[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0688769B2 - Manufacturing method of monosilane - Google Patents

Manufacturing method of monosilane

Info

Publication number
JPH0688769B2
JPH0688769B2 JP10477885A JP10477885A JPH0688769B2 JP H0688769 B2 JPH0688769 B2 JP H0688769B2 JP 10477885 A JP10477885 A JP 10477885A JP 10477885 A JP10477885 A JP 10477885A JP H0688769 B2 JPH0688769 B2 JP H0688769B2
Authority
JP
Japan
Prior art keywords
catalyst
monosilane
reaction
present
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10477885A
Other languages
Japanese (ja)
Other versions
JPS61261209A (en
Inventor
直 今木
順三 土師
陽子 三須
Original Assignee
三菱化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化成株式会社 filed Critical 三菱化成株式会社
Priority to JP10477885A priority Critical patent/JPH0688769B2/en
Priority to US06/860,572 priority patent/US4667047A/en
Priority to DE8686106556T priority patent/DE3686508T2/en
Priority to EP86106556A priority patent/EP0201919B1/en
Publication of JPS61261209A publication Critical patent/JPS61261209A/en
Publication of JPH0688769B2 publication Critical patent/JPH0688769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルコキシシランを原料としてモノシランを製
造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing monosilane from an alkoxysilane as a raw material.

〔従来の技術〕[Conventional technology]

モノシランは半導体用高純度シリコン原料として使用さ
れるほか、アモルフアス−シリコン感光体、太陽電池、
ニユーセラミツクス材料等の原料として広範に使用され
ている。
Monosilane is used as a high-purity silicon raw material for semiconductors, as well as amorphous silicon photoconductors, solar cells,
It is widely used as a raw material for New Ceramics materials.

従来よりモノシランの製造法に関しては数多くの提案が
なされている。特公昭51−20040には、モノシランを製
造するための最も有力な方法の1つとして、ナトリウム
エトキシドを触媒として、トリエトキシシランを不均化
する方法が記載されている。
Many proposals have hitherto been made regarding a method for producing monosilane. Japanese Examined Patent Publication No. 51-20040 describes a method of disproportionating triethoxysilane using sodium ethoxide as a catalyst, as one of the most effective methods for producing monosilane.

〔発明が解決しようとする問題点〕 この方法は触媒効率が極めて高い等の優れた特徴をもつ
ものであるが、触媒反応を液相媒体中で実施するため、
触媒が副生物質等に溶解し、触媒と副生物質との分離が
必ずしも容易でない等の問題点がある。尚、この反応は
前記式から明らかなように、副生物質が多量に生成する
が、この副生物質は種々ケイ素化合物の原料として有用
であり、触媒を除去することが必要である。
[Problems to be Solved by the Invention] Although this method has excellent characteristics such as extremely high catalytic efficiency, since the catalytic reaction is carried out in a liquid phase medium,
There is a problem in that the catalyst is dissolved in the by-product substance and the separation of the catalyst and the by-product substance is not always easy. As is clear from the above formula, this reaction produces a large amount of a by-product, but this by-product is useful as a raw material for various silicon compounds, and it is necessary to remove the catalyst.

本発明の目的は原料のアルコキシシランからモノシラン
を効率よく製造し得え、かつ反応生成物から触媒を容易
に分離できるモノシランの製造方法を提供するにある。
An object of the present invention is to provide a method for producing monosilane, which can efficiently produce monosilane from a raw material alkoxysilane and can easily separate a catalyst from a reaction product.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、前記欠点に鑑み、触媒効率が高く、かつ
反応生成物との分離操作の容易な触媒について研究した
結果、ある種の固体状の触媒が、この目的に合致するも
のである事を見出し本発明に到達した。
In view of the above-mentioned drawbacks, the present inventors have studied a catalyst having high catalytic efficiency and easy separation operation from a reaction product, and as a result, a certain solid catalyst is suitable for this purpose. They have found things and reached the present invention.

すなわち、本発明は、コバルト、ニツケル及び白金族の
金属またはその化合物から選ばれる触媒の存在下に一般
式(I)で示されるアルコキシシランを不均化して HnSi(OR)4-n (I) (式中、Rは炭素数1〜6のアルキル基、nは1、2あ
るいは3を表わす。) モノシランを製造する方法に存する。
That is, the present invention disproportionates an alkoxysilane represented by the general formula (I) in the presence of a catalyst selected from the group consisting of cobalt, nickel and platinum group metals or compounds thereof to produce HnSi (OR) 4-n (I). (In the formula, R represents an alkyl group having 1 to 6 carbon atoms, and n represents 1, 2, or 3.) A method for producing monosilane exists.

以下に、本発明を詳細に説明する。The present invention will be described in detail below.

本発明において使用される原料であるところのアルコキ
シシランは、例えば特開昭54−163529、特開昭55−7689
に記載の方法等により容易に調製される。
Alkoxysilanes, which are the raw materials used in the present invention, are, for example, JP-A Nos. 54-163529 and 55-7689.
It is easily prepared by the method described in 1.

本発明方法における不均化反応は、コバルト、ニツケ
ル、白金族の金属およびその化合物から選ばれる触媒を
使用して実施される。
The disproportionation reaction in the process of the invention is carried out using a catalyst selected from cobalt, nickel, platinum group metals and compounds thereof.

触媒の具体例としては、Co、Ni、Ru、Rh、Pd、Os、Ir及
びPtが挙げられ、使用に際していずれも金属塩及び金
属、或は担体に担持した金属の状態でも何等さしつかえ
ない。特に、Ru、Rh、Pd、Pt等の貴金属は担体に担持し
て用いるのが好適である。またこれらの金属塩として
は、原料のアルコキシシラン及び反応生成物に実質的に
不溶のものであれば種々の化合物がいずれも使用でき、
例えばこれら金属のフツ化物、塩化物、臭化物、沃化物
のハロゲン化物等を挙げることができる。
Specific examples of the catalyst include Co, Ni, Ru, Rh, Pd, Os, Ir and Pt, and any of them may be used in the state of a metal salt and a metal, or a metal supported on a carrier. In particular, it is preferable to use a noble metal such as Ru, Rh, Pd, or Pt supported on a carrier. As these metal salts, any of various compounds can be used as long as they are substantially insoluble in the raw material alkoxysilane and the reaction product.
Examples thereof include fluorides, chlorides, bromides, and halides of these metals.

触媒の使用量は、アルコキシシランに対して、0.01重量
%以上でその本来の目的を達成する事が出来るが、通常
0.1〜50重量%の範囲の条件が採用される。
Although the amount of the catalyst used is 0.01% by weight or more based on the alkoxysilane, the original purpose can be achieved.
Conditions in the range of 0.1 to 50% by weight are adopted.

反応の型式としては、回分式でも連続式でも実施し得
る。特に装置の材質に何等の制約もなく実施出来るの
で、触媒形状に好適な反応型式を自由に選択する事がで
きる。
The reaction may be carried out batchwise or continuously. In particular, since it can be carried out without any restriction on the material of the apparatus, it is possible to freely select a reaction type suitable for the catalyst shape.

反応は常圧、常温下で実施しても充分目的を達成するこ
とが可能であるが一般には、常圧、加温下で行う方がよ
り好ましい。本発明による方法は、あまり温度に左右さ
れないが特に好ましい温度は、50°〜80℃である。
The reaction can achieve the purpose sufficiently even if it is carried out under normal pressure and normal temperature, but it is generally more preferable to carry out the reaction under normal pressure and heating. The process according to the invention is less temperature-dependent, but a particularly preferred temperature is between 50 ° and 80 ° C.

反応圧力も減圧下から加圧下まで任意の圧力で実施しう
るが、生成物モノシランが空気と接触すると瞬時に着火
する事より、常圧条件が操作性に優れている。
The reaction pressure may be any pressure from reduced pressure to increased pressure. However, when the product monosilane comes into contact with air, it is instantly ignited, and the normal pressure condition is excellent in operability.

本発明における原料のアルコキシシランは、単一組成で
も混合物でも何等さしつかえない。一方不均化反応生成
物の1つであるテトラメトキシシランや、他の物質、例
えばヘキサン、ヘプタン等の脂肪族飽和炭化水素や、シ
クロヘキサン等の脂環式飽和炭化水素を溶媒として共に
用いる事も出来る。
The raw material alkoxysilane in the present invention may be a single composition or a mixture. On the other hand, tetramethoxysilane, which is one of the disproportionation reaction products, and other substances such as saturated aliphatic hydrocarbons such as hexane and heptane, and alicyclic saturated hydrocarbons such as cyclohexane may be used together as a solvent. I can.

反応は通常、窒素やアルゴンの不活性ガス雰囲気下で実
施される。特に窒素の使用はモノシランを凝縮捕集する
場合に好適である。
The reaction is usually carried out under an inert gas atmosphere of nitrogen or argon. In particular, the use of nitrogen is suitable for condensing and collecting monosilane.

〔実施例〕〔Example〕

次に本発明方法を実施例により更に具体的に説明する
が、本発明はその要旨をこえない限り以下の実施例に限
定されるものでない。
Next, the method of the present invention will be described more specifically by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist.

実施例−1 攪拌翼、窒素ガス導入管、冷却管付ガス排出管及び液仕
込み管を備えた、100ml内容積の耐圧ガラスオートクレ
ープに触媒として加温下窒素気流で乾燥したFLUOROCHEM
社製NiF40.2gを予め仕込み、充分窒素でオートクレーブ
系内を置換した。しかる後トリメトキシシラン0.2molを
室温下、液仕込み管より添加し攪拌を開始した。
Example-1 A FLUOROCHEM dried as a catalyst in a nitrogen stream under heating in a pressure-resistant glass autoclave having an internal volume of 100 ml equipped with a stirring blade, a nitrogen gas introduction pipe, a gas discharge pipe with a cooling pipe, and a liquid charging pipe.
NiF 4 ( 0.2 g) manufactured by the same company was charged in advance, and the inside of the autoclave system was sufficiently replaced with nitrogen. Then, 0.2 mol of trimethoxysilane was added from a liquid charging tube at room temperature and stirring was started.

反応は室温下、触媒とトリメトキシシランが接触した時
点より起りモノシランが生成し、その後70℃に加温し、
モノシランが生成しなくなるまで3時間実施した。生成
モノシランは経時的にガスクロマトクラフイーで定量し
た。その結果、トリメトキシシランの転換率5mole%、
モノシラン生成0.0025molであつた。反応後、反応生成
物を過し、触媒を分離した。触媒は原料及び反応生成
物に不溶であり分離は容易である。
The reaction occurs at room temperature from the time when the catalyst and trimethoxysilane come into contact with each other, monosilane is produced, and then heated to 70 ° C,
It was carried out for 3 hours until no monosilane was generated. The produced monosilane was quantitatively determined by gas chromatography over time. As a result, the conversion of trimethoxysilane is 5 mole%,
The production of monosilane was 0.0025 mol. After the reaction, the reaction product was passed and the catalyst was separated. The catalyst is insoluble in the raw materials and reaction products, and can be easily separated.

実施例−2〜6 実施例−1において実施した方法で触媒の種類、量、及
び反応時間をかえて実施した結果を表−1に示す。尚、
用いたそれぞれの触媒は原料及び反応生成物に不溶であ
り、反応生成物を過することにより容易に触媒を分離
することができた。
Examples-2 to 6 Table-1 shows the results obtained by changing the type and amount of the catalyst and the reaction time by the method used in Example-1. still,
Each of the catalysts used was insoluble in the raw material and the reaction product, and the catalyst could be easily separated by passing the reaction product.

実施例−7 N2導入管、液導入管及び温度計を備えた内径12mm、長さ
200mmのパイレツクス製硝子反応器に予め充分乾燥した
日本エンゲルハルド製の成型状Ru2%担持アルミナ触媒
を10g充填し、N2流通下70℃に加温する。
Example-7 Inner Diameter 12 mm, Length with N 2 Inlet Pipe, Liquid Inlet Pipe and Thermometer
A glass reactor made of Pyrex of 200 mm is charged with 10 g of a fully dried alumina catalyst carrying Ru2% made by Engelhard of Japan in advance, and heated to 70 ° C. under N 2 flow.

しかる後、トリメトキシシランを毎時0.2molのわりで連
続的に仕込む。
After that, trimethoxysilane is continuously charged at a rate of 0.2 mol / hour.

反応は、6時間実施した。その間、反応器よりオーバー
フロー形式により捕集した液成分、及生成したガス成分
は別々にガスクロマトグラフイーで定量した。その結果
3時間目、及び6時間目の触媒性能として、夫々、トリ
メトキシシラン転換率43mole%、33mole%、モノシラン
生成量0.0215mole、0.0165moleであつた。
The reaction was carried out for 6 hours. During that time, the liquid components collected from the reactor in the overflow format and the produced gas components were separately quantified by gas chromatography. As a result, the catalytic performances at the 3rd hour and the 6th hour were respectively trimethoxysilane conversion rates of 43mole% and 33mole% and monosilane production amounts of 0.0215mole and 0.0165mole, respectively.

実施例−8〜10 実施例−7において実施した方法で、触媒の種類、量、
及び反応時間をかえて実施した結果を表−2に示す。
Examples-8 to 10 By the method carried out in Example-7, the type and amount of the catalyst,
Table 2 shows the results obtained by changing the reaction time.

〔効果〕 本発明方法によれば、上記したようにアルコキシシラン
からモノシランを容易に得ることができる。しかも本発
明で用いる触媒は反応生成物に実質的に不溶であり、反
応生成物からの分離は極めて容易である。反応生成物
(副生物質)は種々のケイ素製品の原料として有用であ
り、触媒の分離が容易なことは工業的に意義が大きい。
[Effect] According to the method of the present invention, monosilane can be easily obtained from alkoxysilane as described above. Moreover, the catalyst used in the present invention is substantially insoluble in the reaction product, and separation from the reaction product is extremely easy. Reaction products (by-products) are useful as raw materials for various silicon products, and the ease of catalyst separation is industrially significant.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式(I)で示されるアルコキシシラン
を触媒の存在下に HnSi(OR)4-n …………(I) (式中、Rは炭素数1〜6のアルキル基、nは1、2あ
るいは3を表わす。) 不均化してモノシランを製造する方法において、触媒と
してコバルト、ニツケル、白金族の金属又はその化合物
から選ばれる触媒を使用する事を特徴とするモノシラン
の製造法。
1. An alkoxysilane represented by the general formula (I) in the presence of a catalyst, HnSi (OR) 4-n (I) (wherein R is an alkyl group having 1 to 6 carbon atoms, n represents 1, 2 or 3.) In the method for producing monosilane by disproportionation, a catalyst selected from cobalt, nickel, platinum group metal or a compound thereof is used as a catalyst. Law.
JP10477885A 1985-05-16 1985-05-16 Manufacturing method of monosilane Expired - Lifetime JPH0688769B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10477885A JPH0688769B2 (en) 1985-05-16 1985-05-16 Manufacturing method of monosilane
US06/860,572 US4667047A (en) 1985-05-16 1986-05-07 Method for producing monosilane and a tetraalkoxysilane
DE8686106556T DE3686508T2 (en) 1985-05-16 1986-05-14 METHOD FOR THE PRODUCTION OF MONOSILANE AND A TETRAAL COXYSILANE.
EP86106556A EP0201919B1 (en) 1985-05-16 1986-05-14 Method for producing monosilane and a tetraalkoxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10477885A JPH0688769B2 (en) 1985-05-16 1985-05-16 Manufacturing method of monosilane

Publications (2)

Publication Number Publication Date
JPS61261209A JPS61261209A (en) 1986-11-19
JPH0688769B2 true JPH0688769B2 (en) 1994-11-09

Family

ID=14389934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10477885A Expired - Lifetime JPH0688769B2 (en) 1985-05-16 1985-05-16 Manufacturing method of monosilane

Country Status (1)

Country Link
JP (1) JPH0688769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523123B2 (en) * 1987-02-26 1996-08-07 チッソ株式会社 Silane gas manufacturing method

Also Published As

Publication number Publication date
JPS61261209A (en) 1986-11-19

Similar Documents

Publication Publication Date Title
JP3409665B2 (en) Method for producing dialkyl carbonate
JPH06199874A (en) Method for eliminating silane having hydrogen atom directly bonded to silicon atom from mixture formed in process for synthesizing methylchlorosilane
JPH0688769B2 (en) Manufacturing method of monosilane
JPH0725534B2 (en) Manufacturing method of monosilane
JPS6341919B2 (en)
JP2613262B2 (en) Method for producing trichlorosilane
JPH0725535B2 (en) Method for producing monosilane
JPS6028818B2 (en) Method for producing indole or indole derivatives
JPH04156944A (en) Catalyst for dissociating methanol
JP2613261B2 (en) Method for producing trichlorosilane
JP2615803B2 (en) Monosilane production method
JPH0688770B2 (en) Monosilane manufacturing method
JP2615798B2 (en) Method for producing monosilane
JPH1121288A (en) Production of alkoxysilane
JP2523123B2 (en) Silane gas manufacturing method
JP2001002682A (en) Highly pure dialkylaminosilane and its production
JPH10279515A (en) Production of 2-hydroxy-4-methoxyacetophenone
JP2608722B2 (en) Method for producing 4-methyl-1-pentene
JP2773568B2 (en) Method for producing trialkoxysilane
JP2615802B2 (en) Monosilane manufacturing method
JPS61291549A (en) Production of aromatic secondary amino compound
JP2608715B2 (en) Method for producing 4-methyl-1-pentene
JPH0834762A (en) Production of alpha-ketonic acid ester
JP2906919B2 (en) Method for producing trialkoxysilane
JP2906918B2 (en) Method for producing trialkoxysilane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term