[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0689404B2 - Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density - Google Patents

Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density

Info

Publication number
JPH0689404B2
JPH0689404B2 JP1079991A JP7999189A JPH0689404B2 JP H0689404 B2 JPH0689404 B2 JP H0689404B2 JP 1079991 A JP1079991 A JP 1079991A JP 7999189 A JP7999189 A JP 7999189A JP H0689404 B2 JPH0689404 B2 JP H0689404B2
Authority
JP
Japan
Prior art keywords
steel sheet
magnetic flux
flux density
annealing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1079991A
Other languages
Japanese (ja)
Other versions
JPH02258929A (en
Inventor
義行 牛神
正 中山
延幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1079991A priority Critical patent/JPH0689404B2/en
Priority to DE1990627553 priority patent/DE69027553T3/en
Priority to EP19900106018 priority patent/EP0390142B2/en
Publication of JPH02258929A publication Critical patent/JPH02258929A/en
Priority to US07/770,775 priority patent/US5186762A/en
Publication of JPH0689404B2 publication Critical patent/JPH0689404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は軟磁性材料として電気機器の鉄芯として用いら
れる一方向性電磁鋼板の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented electrical steel sheet used as an iron core of an electric device as a soft magnetic material.

(従来の技術) 一方向性電磁鋼板は、ミラー指数で{110}〈001〉方位
(いわゆるゴス方位)をもつ結晶粒より構成された通常
4.5%以下のSiを含有する板厚0.10〜0.35mmの鋼板であ
る。この鋼板は磁気特性として、励磁特性と鉄損特性が
優れていることが要求され、そのためには結晶粒の方位
をゴス方位に高度に揃えることが重要である。このゴス
方位への極めて高い集積化は、二次再結晶と呼ばれるカ
タストロフィックな粒成長現象を利用して達成される。
二次再結晶を制御するためには、二次再結晶前の一次再
結晶組織の調整と、インヒビターと呼ばれる微細析出物
もしくは粒界偏析型の元素の調整が必須のものである。
このインヒビターは、一次再結晶組織のなかで、ゴス方
位以外の一次再結晶粒の成長を抑え、ゴス方位粒を選択
的に成長させる機能をもつ。
(Prior Art) A grain-oriented electrical steel sheet is usually composed of crystal grains having {110} <001> orientation (so-called Goss orientation) in Miller index.
A steel plate having a thickness of 0.10 to 0.35 mm and containing 4.5% or less of Si. This steel sheet is required to have excellent magnetic excitation characteristics and iron loss characteristics, and for that purpose, it is important to highly align the crystal grain orientation with the Goss orientation. The extremely high integration in the Goss orientation is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.
In order to control the secondary recrystallization, it is essential to adjust the primary recrystallization structure before the secondary recrystallization and the adjustment of fine precipitates or grain boundary segregation type elements called inhibitors.
This inhibitor has a function of suppressing the growth of primary recrystallized grains other than the Goss orientation in the primary recrystallized structure and selectively growing the Goss oriented grains.

析出物として代表的なものとしては、M.F.Littmann(特
公昭30−3651号公報)及びJ.E.May,D.Turnbull(Trans.
Met.Soc.AIME212(1958年)P769/781)はMnSを、田口、
坂倉(特公昭40−15644号公報)はAlNを、今中ら(特公
昭51−13469号公報)はMnSeを、小松ら(特公昭62−452
85号公報)は(Al,Si)Nを提示している。一方、粒界
偏析型の元素としては、斉藤ら(日本金属学会誌27(19
63年)P186/195)は、Pb,Sb,Nb,Ag,Te,Se,S等を提示し
ているが、工業的にはいずれも析出物型インヒビターの
補助的なものとして使用されているに過ぎない。
Typical examples of the precipitate include MFLittmann (Japanese Patent Publication No. Sho 30-3651) and JEMay, D. Turnbull (Trans.
Met.Soc.AIME212 (1958 P769 / 781) is MnS, Taguchi,
Sakakura (Japanese Patent Publication No. 40-15644) uses AlN, Imanaka et al. (Japanese Publication No. 51-13469) uses MnSe, Komatsu et al. (Japanese Patent Publication No. 62-452).
No. 85) presents (Al, Si) N. On the other hand, as grain boundary segregation type elements, Saito et al.
63) P186 / 195) presents Pb, Sb, Nb, Ag, Te, Se, S, etc., but they are all industrially used as auxiliary substances for precipitate-type inhibitors. Nothing more than.

これらの析出物がインヒビターとしての機能を発揮する
上で必要な条件は必ずしも明確ではないが、松岡(鉄と
鋼53(1967年)P1007/1023)、黒木ら(日本金属学会誌
43(1979年)P175/181,44(1980年)P419/424の結果を
まとめると、次のように考えられる。
Although the conditions necessary for these precipitates to function as inhibitors are not always clear, Matsuoka (Iron and Steel 53 (1967) P1007 / 1023), Kuroki et al. (Journal of the Japan Institute of Metals)
43 (1979) P175 / 181,44 (1980) P419 / 424 can be summarized as follows.

(i)二次再結晶前に一次再結晶粒の粒成長を抑えるに
充分な量の微細析出物が存在すること。
(I) The presence of fine precipitates in an amount sufficient to suppress grain growth of primary recrystallized grains before secondary recrystallization.

(ii)析出物の大きさがある程度大きく、二次再結晶焼
鈍時にあまり急激に熱的変化しないこと。
(Ii) The size of the precipitates is large to some extent and does not change so rapidly during secondary recrystallization annealing.

現在、工業生産されている代表的な一方向性電磁鋼板の
製造法としては、3種類ある。
Currently, there are three types of typical methods for producing unidirectional electrical steel sheets that are industrially produced.

第一の技術は、M.F.Littmannにより、特公昭30−3651号
公報に示されたMnSを用いた二回冷延工程によるもので
あり、第二の技術は田口、坂倉により、特公昭40−1564
4号公報に示されたAlN+MnSを用いた最終冷間圧延率を8
0%以上の強圧下とする工程によるものであり、第三の
技術は、今中らにより特公昭51−13469号公報に示され
たMnS(またはMnSe)+Sbを用いた二回冷延工程による
ものである。
The first technique is a double cold rolling process using MnS disclosed in Japanese Patent Publication No. 303651 of Japan by MF Littmann, and the second technique is Japanese Patent Publication No. 40-1564 of Taguchi and Sakakura.
The final cold rolling rate using AlN + MnS disclosed in Japanese Patent No.
The third technique is a double cold rolling process using MnS (or MnSe) + Sb disclosed in Japanese Patent Publication No. 51-13469 by Konaka et al. It is a thing.

これらの技術はいずれも、析出物の量の確保とその微細
化の要件を満たすために、熱延工程での高温スラブ加熱
によるインヒビター作り込みを基本技術としている。
In all of these technologies, in order to satisfy the requirements for securing the amount of precipitates and their refinement, the basic technology is the incorporation of inhibitors by high temperature slab heating in the hot rolling process.

すなわち、スラブ加熱温度は第一の技術では1260℃以
上、第二の技術では特開昭48−51852号公報に示すよう
に、Si量によって異なるが、3%Siの場合は1350℃以
上、第三の技術では特開昭51−20716号公報に示される
ように1230℃以上、特に高磁束密度が得られる実施例で
は1320℃といった極めて高い温度に加熱することによ
り、粗大に存在する析出物を一旦溶体化し、その後熱間
圧延中あるいはそれに続く熱処理によって各種析出物の
微細化を行っている。
That is, the slab heating temperature in the first technique is 1260 ° C or higher, and in the second technique, as shown in JP-A-48-51852, it depends on the amount of Si. In the third technique, as shown in JP-A-51-20716, heating to an extremely high temperature of 1230 ° C. or higher, particularly 1320 ° C. in the example in which a high magnetic flux density is obtained, coarse precipitates are formed. The solution is once made into a solution, and then various kinds of precipitates are refined during hot rolling or by subsequent heat treatment.

ところが、これらの析出物の制御は極めて困難であり、
その改善案として特公昭54−14568号公報には、焼鈍分
離剤に窒化クロム,窒化チタン,窒化バナジウム等の窒
化物を添加することにより、二次再結晶が行われる仕上
焼鈍中の雰囲気の窒素分圧を確保すること、また特公昭
53−50008号公報にはFe2S等の硫化物を添加することに
より硫黄分圧を確保し、析出物の分解を抑制することに
より、二次再結晶を安定化する方法が提案されている。
However, control of these precipitates is extremely difficult,
As an improvement plan, Japanese Patent Publication No. 54-14568 discloses that nitrogen of the atmosphere during finish annealing in which secondary recrystallization is performed by adding a nitride such as chromium nitride, titanium nitride or vanadium nitride to an annealing separator. Securing partial pressure
In 53-50008, a method of stabilizing secondary recrystallization by securing sulfur partial pressure by adding sulfides such as Fe 2 S and suppressing decomposition of precipitates is proposed. .

しかしながら、これらの改良法を以てしても、最高磁性
の製品を安定して製造するには至っていない。
However, even with these improved methods, it has not been possible to stably produce the highest magnetic product.

これは、本質的な問題として工業的には、高温スラブ加
熱によりコイルの長手方向、幅方向の全領域に一定サイ
ズ、一定量の析出物を均一に分散させ、かつ二次再結晶
直前まで変化させずに保っておくことが事実上、不可能
であるからである。
This is an industrially important problem in that industrially, high-temperature slab heating uniformly disperses a certain size and a certain amount of precipitates in the entire lengthwise and widthwise directions of the coil, and changes until just before secondary recrystallization. It is practically impossible to keep it without doing so.

すなわち、析出現象は非平衡状態下で行われており、そ
れ以前の熱履歴、歪履歴の影響を強く受けるものであ
る。実際のスラブは各部位によって熱履歴、歪履歴が異
なっており、かつスラブ自体が板厚方向の成分のマクロ
偏析、局所的なα相,γ相の分散により不均一な結晶組
織となっているからである。
That is, the precipitation phenomenon is performed in a non-equilibrium state, and is strongly influenced by the thermal history and strain history before that. The actual slab has different thermal history and strain history depending on each part, and the slab itself has a non-uniform crystal structure due to macrosegregation of components in the plate thickness direction and local dispersion of α phase and γ phase. Because.

従って、インヒビター制御を基本技術とする一方向性電
磁鋼板の製造法は根本的に工業的な安定性を欠くもので
ある。
Therefore, the method for producing a grain-oriented electrical steel sheet based on inhibitor control is fundamentally lacking in industrial stability.

(発明が解決しようとする課題) 本発明は、上記従来技術における問題点を解決し、磁気
特性の優れた一方向性電磁鋼板を、工業的に安定して製
造することができるプロセスを提供することを目的とし
てなされた。
(Problems to be Solved by the Invention) The present invention solves the problems in the above-mentioned conventional techniques, and provides a process capable of industrially and stably producing a grain-oriented electrical steel sheet having excellent magnetic properties. It was made for the purpose.

(課題を解決するための手段) 本発明は、一次再結晶集合組織と二次再結晶温度を規定
することを主眼とすることにより、インヒビターに関す
る制御を大幅に緩和させ、磁束密度の高い製品を安定し
て製造する従来法と思想を全く異にする方法を提示する
ものである。
(Means for Solving the Problems) The present invention is mainly aimed at defining the primary recrystallization texture and the secondary recrystallization temperature, thereby significantly relaxing the control relating to the inhibitor and producing a product having a high magnetic flux density. It is intended to present a method completely different from the conventional method for stable production.

すなわち、本発明の要旨とするところは、重量%でSi:
1.8〜4.8%、酸可溶性Al:0.012〜0.050%、N≦0.010
%、残部Fe及び不可避的不純物からなる鋼板を、一回も
しくは中間焼鈍をはさむ二回以上の冷間圧延工程によっ
て最終板厚とし、次いで一次再結晶焼鈍を行った後、焼
鈍分離剤を塗布し仕上焼鈍を施す一方向性電磁鋼板にお
いて、最終冷間圧延率を80%以上とし、一次再結晶焼鈍
後から仕上焼鈍における二次再結晶開発までの間に鋼板
に窒化処理を施し、更に仕上焼鈍において二次再結晶粒
を1000〜1100℃の温度域で事実上完全に成長させること
を特徴とする磁束密度の高い一方向性電磁鋼板の製造方
法にある。
That is, the gist of the present invention is that Si:
1.8-4.8%, acid-soluble Al: 0.012-0.050%, N ≦ 0.010
%, The balance Fe and unavoidable impurities, the final thickness of the steel sheet by one or two or more cold rolling steps sandwiching the intermediate annealing, to obtain the final sheet thickness, followed by primary recrystallization annealing, and then applying an annealing separator. In the unidirectional electrical steel sheet that is subjected to finish annealing, the final cold rolling rate is 80% or more, and the steel sheet is nitrided between the time of primary recrystallization annealing and the development of secondary recrystallization in finish annealing. In the method of producing a grain-oriented electrical steel sheet having a high magnetic flux density, the secondary recrystallized grains are virtually completely grown in a temperature range of 1000 to 1100 ° C.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明者等は、二次再結晶粒成長挙動についての詳細な
研究より、最終冷間圧延80%以上を施すことにより規定
される{111}〈112〉を主方位とする一次再結晶集合組
織をもつ材料に対して、1000〜1100℃の温度範囲で二次
再結晶粒を事実上完全に成長させることにより、ゴス方
位粒を優先的に成長させることができ、かつこの条件の
下では窒化により単純にインヒビターを一定レベル以上
にすれば良いという新しい知見を得た。
From the detailed study on the secondary recrystallized grain growth behavior, the present inventors have found that the primary recrystallized texture with {111} <112> as the main orientation defined by performing 80% or more of the final cold rolling. For the material with γ, the Goss-oriented grains can be preferentially grown by virtually completely growing the secondary recrystallized grains in the temperature range of 1000 to 1100 ° C, and under this condition, nitriding is possible. Thus, we have obtained new knowledge that it suffices to simply increase the level of inhibitor above a certain level.

かかる知見は、以下の実験によって得られたものであ
る。
Such knowledge is obtained by the following experiments.

重量比でSi:3.3%,酸可溶性Al:0.027%,N:0.007%,C:
0.054%,Mn:0.13%,S:0.007%,残部Feおよび不可避的
不純物からなる鋼スラブを熱延して、2.3mmの熱延板と
し、これを1100℃2分間の焼鈍後、88%の圧下率で冷間
圧延を行い、0.2mmの最終板厚とした。次いで脱炭を兼
ねる一次再結晶焼鈍を行った後、アンモニア雰囲気中で
窒化処理を行い、0.005%,0.018%と窒素量を増加し
た。上記材料にMgOを塗布しN210%+H290%の雰囲気中
で900℃まで30℃/hrの速度で昇温し、次いで950〜1200
℃の温度域の所定の温度迄夫々急熱し該所定温度で20時
間焼鈍し、二次再結晶粒を充分成長させた。900℃の時
点で試料を一部引出して調査したところ、この時点では
一次再結晶組織の変化は見出せなかった。
Si: 3.3% by weight, acid-soluble Al: 0.027%, N: 0.007%, C:
Steel slab consisting of 0.054%, Mn: 0.13%, S: 0.007%, balance Fe and unavoidable impurities is hot-rolled into a 2.3 mm hot-rolled sheet, which is annealed at 1100 ° C for 2 minutes and then 88% Cold rolling was performed at a reduction rate to obtain a final plate thickness of 0.2 mm. Next, after performing primary recrystallization annealing that also serves as decarburization, nitriding treatment was performed in an ammonia atmosphere to increase the nitrogen content to 0.005% and 0.018%. The above material is coated with MgO and heated to 900 ° C at a rate of 30 ° C / hr in an atmosphere of N 2 10% + H 2 90%, and then 950 to 1200
Each was rapidly heated to a predetermined temperature in the temperature range of ° C and annealed at the predetermined temperature for 20 hours to sufficiently grow the secondary recrystallized grains. When the sample was partially withdrawn at 900 ° C. and investigated, no change in the primary recrystallization structure was found at this point.

こうして得られた製品の磁束密度(B8値)と二次再結晶
温度の関係を第1図に示す。
The relationship between the magnetic flux density (B 8 value) of the product thus obtained and the secondary recrystallization temperature is shown in FIG.

第1図から明らかなように、二次再結晶温度が1000〜11
00℃の温度域で1.90Tesla以上の高い磁束密度の製品が
得られている。
As is clear from FIG. 1, the secondary recrystallization temperature is 1000 to 11
Products with a high magnetic flux density of 1.90 Tesla or higher are obtained in the temperature range of 00 ℃.

また、窒化量が多い材料の方が、磁束密度が高くなって
いる。これらの実験結果を基に、窒化量と二次再結晶温
度に着目して次の実験を行った。
Further, the magnetic flux density is higher in the material having a larger amount of nitriding. Based on these experimental results, the following experiment was conducted focusing on the nitriding amount and the secondary recrystallization temperature.

先の実験と同一の材料を用いて、0〜0.12%の範囲で増
窒化処理を行った後、MgOを塗布しN210%+H290%の雰
囲気中で次の2つのサイクルで仕上焼鈍を行った。
Using the same material as the previous experiment, after performing nitriding treatment in the range of 0 to 0.12%, apply MgO and finish annealing in the following two cycles in the atmosphere of N 2 10% + H 2 90% I went.

(A)1050℃迄25℃/hrで昇温し、20時間保持し、次い
で25℃/hrで1200℃迄昇温。
(A) Raise the temperature to 1050 ° C at 25 ° C / hr, hold for 20 hours, then raise to 1200 ° C at 25 ° C / hr.

(B)1200℃迄25℃/hrで昇温。(B) Temperature increase up to 1200 ℃ at 25 ℃ / hr.

その後、H2100%の雰囲気に切りかえ、20時間純化焼鈍
を行った。こうして得られた製品の磁束密度(B8値)を
第2図に示す。
Then, the atmosphere was switched to H 2 100%, and a purification annealing was performed for 20 hours. The magnetic flux density (B 8 value) of the product thus obtained is shown in FIG.

第2図より、従来法(B)と比較して、二次再結晶温度
を最適温度域に規定する熱サイクル(A)により高磁束
密度の製品が得られることが分る。更に重要なことは、
従来法(B)では1.90Teslaを超える磁束密度が得られ
る増窒素量は0.005〜0.040%の狭い範囲であるのに対
し、二次再結晶温度を規定することにより増窒素量が0.
005%以上という広い範囲で高い磁束密度が得られるこ
とである。
From FIG. 2, it can be seen that a product having a high magnetic flux density can be obtained by the thermal cycle (A) in which the secondary recrystallization temperature is defined in the optimum temperature range as compared with the conventional method (B). More importantly,
In the conventional method (B), the amount of nitrogen increase at which a magnetic flux density of more than 1.90 Tesla is obtained is in a narrow range of 0.005 to 0.040%, while the amount of nitrogen increase is controlled by defining the secondary recrystallization temperature.
It is possible to obtain a high magnetic flux density in a wide range of 005% or more.

これは、従来法においては、窒化量が少ないと、二次再
結晶粒は低温で成長し、逆に窒化量が多いと高温で成長
しゴス方位粒が優先成長する温度域から逸脱してしまう
からである。
This is because in the conventional method, if the nitriding amount is small, the secondary recrystallized grains grow at a low temperature, and conversely, if the nitriding amount is large, the secondary recrystallized grains grow at a high temperature and the Goss-oriented grains deviate from the temperature range where they preferentially grow. Because.

窒化についての効果を調べたところ、インヒビターの減
少速度を抑制することが分かった。そこで、脱窒速度の
影響を支配するものとして1000〜1100℃の温度域での窒
素分圧についての実験を行った。
When the effect of nitriding was examined, it was found that the rate of inhibitor decrease was suppressed. Therefore, an experiment was conducted on nitrogen partial pressure in the temperature range of 1000 to 1100 ℃, which controls the effect of denitrification rate.

第3図は窒化処理により0.018%増窒化した材料を1050
℃で二次再結晶粒を成長させた時の雰囲気の窒素分圧と
製品の磁束密度(B8値)の関係を示したものである。
Fig. 3 shows 1050 for the material that was nitrided 0.018% by nitriding.
It shows the relationship between the nitrogen partial pressure in the atmosphere and the magnetic flux density (B 8 value) of the product when the secondary recrystallized grains were grown at ℃.

第3図より窒素分圧10%以上で1.90Tesla以上、特に75
%以上で1.95Teslaを超える高磁束密度の製品が得られ
ることが分る。この1000〜1100℃の最適温度域について
は、冷間圧延率80%以上という工程によって規定される
{111}〈112〉方位を主方位とする一次再結晶集合組織
に対して、尖鋭なゴス方位を優先成長させるものと考え
られる。すなわち、最終冷間圧延率50〜90%の材料を仕
上焼鈍において1050℃の温度で二次再結晶粒を成長させ
たところ、第4図,第5図に示すように圧下率80%以上
の材料で尖鋭なゴス方位粒が優先成長し、磁束密度の高
い製品が得られた。これらの材料の一次再結晶集合組織
を調査したところ、第6図に示すように、高磁束密度の
製品が得られた圧下率80%以上のものは{111}〈112〉
方位を主方位とする集合組織となっている。
From Fig. 3, it is 1.90 Tesla or more, especially 75 with nitrogen partial pressure of 10% or more.
It can be seen that a product with a high magnetic flux density of more than 1.95 Tesla can be obtained at a rate of over%. Regarding the optimum temperature range of 1000 to 1100 ° C, a sharp Goss orientation is obtained with respect to the primary recrystallization texture whose main orientation is the {111} <112> orientation defined by the process of cold rolling rate of 80% or more. Are considered to be preferentially grown. That is, when a material having a final cold rolling rate of 50 to 90% was subjected to finish annealing and secondary recrystallized grains were grown at a temperature of 1050 ° C., a reduction rate of 80% or more was obtained as shown in FIGS. Sharp Goss grains were preferentially grown in the material, and a product with high magnetic flux density was obtained. When the primary recrystallized textures of these materials were investigated, as shown in Fig. 6, the products with high magnetic flux density were found to have {111} <112>
It is a collective organization with the main direction as the direction.

このように、一次再結晶集合組織に対して、特定の温度
域でゴス方位粒が優先成長するという知見はこれまでに
ない新しいものである。
As described above, the finding that the Goss-oriented grains preferentially grow in the specific temperature region with respect to the primary recrystallization texture is a new one that has never existed before.

以上述べたように、本発明の主眼は、80%以上の圧下率
を施す工程によって規定される一次再結晶集合組織に対
し1000〜1100℃の温度域でゴス方位粒が優先成長すると
いう事実をもとに、この温度域で二次再結晶粒を成長さ
せるという条件の下では、単に窒化もしくは雰囲気の窒
素分圧を高めインヒビターを一定レベル以上にし、かつ
二次再結晶時の減少速度を抑制することによりインヒビ
ターの場所的不均一性に起因する問題を解消し磁束密度
の高い製品を安定して製造することができるというもの
であり、これは従来法と思想を全く異にするものであ
る。二次再結晶温度を1000〜1100℃に規定するという技
術は特開昭48−72025号公報にも記載されているが、一
次再結晶組織に対する思想がなくかつインヒビターとし
て用いているMnSはW.M.Swift(Met.trans.4(1973年)P
153/157)に示されるように、この温度域においては熱
的に不安定なものであるので得られている製品の磁束密
度は1.8Teslaという低いものである。
As described above, the main point of the present invention is that the Goss-oriented grains preferentially grow in the temperature range of 1000 to 1100 ° C. with respect to the primary recrystallization texture defined by the step of applying a rolling reduction of 80% or more. Under the condition that the secondary recrystallized grains are grown in this temperature range, the nitriding or nitrogen partial pressure in the atmosphere is simply raised to a certain level or more, and the reduction rate during secondary recrystallization is suppressed. By doing so, it is possible to solve the problem caused by the spatial non-uniformity of the inhibitor and to stably manufacture a product with a high magnetic flux density, which is completely different from the conventional method. . The technique of defining the secondary recrystallization temperature in the range of 1000 to 1100 ° C is also described in JP-A-48-72025, but MnS used as an inhibitor without the idea of the primary recrystallization structure is WMSwift ( Met.trans.4 (1973) P
153/157), the magnetic flux density of the product obtained is as low as 1.8 Tesla because it is thermally unstable in this temperature range.

次に本発明の実施形態を説明する。Next, an embodiment of the present invention will be described.

本発明において、スラブが含有する成分としては重量%
でSi:1.8〜4.8%,酸可溶性Al:0.012〜0.050%,N≦0.01
0%と残部Feおよび不可避的不純物であり、これらを必
須成分として、それ以外は特に限定しない。
In the present invention, the component contained in the slab is wt%
At Si: 1.8-4.8%, acid-soluble Al: 0.012-0.050%, N ≦ 0.01
0% and the balance are Fe and inevitable impurities, and these are essential components, and other components are not particularly limited.

Siは含有量が4.8%を超えると、冷間圧延時に材料が割
れ易くなり、圧延不可能となる。一方Si量を下げると仕
上焼鈍時にα→γ変態が生じ結晶の方向性が破壊されて
しまうので、α→γ変態により実質的に結晶の方向性に
影響を及ぼさない1.8%以上を限定範囲とする。
If the Si content exceeds 4.8%, the material is likely to crack during cold rolling, making rolling impossible. On the other hand, if the Si content is decreased, α → γ transformation occurs during finish annealing, and the crystal orientation is destroyed.Therefore, 1.8% or more that does not substantially affect the crystal orientation due to the α → γ transformation is defined as a limited range. To do.

酸可溶性AlはNと結合してAlNまたは(Al,Si)Nとな
り、インヒビターとして機能する。特に、後工程で窒化
する場合には、フリーのAlとして存在させておくことが
有効である。磁束密度が高くなる0.012〜0.050%を限定
範囲とする。Nは0.010%を越えるとブリスターと呼ば
れる鋼板の空孔を生じるので0.010%以下を限定範囲と
する。
Acid-soluble Al combines with N to become AlN or (Al, Si) N, and functions as an inhibitor. In particular, in the case of nitriding in a later step, it is effective to make it exist as free Al. The limit range is 0.012 to 0.050% where the magnetic flux density increases. When N exceeds 0.010%, voids in the steel sheet called blisters occur, so 0.010% or less is made the limiting range.

更に、インヒビター構成元素としてMn,S,Se,B,Bi,Nb,S
n,Ti等を添加することもできる。
Furthermore, Mn, S, Se, B, Bi, Nb, S as inhibitor constituent elements
It is also possible to add n, Ti and the like.

このスラブの加熱温度は特に限定されるものではない
が、本発明においては後工程の窒化によってインヒビタ
ーを作り込むことも可能なので従来の方法のように高温
にする必要はない。コスト面から考えると1300℃以下と
することが望ましい。加熱されたスラブは引き続き熱間
圧延を施される。
The heating temperature of this slab is not particularly limited, but in the present invention, it is possible to incorporate the inhibitor by nitriding in the subsequent step, and therefore it is not necessary to raise the temperature as in the conventional method. Considering the cost, it is desirable to set the temperature below 1300 ° C. The heated slab is subsequently hot-rolled.

上記熱延板は、必要に応じて750〜1200℃の温度域で30
秒〜30分間焼鈍される。次いで一回もしくは中間焼鈍を
はさむ二回以上の冷間圧延により最終板厚とする。この
際、所定の一次再結晶集合組織を得るために、最終冷間
圧延率を80%以上とすることが必須の要件である。
The hot-rolled sheet may be used in a temperature range of 750 to 1200 ° C, if necessary.
Annealed for seconds to 30 minutes. Next, the final plate thickness is obtained by performing cold rolling once or twice or more with intermediate annealing. At this time, in order to obtain a predetermined primary recrystallization texture, it is an essential requirement that the final cold rolling rate be 80% or more.

冷間圧延後の材料は、通常鋼中に含まれる炭素を除去す
るために、脱炭を兼ねる一次再結晶焼鈍を行う。このよ
うにして得られた材料に焼鈍分離剤を塗布した後、二次
再結晶と純化を目的とする仕上焼鈍を施す。
The material after cold rolling is usually subjected to primary recrystallization annealing that also serves as decarburization in order to remove carbon contained in steel. After the annealing separator is applied to the material thus obtained, secondary annealing and finishing annealing for the purpose of purification are applied.

ここで、一次再結晶焼鈍後、仕上焼鈍時の二次再結晶開
始までの間に窒化処理を施し、かつ仕上焼鈍において10
00〜1100℃の温度域で二次再結晶粒を事実上完全に成長
させることが必須の要件である。窒化の方法について
は、特に限定されるものではなく、アンモニア等の窒化
能のある雰囲気ガスによる方法、窒化マンガン,窒化ク
ロム等窒化能のある金属窒化物を焼鈍分離剤に添加し、
仕上焼鈍中で窒化する方法等いずれの方法によっても良
い。
Here, after the primary recrystallization annealing, a nitriding treatment is applied between the start of the secondary recrystallization during the finish annealing, and the finish annealing
It is an essential requirement to grow the secondary recrystallized grains virtually completely in the temperature range of 00 to 1100 ° C. The nitriding method is not particularly limited, a method using an atmosphere gas having a nitriding ability such as ammonia, a metal nitride having a nitriding ability such as manganese nitride or chromium nitride is added to the annealing separator.
Any method such as nitriding during finish annealing may be used.

また仕上焼鈍において、二次再結晶粒を成長させる温度
を規定する方法については何ら限定されるものではな
く、該当温度域での保持・徐加熱等が考えられる。
Further, in the finish annealing, the method of defining the temperature for growing the secondary recrystallized grains is not limited at all, and holding in the relevant temperature range, gradual heating, etc. may be considered.

(実施例) 実施例1 重量%で、Si:3.3%,酸可溶性Al:0.030%,N:0.008%,
C:0.05%,Mn:0.14%,S:0.007%,残部Feおよび不可避的
不純物からなるスラブを熱延して1.8mmの熱延板とし
た。この熱延板を1100℃の温度で2分間焼鈍した後圧下
率88%で0.20mmの最終板厚とした。この冷延板を830℃
で脱炭を兼ねて一次再結晶焼鈍を施した。その後、窒化
を目的にフェロ窒化マンガンを0%,3%,5%,15%添加
したMgOを塗布した。仕上焼鈍はN225%+H275%の雰囲
気ガスで1070℃迄昇温しN275%+H225%の雰囲気ガスに
切り替え20時間保持し、二次再結晶粒を事実上完全に成
長させた。その後H2100%の雰囲気ガス中で1200℃、20
時間焼鈍し純化を行った。得られた製品の特性は表1の
通りである。
(Example) Example 1 By weight%, Si: 3.3%, acid-soluble Al: 0.030%, N: 0.008%,
A slab consisting of C: 0.05%, Mn: 0.14%, S: 0.007%, the balance Fe and unavoidable impurities was hot-rolled into a 1.8 mm hot-rolled sheet. The hot-rolled sheet was annealed at a temperature of 1100 ° C. for 2 minutes and then a final sheet thickness of 0.20 mm was obtained at a rolling reduction of 88%. 830 ℃ this cold rolled sheet
Then, primary recrystallization annealing was performed for decarburization. After that, for the purpose of nitriding, MgO containing 0%, 3%, 5%, and 15% of ferromanganese ferronitride was applied. For finish annealing, the temperature was raised to 1070 ° C in an atmosphere gas of N 2 25% + H 2 75%, switched to an atmosphere gas of N 2 75% + H 2 25%, and held for 20 hours to virtually completely grow the secondary recrystallized grains. Let After that, in an atmosphere gas of H 2 100%,
It was annealed for a period of time for purification. The characteristics of the obtained product are shown in Table 1.

表1 フェロ窒化マンガン 磁束密度 備考 添加量 (B8) 0% 1.88T 比較例 3% 1.94T 本発明例 5% 1.96T 〃 15% 1.97T 〃 (発明の効果) 本発明は、以上述べたように、最終冷間圧延率と二次再
結晶温度を規定することにより、従来制御が困難であっ
たインヒビターに対する許容範囲を広げることが可能と
なり、磁束密度が高い製品を工業的に安定して製造する
ことができるので、その効果は甚大である。
Table 1 Manganese ferronitride magnetic flux density Remark Addition amount (B 8 ) 0% 1.88T Comparative example 3% 1.94T Inventive example 5% 1.96T 〃 15% 1.97T 〃 (Effect of invention) The present invention is as described above. In addition, by defining the final cold rolling rate and the secondary recrystallization temperature, it becomes possible to widen the tolerance range for inhibitors that were difficult to control in the past, and to manufacture products with high magnetic flux density in an industrially stable manner. The effect is enormous because it can be done.

【図面の簡単な説明】[Brief description of drawings]

第1図は、磁束密度(B8値)と二次再結晶温度の関係を
示す図、第2図は磁束密度(B8値)と窒化処理による増
窒素量の関係を示す図、第3図は磁束密度(B8値)と雰
囲気ガス(窒素分圧)の関係を示す図、第4図は磁束密
度(B8値)と最終冷間圧延率の関係を示す図、第5図
は、最終冷間圧延率(a)70%,(b)80%,(c)90
%の製品の二次再結晶粒の方位分布を示す図、第6図
は、最終冷間圧延率(a)70%,(b)80%,(c)90
%の一次再結晶集合組織を示す(200)極点図である。
FIG. 1 is a diagram showing the relationship between the magnetic flux density (B 8 value) and the secondary recrystallization temperature, and FIG. 2 is a diagram showing the relationship between the magnetic flux density (B 8 value) and the amount of nitrogen increase by nitriding treatment. The figure shows the relationship between the magnetic flux density (B 8 value) and the atmospheric gas (nitrogen partial pressure), Fig. 4 shows the relationship between the magnetic flux density (B 8 value) and the final cold rolling rate, and Fig. 5 shows , Final cold rolling rate (a) 70%, (b) 80%, (c) 90
Figure 6 shows the orientation distribution of secondary recrystallized grains of the product with a percentage of 100%, and Fig. 6 shows the final cold rolling rate (a) 70%, (b) 80%, (c) 90.
FIG. 7 is a (200) pole figure showing the primary recrystallization texture of 100%.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%でSi:1.8〜4.8%、酸可溶性Al:0.01
2〜0.050%、N≦0.010%、残部Fe及び不可避的不純物
からなる鋼板を、一回もしくは中間焼鈍をはさむ二回以
上の冷間圧延工程によって最終板厚とし、次いで一次再
結晶焼鈍を行った後、焼鈍分離剤を塗布し仕上焼鈍を施
す一方向性電磁鋼板において、 最終冷間圧延率を80%以上とし、一次再結晶焼鈍後から
仕上焼鈍における二次再結晶開始までの間に鋼板に窒化
処理を施し、更に仕上焼鈍において二次再結晶粒を1000
〜1100℃の温度域で事実上完全に成長させることを特徴
とする磁束密度の高い一方向性電磁鋼板の製造方法。
1. Si: 1.8 to 4.8% by weight, acid-soluble Al: 0.01
A steel sheet consisting of 2 to 0.050%, N ≦ 0.010%, the balance Fe and unavoidable impurities was subjected to a primary recrystallization annealing after one or two or more cold rolling steps with intermediate annealing to obtain a final sheet thickness. After that, in the unidirectional electrical steel sheet to which the annealing separator is applied and the finish annealing is applied, the final cold rolling rate is set to 80% or more, and the steel sheet is formed after the primary recrystallization annealing and before the secondary recrystallization in the finish annealing. Nitriding is performed, and secondary recrystallized grains are 1000
A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density, which is characterized by substantially completely growing in a temperature range of up to 1100 ° C.
【請求項2】二次再結晶粒を成長させる1000〜1100℃の
温度域において、窒素分圧を10%以上とする特許請求の
範囲1項記載の方法。
2. The method according to claim 1, wherein the nitrogen partial pressure is 10% or more in the temperature range of 1000 to 1100 ° C. for growing the secondary recrystallized grains.
JP1079991A 1989-03-30 1989-03-30 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density Expired - Lifetime JPH0689404B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1079991A JPH0689404B2 (en) 1989-03-30 1989-03-30 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
DE1990627553 DE69027553T3 (en) 1989-03-30 1990-03-29 Process for producing grain-oriented electrical sheets with high magnetic flux density
EP19900106018 EP0390142B2 (en) 1989-03-30 1990-03-29 Process for producing grain-oriented electrical steel sheet having high magnetic flux density
US07/770,775 US5186762A (en) 1989-03-30 1991-10-04 Process for producing grain-oriented electrical steel sheet having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1079991A JPH0689404B2 (en) 1989-03-30 1989-03-30 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH02258929A JPH02258929A (en) 1990-10-19
JPH0689404B2 true JPH0689404B2 (en) 1994-11-09

Family

ID=13705776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079991A Expired - Lifetime JPH0689404B2 (en) 1989-03-30 1989-03-30 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0689404B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709549B2 (en) * 1992-04-16 1998-02-04 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4288054B2 (en) 2002-01-08 2009-07-01 新日本製鐵株式会社 Method for producing grain-oriented silicon steel sheet
CN102471818B (en) 2009-07-13 2013-10-09 新日铁住金株式会社 Method for producing grain-oriented electromagnetic steel plate
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet

Also Published As

Publication number Publication date
JPH02258929A (en) 1990-10-19

Similar Documents

Publication Publication Date Title
CN109844156B (en) Hot-rolled steel sheet for producing electromagnetic steel sheet and method for producing same
JP6531864B2 (en) Method of manufacturing directional magnetic steel sheet
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
US5186762A (en) Process for producing grain-oriented electrical steel sheet having high magnetic flux density
JPH0689404B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JPH083125B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2514447B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties and surface properties
CN114829657A (en) Oriented electrical steel sheet and method for manufacturing the same
JPH06228646A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP2688146B2 (en) Method for producing unidirectional electrical steel sheet having high magnetic flux density
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2883224B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH0689405B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP2653637B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP2653636B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH09143560A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH0995739A (en) Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 15