodetector and laser device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547428A (en) * 1978-10-02 1980-04-03 Nissan Motor Co Ltd Observing device for combustion chamber of internal combustion engine
US4422321A (en) * 1980-11-11 1983-12-27 Robert Bosch Gmbh Combustion process sensor construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169835A (en) * 2007-01-12 2008-07-24 Rosemount Aerospace Inc Combustion condition monitoring device for gas turbine engine

Also Published As

Publication number Publication date
JPS61130831A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
US4709155A (en) Flame detector for use with a burner
US5828797A (en) Fiber optic linked flame sensor
EP1446647A1 (en) Optical fibre means
US5120975A (en) Gas turbine flame detection system with reflected flame radiation attenuator
JPH0697187B2 (en) Flame monitoring device using optical fiber
US4712096A (en) Condition responsive detection system and method
JPH0542603B2 (en)
JPS62276420A (en) Flame detector
CN216557203U (en) Double-probe flame detection system
JPS59109715A (en) Flame detecting device
JPS61141411A (en) Compound optical fiber cable
JP2014055851A (en) Flame detector, and burner ignition torch equipped with the same
JPH0548848B2 (en)
CN219831459U (en) Fire detection optical fiber
JPS6339559Y2 (en)
JPH03136195A (en) Fire detection system
JPS61240026A (en) Multiple visual field type flame detector
JPS61124828A (en) Flame monitor apparatus
JP5837459B2 (en) In-cylinder detection device for internal combustion engine
CN201672972U (en) Infrared temperature measurement member for high-frequency induction welded steel pipe production line
JPH11118145A (en) Burner flame detector
JP2006058165A (en) Flame detector
JPH0629666B2 (en) Flame detector
JPH0627578B2 (en) Flame detector
JPS5952968B2 (en) flame detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term