[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0696801A - Thin non-aqueous electrolyte battery - Google Patents

Thin non-aqueous electrolyte battery

Info

Publication number
JPH0696801A
JPH0696801A JP4242923A JP24292392A JPH0696801A JP H0696801 A JPH0696801 A JP H0696801A JP 4242923 A JP4242923 A JP 4242923A JP 24292392 A JP24292392 A JP 24292392A JP H0696801 A JPH0696801 A JP H0696801A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
battery
separator
plates
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4242923A
Other languages
Japanese (ja)
Other versions
JP3166332B2 (en
Inventor
Hiroshi Fukuda
浩 福田
Rikio Iida
力夫 飯田
Takafumi Fujii
隆文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24292392A priority Critical patent/JP3166332B2/en
Publication of JPH0696801A publication Critical patent/JPH0696801A/en
Application granted granted Critical
Publication of JP3166332B2 publication Critical patent/JP3166332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a battery having good high load characteristic by winding sheet-shaped positive plate and negative plate around a flat board acting as a core through a separator so as to construct a group of plates. CONSTITUTION:A separator 3 is used after cutting a porous film made of polypropylene, etc., so as to have the width wider than those of a positive plate 1 and a negative plate 2. The plates 1, 2 and the separator 3 are wound around a flat board acting as a core 7 and end of the separator 3, is fixed by an adhesive tape, thereafter the core 7 is pulled out to construct a group of pates having a elliptical cross section. The group of plates are inserted into a battery case 6, lead plates 4 and 5 of the positive and negative poles are spot-welded to the terminal of a sealing plate and no-aqueous electrolyte is poured into the case. Thus, a thin non-aqueous electrolyte battery having excellent high load characteristic and a thin non-aqueous electrolyte secondary battery having a quick charge characteristic are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高負荷特性の求められ
る薄型非水電解液電池に関し、特に極板群構成の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin non-aqueous electrolyte battery which is required to have high load characteristics, and more particularly to an improvement in electrode plate group structure.

【0002】近年、携帯電話、カムコーダ等のコードレ
ス情報・通信機器の目覚ましいポータブル化、インテリ
ジェンス化に伴い、その駆動用電源として、小形軽量
で、高エネルギー密度の電池が求められており、なかで
も、非水電解液電池、特にリチウム二次電池は次世代電
池の主力として大いに期待され、その潜在的な市場規模
も非常に大きい。また、その形状としては機器の薄型
化、スペースの有効利用の観点から薄型の密閉電池に要
望が集まりつつある。
In recent years, with the remarkable portable and intelligent use of cordless information / communication devices such as mobile phones and camcorders, a small, lightweight, high energy density battery has been required as a power source for driving them. Non-aqueous electrolyte batteries, especially lithium secondary batteries, are highly expected as the mainstay of next-generation batteries, and their potential market size is also very large. Further, as for its shape, there is an increasing demand for a thin sealed battery from the viewpoint of making the device thinner and effectively utilizing the space.

【0003】[0003]

【従来の技術】薄型の密閉電池としては、これまでニッ
ケル・カドミウム蓄電池や鉛蓄電池、最近ではニッケル
・水素蓄電池が開発され実用化されている。これらの電
池系では高濃度のアルカリや酸の水溶液が電解液として
用いられており、極板群は短冊状の極板をセパレータを
介し正負極交互に重ね合わせて構成されている。
2. Description of the Related Art As thin sealed batteries, nickel-cadmium storage batteries and lead storage batteries, and recently nickel-hydrogen storage batteries have been developed and put into practical use. In these battery systems, a high-concentration aqueous solution of alkali or acid is used as an electrolytic solution, and the electrode plate group is configured by stacking strip-shaped electrode plates alternately with positive and negative electrodes via separators.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、リチウ
ム電池に代表されるような有機電解液を主成分とする非
水電解液を利用した電池では電解液の電導度が低いた
め、上記電池系と同程度の厚さを有した極板により極板
群を構成すると十分な高負荷特性が得らず、また、二次
電池の場合、急速充電できないという課題がある。
However, a battery using a non-aqueous electrolytic solution containing an organic electrolytic solution as a main component, such as a lithium battery, has a low electric conductivity of the electrolytic solution, and therefore has the same structure as the above battery system. If the electrode plate group is made up of electrode plates having a certain thickness, sufficient high load characteristics cannot be obtained, and in the case of a secondary battery, there is a problem that rapid charging cannot be performed.

【0005】これらの課題を解決するために極板を薄く
して枚数を増やし有効反応面積を大きくして電流密度を
下げることが考えられるが、多枚数のシート状極板は取
扱い難く、極板群の構成が極めて困難である。
In order to solve these problems, it is conceivable that the electrode plates are thinned to increase the number of sheets and increase the effective reaction area to reduce the current density, but it is difficult to handle a large number of sheet-like electrode plates. Group composition is extremely difficult.

【0006】本発明は上記従来の方法による課題を解決
するもので、高負荷特性に優れた薄型非水電解液電池、
急速充電特性に優れた薄型非水電解液二次電池を提供す
ることを目的とするものである。
The present invention solves the problems of the conventional methods described above, and is a thin non-aqueous electrolyte battery excellent in high load characteristics,
An object of the present invention is to provide a thin non-aqueous electrolyte secondary battery having excellent quick charging characteristics.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の薄型非水電解液電池は、シート状の正極、負
極をセパレータを介して、平板を巻芯として巻回するこ
とにより極板群を構成したものである。
In order to achieve this object, the thin non-aqueous electrolyte battery of the present invention comprises a positive electrode and a negative electrode in sheet form, with a separator interposed therebetween, and a flat plate wound as a core. This is a group of plates.

【0008】[0008]

【作用】このような極板群構成方法により、高負荷特性
に優れた薄型非水電解液電池、急速充電特性に優れた薄
型非水電解液二次電池を得ることができる。
By such a method of constructing the electrode plate group, it is possible to obtain a thin non-aqueous electrolyte battery excellent in high load characteristics and a thin non-aqueous electrolyte secondary battery excellent in rapid charging characteristics.

【0009】[0009]

【実施例】以下、本発明の一実施例について、図を参照
しながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1に本発明の薄型リチウム二次電池の横
断面図を示す。図中1は正極板であって、炭酸リチウム
(LiCO3 )と四酸化三コバルト(Co3 4 )を混
合して空気中において900℃で焼成したコバルト酸リ
チウム(LiCoO2 )を活物質とし、これに導電剤と
してアセチレンブラックを3重量%混合した後、結着剤
としてポリ四フッ化エチレン樹脂の水性ディスパージョ
ンを7重量%練合しペースト状とした合剤を、アルミニ
ウム箔からなる芯材の両面に塗着、乾燥し、圧延したも
のである。またその合剤の一部を剥離し、正極リード板
4をスポット溶接している。この正極板1の寸法は、幅
34mm、長さ95mm、厚さは0.170mmであ
る。
FIG. 1 shows a cross-sectional view of the thin lithium secondary battery of the present invention. In the figure, reference numeral 1 denotes a positive electrode plate, which has lithium cobalt oxide (LiCoO 2 ) obtained by mixing lithium carbonate (LiCO 3 ) and tricobalt tetroxide (Co 3 O 4 ) and firing the mixture in air at 900 ° C. After mixing 3% by weight of acetylene black as a conductive agent with this, and kneading 7% by weight of an aqueous dispersion of a polytetrafluoroethylene resin as a binder into a paste-like mixture, a core made of aluminum foil was used. The material is applied on both sides, dried, and rolled. Further, a part of the mixture is peeled off, and the positive electrode lead plate 4 is spot-welded. The positive electrode plate 1 has a width of 34 mm, a length of 95 mm and a thickness of 0.170 mm.

【0011】また負極板2は、メソフェーズピッチをア
ルゴン雰囲気下において2800℃で熱処理した球状黒
鉛を活物質とし、結着剤としてポリ四フッ化エチレン樹
脂の水性ディスパージョンを5重量%練合しペースト状
とした合剤を、銅箔からなる芯材の両面に塗着、乾燥
し、圧延したものである。またその端部に負極リード板
5をスポット溶接している。この負極板2の寸法は、幅
36mm、長さ132mm、厚さは0.205mmであ
る。
The negative electrode plate 2 is made of spherical graphite obtained by heat-treating mesophase pitch at 2800 ° C. in an argon atmosphere as an active material, and an aqueous dispersion of polytetrafluoroethylene resin as a binder is kneaded in an amount of 5% by weight. The mixture is applied to both sides of a core material made of copper foil, dried, and rolled. Further, the negative electrode lead plate 5 is spot-welded to the end portion thereof. The negative electrode plate 2 has a width of 36 mm, a length of 132 mm and a thickness of 0.205 mm.

【0012】ここで、物性、構造の異なる種々の炭素材
について予備検討を進めたところ、粉末X線回折法によ
る格子面間隔(d002 )が0.342nm以下の炭素材
が高容量であり、可逆性にも優れることがわかった。ち
なみに、メソフェーズピッチをアルゴン雰囲気下におい
て2800℃で熱処理した球状黒鉛は、粉末X線回折法
による格子面間隔(d002 )が0.342nm以下であ
る。
[0012] Here, as a result of preliminary examination of various carbon materials having different physical properties and structures, carbon materials having a lattice spacing (d 002 ) of 0.342 nm or less by the powder X-ray diffraction method have a high capacity, It was also found to be excellent in reversibility. By the way, the spherical graphite obtained by heat-treating mesophase pitch at 2800 ° C. in an argon atmosphere has a lattice spacing (d 002 ) according to a powder X-ray diffraction method of 0.342 nm or less.

【0013】セパレータ3はポリプロピレンからなる多
孔性フィルムを、正極板1および負極板2よりも幅広く
裁断して用いた。
As the separator 3, a porous film made of polypropylene was used after being cut wider than the positive electrode plate 1 and the negative electrode plate 2.

【0014】これらの正負極板1,2とセパレータ3を
図2に示したように平板を巻芯7として巻回し、セパレ
ータ3の終端をポリプロピレン製の粘着テープで固定し
た後、この平板巻芯7を抜き取り、横断面形状が長円形
の極板群を構成した。
The positive and negative electrode plates 1 and 2 and the separator 3 are wound with a flat plate as a winding core 7 as shown in FIG. 2, and the end of the separator 3 is fixed with an adhesive tape made of polypropylene. 7 was removed to form an electrode plate group having an oval cross section.

【0015】次に、図示していないが、下部絶縁板を電
池ケース6に挿入した後、前記極板群を収容し、さらに
上部絶縁リングを挿入した。電池ケース6の上部に溝入
れした後、正負極のリード板4,5はそれぞれ、封口板
に設けられた互いに絶縁された端子にスポット溶接し、
非水電解液を注入した。非水電解液は、エチレンカーボ
ネート(EC)およびジエチレンカーボネート(DE
C)を体積比で1:1に混合し、六フッ化リン酸リチウ
ム(LiPF6 )を1モル/リットル溶解させたものを
用いた。然る後、封口して電池を構成した。この電池の
寸法は、厚み6mm、幅17mm、高さ48mmであ
る。
Next, although not shown, after inserting the lower insulating plate into the battery case 6, the electrode group was housed and the upper insulating ring was further inserted. After grooving in the upper part of the battery case 6, the positive and negative lead plates 4 and 5 are spot-welded to mutually insulated terminals provided on the sealing plate,
A non-aqueous electrolyte was injected. Non-aqueous electrolytes are ethylene carbonate (EC) and diethylene carbonate (DE
C) was mixed at a volume ratio of 1: 1 and lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / liter. After that, the battery was constructed by sealing. The size of this battery is 6 mm in thickness, 17 mm in width, and 48 mm in height.

【0016】以上のようにして構成した薄型密閉式のリ
チウム二次電池の充放電レート特性を評価した。また比
較例として正極、負極とも上記実施例と同一組成の合剤
を、正極はアルミニウムのエキスパンドメタル、負極は
銅のエキスパンドメタルを芯材としてそれぞれの両面に
塗着、乾燥、圧延し、短冊状に裁断した後、一部を合剤
剥離してリード板をスッポット溶接した極板を用い、正
極4枚、負極5枚を重ね合わせることによって極板群を
構成した電池を同時に構成し、評価した。比較例では取
り扱いの関係上、正極厚みは0.40mm、負極厚みは
0.50mmとなっている。この比較例の横断面図を図
3に示す。
The charge / discharge rate characteristics of the thin sealed lithium secondary battery constructed as described above were evaluated. As a comparative example, a positive electrode and a negative electrode were coated with a mixture having the same composition as that of the above-mentioned example, the positive electrode was made of aluminum expanded metal, and the negative electrode was made of copper expanded metal as a core material, which was applied on both sides, dried, and rolled into strips. After cutting into pieces, a part of the mixture was peeled off and a lead plate was spot-welded to form an electrode plate. By stacking 4 positive electrodes and 5 negative electrodes, an electrode group was simultaneously constructed and evaluated. . In the comparative example, the positive electrode thickness is 0.40 mm and the negative electrode thickness is 0.50 mm for handling. A cross-sectional view of this comparative example is shown in FIG.

【0017】図4に20℃における放電容量のレート特
性を示す(充電は20℃、定電流0.1CmAで実施
終始電圧は2.5V)。図4より明らかなように低負荷
の放電では実施例よりも比較例のほうがやや活物質の充
填量が多いため、放電容量が大きいが70mA以上のレ
ートでの放電では逆転し、駆動用の電源としては実施例
のほうがはるかに優れている。
FIG. 4 shows rate characteristics of discharge capacity at 20 ° C. (charging was carried out at 20 ° C. and constant current of 0.1 CmA).
Voltage is 2.5V from beginning to end). As is clear from FIG. 4, the discharge capacity of the comparative example is slightly larger than that of the example in the low load discharge, so that the discharge capacity is larger, but the discharge is reversed at the discharge rate of 70 mA or more, and the driving power source is used. As a result, the embodiment is far superior.

【0018】一方図5に20℃における充電容量のレー
ト特性を示す(終始電圧は4.1V)。図5より明らか
なように充電においても低レートの充電では実施例より
も比較例のほうがやや活物質の充填量が多いため、充電
量が大きいが、0.2CmA以上のレートでの充電では
逆転し、最近急速充電モードとしてよく採用されている
1CmAの充電では実施例のほうがはるかに優れてい
る。
On the other hand, FIG. 5 shows the rate characteristic of the charge capacity at 20 ° C. (the initial voltage is 4.1 V). As is clear from FIG. 5, even in the case of charging at a low rate, the charging amount of the comparative example is larger than that of the example, so that the charging amount is larger, but the reversal occurs at the charging rate of 0.2 CmA or more. However, the embodiment is far superior to the charging of 1 CmA which has been often adopted as the rapid charging mode recently.

【0019】これらの結果は両者の極板面積の違いによ
るものと考えられる。すなわち実施例はその極板面積が
比較例の約2倍となっており、同じ電流で充放電しても
その電流密度は半分であるため、充放電が充分可能であ
るものと考えられる。
It is considered that these results are due to the difference in the area of the two electrode plates. That is, the area of the electrode plate of the example is about twice as large as that of the comparative example, and the current density is half even when charging and discharging with the same current, so it is considered that charging and discharging is sufficiently possible.

【0020】以上のようにシート状の正極、負極をセパ
レータを介して、平板を巻芯として巻回することにより
極板群を構成する構造を採用すれば、高負荷特性に優れ
た薄型非水電解液電池、急速充電特性に優れた薄型非水
電解液二次電池を得ることができる。
By adopting the structure in which the electrode plate group is constructed by winding the sheet-like positive electrode and negative electrode with the separator interposed between the flat plates as the core as described above, a thin non-aqueous solution excellent in high load characteristics is adopted. It is possible to obtain an electrolytic solution battery and a thin non-aqueous electrolytic solution secondary battery having excellent rapid charging characteristics.

【0021】なお実施例ではリチウムイオンのインター
カレーション/デインターカレーションを利用したリチ
ウム二次電池について説明したが、ナトリウム、カルシ
ウム等、他のアルカリ金属、アルカリ土類金属のイオン
を利用した非水電解液二次電池、リチウム、ナトリウ
ム、カルシウム等のアルカリ金属、アルカリ土類金属を
負極とする非水電解液二次電、一次電池でも有効であ
る。
In the embodiment, the lithium secondary battery using the intercalation / deintercalation of lithium ions was described, but the non- lithium secondary battery using ions of other alkali metals such as sodium and calcium and alkaline earth metals is used. It is also effective in a water electrolyte secondary battery, a non-aqueous electrolyte secondary battery having a negative electrode of an alkali metal such as lithium, sodium and calcium, or an alkaline earth metal, and a primary battery.

【0022】[0022]

【発明の効果】以上のように本発明によれば、シート状
の正極、負極をセパレータを介して、平板を巻芯として
巻回することによって極板群を構成することにより、高
負荷性に優れた薄型非水電解液電池、急速充電特性に優
れた薄型非水電解液二次電池を得ることができる。
As described above, according to the present invention, by constructing an electrode plate group by winding a sheet-like positive electrode and a negative electrode with a separator as a core and winding a flat plate as a core, high load performance can be achieved. It is possible to obtain an excellent thin non-aqueous electrolyte battery and a thin non-aqueous electrolyte secondary battery having excellent rapid charging characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の薄型非水電解液電池の構成を示
す横断面図 (b)同上の極板群拡大図
FIG. 1 (a) is a cross-sectional view showing the configuration of a thin non-aqueous electrolyte battery of the present invention (b) an enlarged view of an electrode group as above.

【図2】本発明の薄型非水電解液電池に収容する極板群
の構成方法を示す概略図
FIG. 2 is a schematic view showing a method of constructing an electrode plate group to be housed in the thin non-aqueous electrolyte battery of the present invention.

【図3】(a)従来技術による比較例の薄型非水電解液
電池の構成を示す横断面図 (b)同上の極板群拡大図
FIG. 3 (a) is a cross-sectional view showing the configuration of a thin non-aqueous electrolyte battery of a comparative example according to the prior art.

【図4】本発明の実施例と比較例の放電レート特性を示
す図
FIG. 4 is a diagram showing discharge rate characteristics of an example of the present invention and a comparative example.

【図5】本発明の実施例と比較例の充電レート特性を示
す図
FIG. 5 is a diagram showing charge rate characteristics of an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 正極リード板 5 負極リード板 6 電池ケース 7 平板巻芯 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode lead plate 5 Negative electrode lead plate 6 Battery case 7 Flat core

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シート状の正極、負極をセパレータを介
して、平板を巻芯として巻回することにより構成した極
板群を収容したことを特徴とする薄型非水電解液電池。
1. A thin non-aqueous electrolyte battery, characterized in that a positive electrode group and a negative electrode in the form of a sheet are housed in an electrode plate group formed by winding a flat plate around a core with a separator interposed therebetween.
JP24292392A 1992-09-11 1992-09-11 Thin non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Lifetime JP3166332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24292392A JP3166332B2 (en) 1992-09-11 1992-09-11 Thin non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24292392A JP3166332B2 (en) 1992-09-11 1992-09-11 Thin non-aqueous electrolyte secondary battery and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000335503A Division JP3775981B2 (en) 2000-11-02 2000-11-02 Thin non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0696801A true JPH0696801A (en) 1994-04-08
JP3166332B2 JP3166332B2 (en) 2001-05-14

Family

ID=17096224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24292392A Expired - Lifetime JP3166332B2 (en) 1992-09-11 1992-09-11 Thin non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3166332B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655793A2 (en) * 1993-11-19 1995-05-31 Medtronic, Inc. High-reliability electrochemical cell and electrode assembly therefor
JP2001057242A (en) * 1999-08-17 2001-02-27 Sony Corp Winding device and winding method
US6534952B1 (en) 1999-11-08 2003-03-18 Matsushita Electric Industrial Co., Ltd. Spiral electrode group winding method and device and battery using them
WO2008018207A1 (en) * 2006-08-10 2008-02-14 Mitsui Mining & Smelting Co., Ltd. Nonaqueous electrolyte secondary battery
US7501201B2 (en) 2002-03-13 2009-03-10 Panasonic Corporation Battery and method for manufacturing spiral electrode group for use therein
JP2012190542A (en) * 2011-02-21 2012-10-04 Denso Corp Wound-around battery and method and device for manufacturing the same
CN105977507A (en) * 2016-05-23 2016-09-28 天津力神电池股份有限公司 Cylindrical primary lithium battery and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655793A2 (en) * 1993-11-19 1995-05-31 Medtronic, Inc. High-reliability electrochemical cell and electrode assembly therefor
EP0655793A3 (en) * 1993-11-19 1997-03-12 Medtronic Inc High-reliability electrochemical cell and electrode assembly therefor.
JP2001057242A (en) * 1999-08-17 2001-02-27 Sony Corp Winding device and winding method
US6534952B1 (en) 1999-11-08 2003-03-18 Matsushita Electric Industrial Co., Ltd. Spiral electrode group winding method and device and battery using them
US7501201B2 (en) 2002-03-13 2009-03-10 Panasonic Corporation Battery and method for manufacturing spiral electrode group for use therein
WO2008018207A1 (en) * 2006-08-10 2008-02-14 Mitsui Mining & Smelting Co., Ltd. Nonaqueous electrolyte secondary battery
JP2012190542A (en) * 2011-02-21 2012-10-04 Denso Corp Wound-around battery and method and device for manufacturing the same
CN105977507A (en) * 2016-05-23 2016-09-28 天津力神电池股份有限公司 Cylindrical primary lithium battery and preparation method thereof

Also Published As

Publication number Publication date
JP3166332B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
JP2003331825A (en) Nonaqueous secondary battery
JP2001236946A (en) Pole plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JPH10241699A (en) Battery
JPH11283667A (en) Lithium ion battery
JP2001222995A (en) Lithium ion secondary battery
JP3166332B2 (en) Thin non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH1154120A (en) Lithium ion secondary battery
JP2000331686A (en) Nonaqueous electrolyte secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2002203551A (en) Non-aqueous electrolyte battery
JPH113698A (en) Lithium ion secondary battery
JP3139174B2 (en) Manufacturing method of thin non-aqueous electrolyte battery
JPH1154122A (en) Lithium ion secondary battery
JPH0696802A (en) Thin non-aqueous electrolyte battery
JP2001015168A (en) Lithium secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP3775981B2 (en) Thin non-aqueous electrolyte battery
JP3928167B2 (en) Method for manufacturing electrode plate for lithium secondary battery
JP2003086241A (en) Lithium secondary battery
JPH08236157A (en) Thin type nonaqueous electrolyte battery and its manufacture
JP2559559Y2 (en) Thin non-aqueous electrolyte battery
JPH10116628A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12