[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0690088B2 - Color sensor circuit - Google Patents

Color sensor circuit

Info

Publication number
JPH0690088B2
JPH0690088B2 JP63248517A JP24851788A JPH0690088B2 JP H0690088 B2 JPH0690088 B2 JP H0690088B2 JP 63248517 A JP63248517 A JP 63248517A JP 24851788 A JP24851788 A JP 24851788A JP H0690088 B2 JPH0690088 B2 JP H0690088B2
Authority
JP
Japan
Prior art keywords
monitor
color
light source
output
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63248517A
Other languages
Japanese (ja)
Other versions
JPH0295222A (en
Inventor
靖男 木暮
Original Assignee
ホーヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホーヤ株式会社 filed Critical ホーヤ株式会社
Priority to JP63248517A priority Critical patent/JPH0690088B2/en
Publication of JPH0295222A publication Critical patent/JPH0295222A/en
Publication of JPH0690088B2 publication Critical patent/JPH0690088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J2003/466Coded colour; Recognition of predetermined colour; Determining proximity to predetermined colour

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は物体の色を判断するためのカラーセンサ回路に
係り、特に測色器や色識別回路に適用されるものに関す
る。
Description: TECHNICAL FIELD The present invention relates to a color sensor circuit for determining the color of an object, and more particularly to a color sensor circuit applied to a colorimeter or a color identification circuit.

[従来の技術] 第2図は、従来のカラーセンサ回路を用いた色識別回路
の基本構成例である。これを説明すると、ハロゲンラン
プやキセノンランプ等の白色光源1から出射した光を、
終端が3分岐されたモニタ用ライトガイド3と、照明用
ライトガイド2とに導いて光を二つに分ける。照明用ラ
イトガイド2に導かれた光は物体9に当てられ、その反
射光又は透過光(以下、単に反射光という)が終端を3
分岐した案内用ライトガイド4に導かれる。
[Prior Art] FIG. 2 is a basic configuration example of a color identification circuit using a conventional color sensor circuit. Explaining this, the light emitted from the white light source 1 such as a halogen lamp or a xenon lamp is
The light is guided to a monitor light guide 3 whose end is branched into three and an illumination light guide 2 to split the light into two. The light guided to the illumination light guide 2 is applied to the object 9, and its reflected light or transmitted light (hereinafter, simply referred to as “reflected light”) ends at 3
It is guided to the branched light guide 4.

モニタ用ライトガイド3と案内用ライトガイド4とに導
かれ、それぞれ3つに分けられたモニタ光及び物体反射
光は、各色別に特有の透過特性を有するモニタ側色フィ
ルタF1(R),F2(G),F3(B)及び物体側色フィルタ
F4(R),F5(G),F6(B)を用いてそれぞれ赤
(R),緑(G),青(B)の3原色成分に分解され
る。
The monitor light and the object reflected light, which are guided to the monitor light guide 3 and the guide light guide 4 and are respectively divided into three lights, have monitor-side color filters F1 (R), F2 ( G), F3 (B) and object side color filter
F4 (R), F5 (G), and F6 (B) are used to separate into three primary color components of red (R), green (G), and blue (B).

これらの3原色成分はモニタ側受光素子D1,D2,D3及び
物体側受光素子D4,D5,D6による光起電力効果によっ
て、入射光量に比例したモニタ側光電流IR1,IG1,IB1
及び物体側光電流IR2,IG2,IB2に変換される。
These three primary color components are the monitor side photocurrent I R1 , which is proportional to the incident light amount, due to the photovoltaic effect of the monitor side light receiving elements D 1 , D 2 , D 3 and the object side light receiving elements D 4 , D 5 , D 6 . I G1 , I B1
And the object-side photocurrents I R2 , I G2 , and I B2 .

このようにして変換された色別のモニタ側光電流及び物
体側光電流はモニタ側比例増幅器OA1,OA2,OA3及び物体
側比例増幅器OA4,OA5,OA6で後段の処理に必要な振幅ま
で増幅され、モニタ側アナログ電圧信号VR1,VG1,VB1
及び物体側アナログ電圧信号VR2,VG2,VB2として取り
出される。
The monitor-side photocurrent and the object-side photocurrent thus converted for each color are amplified by the monitor-side proportional amplifiers OA1, OA2, OA3 and the object-side proportional amplifiers OA4, OA5, OA6 to the amplitude necessary for the subsequent processing. , Monitor side analog voltage signal V R1 , V G1 , V B1
And object-side analog voltage signals V R2 , V G2 , and V B2 .

これらのアナログ電圧信号はマルチプレクサ5により、
順次選択されてA/D変換器6に送られ、ここでデジタル
値に変換され、モニタ側3原色出力R1,G1,B1と物体側
3原色出力R2,G2,B2が得られる。
These analog voltage signals are output by the multiplexer 5.
It is sequentially selected and sent to the A / D converter 6, where it is converted into digital values, and the monitor side 3 primary color outputs R 1 , G 1 and B 1 and the object side 3 primary color outputs R 2 , G 2 and B 2 are output. can get.

これらモニタ側3原色出力及び物体側3原色出力は、CP
U等で構成される演算回路7に入力され、ここで、対応
する成分同士の比をとって光源1の照度変化に対する基
準化を行う。即ち次式に基づく基準化された値(基準
値)が求められる。
These monitor side 3 primary color output and object side 3 primary color output are CP
It is input to the arithmetic circuit 7 composed of U and the like, and the ratio of the corresponding components is taken here to perform normalization for the illuminance change of the light source 1. That is, a standardized value (reference value) based on the following equation is obtained.

式1で求めた基準値RS,GS,BSは、予め求めメモリ10に
記憶しておいた物体の3原色成分の標準となる値RR
GR,BRと演算回路7で比較され、その結果である物体9
の該当色、また必要に応じて該当色の表示パラメータ値
となる前記物体9の基準値を表示装置8に表示する。
The reference values R S , G S , and B S obtained by the equation 1 are the values R R , which are the standard values of the three primary color components of the object, which are obtained in advance and stored in the memory 10.
The object 9 which is the result of comparison between G R and B R by the arithmetic circuit 7
The corresponding color, and if necessary, the reference value of the object 9 which is the display parameter value of the corresponding color is displayed on the display device 8.

[発明が解決しようとする課題] しかし、上記のように構成した従来のカラーセンサ回路
ないし色識別回路には、次のような問題があった。
[Problems to be Solved by the Invention] However, the conventional color sensor circuit or color identification circuit configured as described above has the following problems.

(1)光源1の照度が低下した場合、照度の低下に比例
して測定分解能も同時に低下する。
(1) When the illuminance of the light source 1 is decreased, the measurement resolution is also decreased in proportion to the decrease of the illuminance.

即ち、測定分解能はA/D変換器6のビット数で決まる
が、この分解能は飽くまでもA/D変換器6に入力される
アナログ電圧信号の最大振幅に対して割り振られる分解
能であって、アナログ電圧信号が小さくなれば、その分
解能は維持できない。例えば、光源の照度低下のないと
き、アナログ電圧信号3Vと0Vとの間で1000分の1の刻み
の分解能が与えられている場合、物体の反射率又は透過
率が低いことに起因する物体側受光素子D4,D5,D6への
入射光量低下でアナログ電圧信号が10倍の変動幅を持つ
ときであって、3Vから0.3Vまでの間を変動するようなと
きは、その間には900刻みの分解能が残っているので問
題はない。ところが、光源の照度低下があって、アナロ
グ電圧信号が全体に落ち込み、1Vから0.1Vの間を変動す
るようになったときには、その間には300刻みの分解能
しか残っていないことになり、その結果、大幅に分解能
が低下する。
That is, the measurement resolution is determined by the number of bits of the A / D converter 6, but this resolution is the resolution assigned to the maximum amplitude of the analog voltage signal input to the A / D converter 6 until the user gets tired of it. As the signal gets smaller, its resolution cannot be maintained. For example, when the illuminance of the light source does not decrease, if a resolution of 1/1000 is given between the analog voltage signals 3V and 0V, the object side caused by the low reflectance or transmittance of the object When the analog voltage signal has a fluctuation range of 10 times due to a decrease in the amount of light incident on the light receiving elements D 4 , D 5 , and D 6, and when it fluctuates between 3 V and 0.3 V, There is no problem because the resolution of 900 increments remains. However, when the illuminance of the light source decreased and the analog voltage signal dropped all over and fluctuated between 1 V and 0.1 V, only 300 steps of resolution remained during that time, and as a result , The resolution is significantly reduced.

(2)反射率(透過率)の低い物体の場合には(1)と
同様に分解能が低下する。
(2) In the case of an object having a low reflectance (transmittance), the resolution is reduced as in (1).

これを補うために、比例増幅器OA1〜OA6のゲインを数段
に亙って切り替えられるようにして測定を行う方法があ
る。即ち、比例増幅器の出力であるアナログ電圧信号が
飽和する手前の十分大きな値で取り出されるように、ゲ
インの切替えを順次行って最適な大きさの出力を得るよ
うにする。
In order to compensate for this, there is a method in which the gains of the proportional amplifiers OA1 to OA6 can be switched over several stages to perform the measurement. That is, the gains are sequentially switched so that the output having the optimum magnitude is obtained so that the analog voltage signal, which is the output of the proportional amplifier, is taken out with a sufficiently large value before the saturation.

ところが、この方法によれば、最適出力の判断を演算回
路7で行わなければならないため、A/D変換器6による
デジタル変換の回数が多くなり、演算回路7での判定速
度が著しく低下する。また、各増幅器毎に数段に亙る切
替回路が必要となるため、回路が複雑となり、コスト、
信頼性の面で不利となる。
However, according to this method, since the arithmetic circuit 7 must determine the optimum output, the number of digital conversions by the A / D converter 6 increases, and the determination speed in the arithmetic circuit 7 is significantly reduced. In addition, since a switching circuit having several stages is required for each amplifier, the circuit becomes complicated and the cost,
It is disadvantageous in terms of reliability.

(3)光源の照度変化に対する基準化のために行われる
式1の計算を演算回路7で実行するには、割算をデジタ
ル的に3回行う必要があるため、判定速度が低下する。
(3) In order for the arithmetic circuit 7 to execute the calculation of the equation 1 performed for the standardization with respect to the illuminance change of the light source, the division needs to be performed three times digitally, so that the determination speed is reduced.

このように従来のものは種々の欠点があった。As described above, the conventional one has various drawbacks.

本発明の目的は、光源の照度変化に対する基準化をアナ
ログ的に行うことによって、上記した従来技術の欠点を
解消して、高速判定が可能で、光源や物体の影響を受け
ず、常に一定の分解能を保持し、しかもコスト,信頼性
の面で優れたカラーセンサ回路を提供することにある。
The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques by performing analogization for the illuminance change of the light source, enable high-speed determination, are not affected by the light source or the object, and are always constant. An object of the present invention is to provide a color sensor circuit which retains resolution and is excellent in cost and reliability.

[課題を解決するための手段] 本発明のカラーセンサ回路は、光源から出射した光を色
判別の対象となる物体に照射して反射光又は透過光を得
ると共に、光源から照射した光の一部を直接光として取
り出す。そして、これら反射光又は透過光と、モニタ用
となる直接光とをそれぞれ可視波長域の所定の波長成
分、例えば3原色に分解し、これを光電変換して物体側
分解波長出力とモニタ側分解波長出力とを得て、物体側
分解波長出力とモニタ側分解波長出力との対応する成分
同士の比をとって光源の照度変化に対する基準化を行
い、これら基準化された値に基づいて物体の色を判断す
るカラーセンサ回路において、光源の照度変化に対する
基準化を行う手段を、物体側分解波長出力とモニタ側分
解波長出力とを成分毎に対数変換する手段と、対数変換
した物体側分解波長出力とモニタ側分解波長出力との対
応する分解波長成分間同士の差をそれぞれ求める手段と
で構成したものである。
[Means for Solving the Problems] A color sensor circuit of the present invention irradiates light emitted from a light source onto an object to be subjected to color discrimination to obtain reflected light or transmitted light, and Part is taken out as direct light. Then, the reflected light or the transmitted light and the direct light for monitoring are each decomposed into predetermined wavelength components in the visible wavelength range, for example, three primary colors, which are photoelectrically converted into the object side decomposed wavelength output and the monitor side decomposed. The wavelength output is obtained, and the ratio between the corresponding components of the object-side resolved wavelength output and the monitor-side resolved wavelength output is taken to normalize the illuminance change of the light source, and based on these normalized values, the object In the color sensor circuit for judging the color, the means for normalizing the illuminance change of the light source is a means for logarithmically converting the object-side resolved wavelength output and the monitor-side resolved wavelength output for each component, and the logarithmically converted object-side resolved wavelength. And a means for obtaining a difference between the corresponding decomposed wavelength components of the output and the monitor-side decomposed wavelength output.

[作用] 光源から直接取り出されたモニタ側分解波長出力と、物
体での反射または透過により間接的に取り出された物体
側分解波長出力との各成分が、対数変換手段に導かれる
と、各成分は対数変換されて出力される。この対数変換
された対応する分解波長成分出力同士は更に差を求める
手段にそれぞれ供給されるため、対数関数の差が得られ
る。
[Operation] When the components of the monitor-side decomposed wavelength output directly extracted from the light source and the object-side decomposed wavelength output indirectly extracted by reflection or transmission at the object are guided to the logarithmic conversion means, each component Is logarithmically converted and output. The corresponding logarithmically converted corresponding decomposed wavelength component outputs are respectively supplied to the means for obtaining the difference, so that the difference in the logarithmic function is obtained.

対数関数の差は、即ち分解波長成分同士の比の対数を求
めたことに外ならないから、これにより光源の照度変化
に対する基準化が行われる。
Since the difference in the logarithmic function is nothing but the calculation of the logarithm of the ratio of the decomposed wavelength components, the standardization for the illuminance change of the light source is performed by this.

このように光源の照度変化に対する測定値の基準化が全
てアナログ回路により行われるため、判定速度が著しく
高速化する。また、得られた値が対数圧縮されているた
め、光源の照度が低下したり、物体の反射率や透過率が
低い場合であったりしても、分解能の低下が防止され
る。
In this way, since the standardization of the measured value with respect to the illuminance change of the light source is all performed by the analog circuit, the determination speed is remarkably increased. Further, since the obtained value is logarithmically compressed, even if the illuminance of the light source is reduced or the reflectance or the transmittance of the object is low, the degradation of the resolution is prevented.

[実施例] 以下、本発明の実施例を第1図を用いて説明する。[Embodiment] An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明のカラーセンサ回路を適用した色識別回
路の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a color identification circuit to which the color sensor circuit of the present invention is applied.

なお、図中、第2図と同一の部分には同一の符号を付け
てあるので説明を省略する。
In the figure, the same parts as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.

モニタ側受光素子D1,D2,D3及び物体側D4,D5,D6によ
って、変換されたモニタ側光電流IR1,IC1,IB1及び物
体側光電流IR2,IG2,IB2をそれぞれ成分毎にモニタ側
対数増幅器LA1,LA2,LA3及び物体側対数増幅器LA4,LA5,L
A6に供給して、対数変換したモニタ側3原色出力log
R1,logG1,logB1及び物体側3原色出力logR2,logG2
logB2を得る。
Monitor-side photocurrents I R1 , I C1 , I B1 and object-side photocurrents I R2 , I G2 converted by the monitor-side photodetectors D 1 , D 2 , D 3 and the object-side D 4 , D 5 , D 6 , I B2 for each component of the monitor side logarithmic amplifiers LA1, LA2, LA3 and the object side logarithmic amplifiers LA4, LA5, L
Supply to A6, logarithmically converted monitor side 3 primary color output log
R 1 , logG 1 , logB 1 and object side three primary color output logR 2 , logG 2 ,
Get logB 2 .

そして、これらのうちの対応する3原色成分同士、即ち
logR1とlogR2,logG1とlogG2,logB1とlogB2をそれぞれ
差動増幅器DA1,DA2,DA3に加えて、成分同士の差を求め
る。これを式で示すと次の通りである。
Then, among these three corresponding primary color components, that is,
LogR 1 and logR 2 , logG 1 and logG 2 , logB 1 and logB 2 are added to the differential amplifiers DA1, DA2, DA3, respectively, and the difference between the components is obtained. This can be expressed by the following formula.

式2から明らかなように、差動増幅器DAでモニタ側3原
色出力と物体側3原色出力との成分同士の差をとるとい
うことは、光源1の照度変化分を基準化することである
と共に、それを対数圧縮したアナログ電圧で得ることに
外ならない。
As is clear from the equation (2), taking the difference between the components of the monitor-side three-primary color output and the object-side three-primary color output by the differential amplifier DA is to standardize the illuminance change of the light source 1. , It is nothing but to get it with a logarithmically compressed analog voltage.

このようにして求められた3つのアナログ電圧RS,GS
BSはマルチプレクサ5を介して順次A/D変換器に供給さ
れ、デジタル値に変換された上で、演算回路7に取り込
まれる。演算回路7に取り込まれた値RS,GS,BSは、メ
モリ10に予め記憶されている標準となる物体の値RR
GR,BRと比較され、その比較結果が許容範囲ΔRR,Δ
GR,ΔBRに入っている場合の、その標準となる物体の色
と等しいとして、その色を物体9の色として表示装置8
に表示する。
The three analog voltages R S , G S , obtained in this way,
B S is sequentially supplied to the A / D converter via the multiplexer 5, converted into a digital value, and then taken into the arithmetic circuit 7. The values R S , G S , and B S fetched by the arithmetic circuit 7 are the standard object values R R , which are stored in advance in the memory 10.
G R and B R are compared, and the comparison result is the allowable range ΔR R and Δ
It is assumed that the color is equal to the color of the standard object in the case of G R and ΔB R , and that color is regarded as the color of the object 9 by the display device 8.
To display.

以上述べたように本実施例によればA/D変換器6に供給
されるアナログ信号が対数圧縮されているので、光源1
の照度が低下した場合でも、測定分解能が低下すること
がない。例えば、前記差動増幅器DAからの出力電圧が、
10倍の反射光又は透過光の変化に対し1Vの電圧の変化が
あるとすれば、3Vから2V、2Vから1V、1Vから0Vヘ、とい
う電圧の変化は、従来の3Vから0.3V、0.3Vから0.03V、
0.03Vから0.003Vへ、という電圧の変化と等しいことを
意味し、A/D変換器6が3Vと0Vとの間で、1000分の1刻
みの分解能が与えられている場合に、上記10分の1づつ
の反射光又は透過光の変動幅に対して常に一定の333刻
みの分解能が得られることになる。
As described above, according to this embodiment, since the analog signal supplied to the A / D converter 6 is logarithmically compressed, the light source 1
The measurement resolution does not decrease even when the illuminance decreases. For example, the output voltage from the differential amplifier DA is
If there is a change in voltage of 1V with respect to a 10-fold change in reflected light or transmitted light, the change in voltage from 3V to 2V, 2V to 1V, 1V to 0V is the same as the conventional 3V to 0.3V, 0.3V. V to 0.03V,
It means that it is equal to the change of voltage from 0.03V to 0.003V, and if the A / D converter 6 gives a resolution of 1/1000 between 3V and 0V, the above 10 Therefore, a constant resolution of 333 steps can be obtained for each fluctuation range of reflected light or transmitted light.

上記したことは、反射率(透過率)の低い物体の場合に
も適用され、同様に分解能の低下が防止される。従っ
て、物体の反射率に合わせてゲイン切替えを行う必要も
ないため、回路が単純になり、コスト、信頼性の面で優
れたものとなる。また、マルチプレクサ5に対する入力
ラインが従来の6本から半分の3本に減るので、配線の
簡素化も図れる。
What has been described above is also applied to the case of an object having a low reflectance (transmittance), and similarly, a reduction in resolution is prevented. Therefore, since it is not necessary to switch the gain according to the reflectance of the object, the circuit becomes simple, and the cost and reliability are excellent. In addition, since the number of input lines to the multiplexer 5 is reduced from the conventional 6 to half, three lines can be simplified.

また、対数変換した3原色出力成分同士を差動増幅器DA
に導いて差をとることにより、光源の照度変化に対する
基準化をアナログ的に行うようにしたので、その基準化
に要する時間は、差動増幅器DAの伝搬遅延時間と等しく
なり、この時間は、演算回路7で割算をデジタル的に3
回行う従来の回路が要する時間に比して遥かに短い。
In addition, the logarithmically converted three primary color output components are output to a differential amplifier DA.
By taking the difference and taking the difference, the reference to the illuminance change of the light source is performed in an analog manner, so the time required for the reference becomes equal to the propagation delay time of the differential amplifier DA, and this time is Digitally divides 3 by arithmetic circuit 7
It is much shorter than the time required by the conventional circuit that performs the operation.

ところで、上述したように本発明例では、3原色出力を
単に対数変換しただけでなく、演算回路7に入力する前
の段階で、更に対数変換した出力の成分同士の差をとっ
たことに最大の特徴がある。しかし、対数変換した出力
の成分同士の差を演算回路7でとるようにすることも原
理的には可能であり、しかもこの場合には差動増幅器を
省略して構成を一層簡素化できるというメリットもある
が、このようにすると判定速度が低速になるため好まし
いない。
By the way, as described above, in the example of the present invention, not only the output of the three primary colors is simply logarithmically converted, but also the difference between the components of the output of logarithmically converted is taken at the stage before being input to the arithmetic circuit 7. There is a feature of. However, it is also possible in principle to use the arithmetic circuit 7 to take the difference between the logarithmically converted output components, and in this case, the differential amplifier can be omitted and the configuration can be further simplified. However, doing so is not preferable because the determination speed becomes low.

なお、上記実施例では対数増幅器と差動増幅器とを用い
て照度変化の基準化を対数圧縮するようにしたが、対数
増幅器と差動増幅器とが一体になっている差動対数増幅
器を用いることも可能である。
Although the logarithmic amplifier and the differential amplifier are used to logarithmically compress the standardization of the illuminance change in the above embodiment, a differential logarithmic amplifier in which the logarithmic amplifier and the differential amplifier are integrated is used. Is also possible.

また、反射光と直接光を3原色に分解する場合について
述べたが、これに限定されるものではなく、物体の色を
特定できるのであれば、可視波長域の任意の波長成分に
分解してもよい。
Although the case where the reflected light and the direct light are separated into the three primary colors has been described, the present invention is not limited to this, and if the color of the object can be specified, it can be decomposed into arbitrary wavelength components in the visible wavelength range. Good.

[発明の効果] 本発明によれば次の効果がある。[Effects of the Invention] The present invention has the following effects.

(1)光源の照度変化に対する基準化をアナログ的に行
うので、物体の色判定を高速化することができる。
(1) Since the standardization for the illuminance change of the light source is performed in an analog manner, the color determination of the object can be speeded up.

(2)対数圧縮された値により判定を行うために、測定
分解能が一定となり、光源の照度が低下した場合や、反
射率又は透過率の低い物体の場合でも、精度の高い測色
ないし色識別を行うことができる。
(2) Since the determination is made based on the logarithmically compressed value, the measurement resolution becomes constant, and even if the illuminance of the light source is reduced, or the object with low reflectance or transmittance, accurate color measurement or color identification is performed. It can be performed.

(3)光電変換部のゲイン切替えが不要となるため、回
路が簡素化され、ゲイン切替えを必要とする従来技術と
比較してコスト,信頼性の面で特に優れたものとなる。
(3) Since the gain switching of the photoelectric conversion unit is not necessary, the circuit is simplified, and the cost and reliability are particularly excellent as compared with the conventional technology that requires the gain switching.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のカラーセンサ回路を色識別回路に適用
した一実施例を示すブロック構成図、第2図は従来の色
識別回路例を示すブロック構成図である。 図中、1は光源、9は物体、LA1〜LA6は対数増幅器、DA
1〜DA6は差動増幅器、D1〜D6は受光素子、F1〜F6はフィ
ルタである。
FIG. 1 is a block configuration diagram showing an embodiment in which the color sensor circuit of the present invention is applied to a color identification circuit, and FIG. 2 is a block configuration diagram showing an example of a conventional color identification circuit. In the figure, 1 is a light source, 9 is an object, LA1 to LA6 are logarithmic amplifiers, DA
1~DA6 is a differential amplifier, D 1 to D 6 is the light-receiving element, F 1 to F 6 filter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源から物体に出射した光の反射光又は透
過光と、同一光源から出射した直接光とをそれぞれ可視
波長域の所定波長成分に分解し、これらを光電変換して
物体側分解波長出力とモニタ側分解波長出力とを得て、
前記物体側分解波長出力とモニタ側分解波長出力との対
応する成分同士の比をとって光源の照度変化に対する基
準化を行い、これら基準化された値に基づいて物体の色
を判断するカラーセンサ回路において、 前記光源の照度変化に対する基準化を行う手段が、前記
物体側分解波長出力とモニタ側分解波長出力とを成分毎
に対数変換する手段と、対数変換した物体側分解波長出
力とモニタ側分解波長出力との対応する分解波長成分同
士の差をそれぞれ求める手段とから構成されていること
を特徴とするカラーセンサ回路。
1. A reflected light or a transmitted light emitted from a light source to an object and a direct light emitted from the same light source are each decomposed into predetermined wavelength components in a visible wavelength range, and these are photoelectrically converted to be decomposed on the object side. Obtain the wavelength output and the resolution wavelength output on the monitor side,
A color sensor for determining the color of an object based on the normalized values of the illuminance of the light source by taking the ratio of the corresponding components of the object-side resolved wavelength output and the monitor-side resolved wavelength output. In the circuit, means for normalizing the illuminance change of the light source, means for logarithmically converting the object-side decomposition wavelength output and monitor-side decomposition wavelength output, and logarithmically converted object-side decomposition wavelength output and monitor side A color sensor circuit, comprising: means for obtaining a difference between the decomposition wavelength components corresponding to the decomposition wavelength output.
JP63248517A 1988-09-30 1988-09-30 Color sensor circuit Expired - Fee Related JPH0690088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248517A JPH0690088B2 (en) 1988-09-30 1988-09-30 Color sensor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248517A JPH0690088B2 (en) 1988-09-30 1988-09-30 Color sensor circuit

Publications (2)

Publication Number Publication Date
JPH0295222A JPH0295222A (en) 1990-04-06
JPH0690088B2 true JPH0690088B2 (en) 1994-11-14

Family

ID=17179365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248517A Expired - Fee Related JPH0690088B2 (en) 1988-09-30 1988-09-30 Color sensor circuit

Country Status (1)

Country Link
JP (1) JPH0690088B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175742A (en) * 2007-01-19 2008-07-31 Omron Corp Photoelectric sensor
US20100005911A1 (en) * 2008-07-11 2010-01-14 Atlas Material Testing Technology, Llc Weathering Test Apparatus With Real-Time Color Measurement
JP5552661B2 (en) 2011-10-18 2014-07-16 株式会社豊田自動織機 Induction equipment
DE112015003040T5 (en) 2014-06-27 2017-03-23 Keyence Corporation Photoelectric multi-wavelength meter, confocal meter, interference meter and colorimeter

Also Published As

Publication number Publication date
JPH0295222A (en) 1990-04-06

Similar Documents

Publication Publication Date Title
US5432609A (en) Two-dimensional colorimeter
KR100323503B1 (en) Method of measuring spectral responsivity characteristic of image pick-up device and method of configuring imaging data
US4918519A (en) Color image sensing apparatus having color balance adjustment
US4805010A (en) Still video camera with common circuit for color balance and exposure control
US4989982A (en) Spectral sensitivity correcting device in a photoelectric tristimulus colorimeter
US6838659B2 (en) Photodetector, photodetecting method and storage medium for measuring a luminance characteristic of a specific color
JPH0758226B2 (en) Light source detection device
US20060146330A1 (en) Color measurements of ambient light
EP0875747A3 (en) Optical transmission characteristic measuring apparatus and calibration method using the same
JP3978955B2 (en) Photometric device and colorimeter
JPH0690088B2 (en) Color sensor circuit
US5003378A (en) Automatic white balance circuit
JP2564009Y2 (en) Spectrometer
JP2698578B2 (en) Imaging device
CN107576482A (en) A kind of optical parameter measurement device and its measuring method
JPS60135832A (en) Color separation system
RU2065138C1 (en) Two-beam photometer
SU1578504A1 (en) Photodetector
JPS62133432A (en) Method and circuit for automatically determining exposure value
JPS63104033A (en) Exposure controller for video camera
JPS59127491A (en) White balance adjustment device of color camera
JPS60207020A (en) Spectrophotometer
JPS63268389A (en) White balance adjusting device
JPH0345151Y2 (en)
JPS58178696A (en) White balance adjusting device of color camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees