[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0686221B2 - Electric power steering device - Google Patents

Electric power steering device

Info

Publication number
JPH0686221B2
JPH0686221B2 JP21780886A JP21780886A JPH0686221B2 JP H0686221 B2 JPH0686221 B2 JP H0686221B2 JP 21780886 A JP21780886 A JP 21780886A JP 21780886 A JP21780886 A JP 21780886A JP H0686221 B2 JPH0686221 B2 JP H0686221B2
Authority
JP
Japan
Prior art keywords
temperature
steering
steering force
electric motor
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21780886A
Other languages
Japanese (ja)
Other versions
JPS6371480A (en
Inventor
康夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP21780886A priority Critical patent/JPH0686221B2/en
Priority to US07/097,020 priority patent/US4771843A/en
Publication of JPS6371480A publication Critical patent/JPS6371480A/en
Publication of JPH0686221B2 publication Critical patent/JPH0686221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0496Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures by using a temperature sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は操舵力の伝達系に操舵補助力を発生する電動機
を備えた電動機式動力舵取装置に係り、詳しくは、伝達
系の電動機あるいは機構要素等の温度に応じて電動機へ
通電する電流値を制限する電動機式動力舵取装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to an electric motor type power steering apparatus provided with an electric motor for generating a steering assist force in a steering force transmission system, and more specifically, to a transmission system electric motor or The present invention relates to an electric motor type power steering apparatus that limits a current value to be applied to an electric motor according to the temperature of a mechanical element or the like.

(従来の技術) 一般に、操舵力の伝達系に操舵補助力を発生する電動機
を有した電動機式動力舵取装置にあっては、操向ハンド
ルの操舵速度、操舵角度、操舵力あるいは車両の車速等
の操舵情報に応じて電動機へ通電する電流値を制御し、
この電動機が発生する操舵補助力を操向ハンドルへ加え
られる手動操舵力とともに伝達系の歯車機構等を介し操
向車輪へ伝達して運転者の操舵負担を軽減する。
(Prior Art) Generally, in an electric motor type power steering apparatus having an electric motor for generating a steering assist force in a steering force transmission system, a steering speed of a steering wheel, a steering angle, a steering force or a vehicle speed of a vehicle. Controls the value of the current supplied to the electric motor according to steering information such as
The steering assist force generated by the electric motor is transmitted to the steered wheels via the gear mechanism of the transmission system and the like together with the manual steering force applied to the steering wheel to reduce the steering burden on the driver.

ところが、このような電動機式動力舵取装置は、電動機
の巻線や整流部、電動機駆動用のパワートランジスタお
よび減速装置等の機構部分の摺動部等の発熱要素を伝達
系に有し、また、装置自体がエンジン等の発熱体の近傍
に配置され、さらに、この環境温度も四季に応じて変化
する。このため、このような電動式動力舵取装置にあっ
ては、電動機、駆動用のパワートランジスタあるいは機
構部分の周囲の温度変動も著しく、また、その温度が高
温となることを避けられない。このような電動機式動力
舵取装置は、当然に、電動機等の構成機器が高温度環境
下にあっても耐えるように設計されるが、特異な使用条
件下にあっては構成機器の使用限界温度を越えた高温度
環境下での使用を避けられないことがあった。
However, such an electric motor type power steering apparatus has a heat generating element such as a winding and a rectifying part of an electric motor, a power transistor for driving the electric motor, and a sliding part of a mechanical part such as a reduction gear in a transmission system, and The device itself is arranged in the vicinity of a heating element such as an engine, and the ambient temperature also changes according to the four seasons. Therefore, in such an electric power steering apparatus, temperature fluctuations around the electric motor, the power transistor for driving, or the mechanical portion are notable, and the temperature is inevitably high. Such an electric motor-driven power steering device is naturally designed to withstand components such as electric motors even in high temperature environments, but under unusual operating conditions, the operating limits of the components are limited. In some cases, it was unavoidable to use in a high temperature environment that exceeds the temperature.

そこで、従来、このような高温度環境下における機器の
保護を目的とした電動機式動力舵取装置が実開昭61-914
65号公報等において提案されている。この電動機式動力
舵取装置は、電動機の温度が所定温度を超えた時に電動
機へ通電する電流を制限して電動機等の保護を図るもの
である。
Therefore, in the past, an electric motor-powered steering device for the purpose of protecting equipment in such a high temperature environment has been developed in actual use.
It is proposed in Japanese Patent Publication No. 65. This electric motor type power steering apparatus protects the electric motor and the like by limiting the electric current supplied to the electric motor when the temperature of the electric motor exceeds a predetermined temperature.

(本発明が解決しようとする問題点) しかしながら、前述した実開昭61-91465号公報に記載さ
れた電動機式動力舵取装置にあっては、電動機の温度が
所定温度を超えると操舵状態の如何にかかわらず電動機
へ通電される電流が制限されるため、電動機の高温時に
おいて電動機が発生する操舵補助力が伝達系に負荷され
る操舵力と無関係に小さくなり、操舵フィーリングが悪
化するという問題点があった。
(Problems to be Solved by the Present Invention) However, in the electric motor type power steering apparatus described in Japanese Utility Model Laid-Open No. 61-91465, when the temperature of the electric motor exceeds a predetermined temperature, Regardless of the current, the current supplied to the electric motor is limited, so that the steering assist force generated by the electric motor when the electric motor is hot becomes small regardless of the steering force applied to the transmission system, which deteriorates the steering feeling. There was a problem.

本発明は、上述した問題点を鑑みてなされたもので、操
舵系の温度によって補正された操舵力に基づいて電動機
への通電電流を制御する電動機式動力舵取装置を提供
し、操舵フィーリングを悪化させること無く電動機等の
機器の保護を図ることを目的とする。
The present invention has been made in view of the above-mentioned problems, and provides an electric motor type power steering apparatus that controls a current supplied to an electric motor based on a steering force corrected by a temperature of a steering system, and a steering feeling. The purpose is to protect equipment such as electric motors without deteriorating.

(問題点を解決するための手段) 本発明は、第1図の全体構成図に示すように、 操舵力の伝達系に操舵補助力を発生する電動機を備え、
該電動機へ通電する電流を、少なくとも前記伝達系の操
舵力を検出する操舵力検知手段および前記伝達系の温度
を検出する温度検知手段の出力信号に基づき制御する電
動機式動力舵取装置において、前記操舵力検知手段によ
り検出された操舵力を前記温度検知手段により検知され
た温度に基づき補正して補正操舵力を決定する補正手段
と、該補正手段により決定された補正操舵力に基づいて
少なくとも高温時に前記伝達系の摩擦抵抗成分に相当す
る補助力が確保された目標電流値を決定する電流値決定
手段と、該電流値決定手段の出力信号に基づいて前記電
動機へ前記目標電流値の電流を通電する通電手段とを設
けたことを要旨とする。
(Means for Solving Problems) The present invention, as shown in the overall configuration diagram of FIG. 1, includes a motor for generating a steering assist force in a steering force transmission system,
In the electric power steering apparatus, the electric current supplied to the electric motor is controlled based on output signals of at least steering force detecting means for detecting a steering force of the transmission system and temperature detecting means for detecting a temperature of the transmission system. A correction unit that corrects the steering force detected by the steering force detection unit based on the temperature detected by the temperature detection unit to determine a corrected steering force, and at least a high temperature based on the corrected steering force determined by the correction unit. Sometimes a current value determining means for determining a target current value for which an auxiliary force corresponding to the frictional resistance component of the transmission system is secured, and a current of the target current value to the electric motor based on an output signal of the current value determining means. The gist is to provide an energizing means for energizing.

(作用) 本発明にかかる電動機式動力舵取装置によれば、電動機
あるいは機構部分等の伝達系の温度によって補正された
補正操舵力に基づいて電動機への通電電流を制御し、伝
達系の温度が高い時には電動機への通電電流を減少する
ため、電動機等の発熱量も減少してその温度が使用限界
温度を超えて上昇することは無くなる。そして、この電
動機への通電電流は伝達系の温度によって補正されてい
るが基本的には伝達系の操舵力(操舵反力)に基づいて
制御され、かつ、伝達系のフリクション(摩擦)成分に
相当する補助力が確保されるように制御されるため、操
舵フィーリングが悪化することも無く、また、緊急回避
等の操舵を確実に行なうことができる。
(Effect) According to the electric motor type power steering apparatus of the present invention, the current supplied to the electric motor is controlled based on the corrected steering force corrected by the temperature of the electric transmission system such as the electric motor or the mechanical portion to control the temperature of the electric transmission system. When is high, the energizing current to the electric motor is reduced, so the amount of heat generated by the electric motor and the like is also reduced, and the temperature does not rise above the operating limit temperature. The electric current supplied to the electric motor is corrected by the temperature of the transmission system, but is basically controlled based on the steering force (steering reaction force) of the transmission system, and the friction (friction) component of the transmission system is obtained. Since the control is performed so as to secure a corresponding auxiliary force, the steering feeling does not deteriorate, and steering such as emergency avoidance can be reliably performed.

(実施例) 以下、本発明の実施例を添付図面に基づいて説明する。(Example) Hereinafter, an example of the present invention is described based on an accompanying drawing.

第2図から第7図は本発明の一実施例にかかる電動機式
動力舵取装置を表し、第2図が機構部分の断面図、第3
図が第2図のIII−III矢視断面図、第4図が第2図のIV
−IV矢視断面図、第5図が第2図のV−V矢視断面図、
第6図が電気回路図、第7図および第8図がフローチャ
ートである。
2 to 7 show an electric motor type power steering apparatus according to one embodiment of the present invention. FIG. 2 is a sectional view of a mechanical portion, and FIG.
Fig. 2 is a sectional view taken along the line III-III in Fig. 2, and Fig. 4 is IV in Fig. 2.
-IV arrow sectional view, FIG. 5 is a VV arrow sectional view of FIG. 2,
FIG. 6 is an electric circuit diagram, and FIGS. 7 and 8 are flowcharts.

第2図において、(11)は図外の操向ハンドルにステア
リングシャフト等を介して連結されたピニオン軸であ
り、このピニオン軸(11)は軸受(12),(13)により
ピニオンホルダ(14)に回転自在に支承されている。ピ
ニオンホルダ(14)はその回転中心がピニオン軸(11)
の回転中心に対して偏心し、軸受(15),(16)により
ラックケース(17)に回転自在に支承されている。ピニ
オン軸(11)にはピニオンギヤ(11a)が固設され、こ
のピニオンギヤ(11a)がラック軸(20)の図中背面側
に形成されたラック歯(20a)に噛合している。
In FIG. 2, (11) is a pinion shaft connected to a steering handle (not shown) via a steering shaft or the like, and this pinion shaft (11) is provided with bearings (12) and (13). ) Is rotatably supported. The rotation center of the pinion holder (14) is the pinion shaft (11).
It is eccentric with respect to the rotation center of and is rotatably supported by the rack case (17) by bearings (15) and (16). A pinion gear (11a) is fixed to the pinion shaft (11), and the pinion gear (11a) meshes with rack teeth (20a) formed on the back side of the rack shaft (20) in the figure.

このピニオン軸(11)の周囲のケース(17)内には上方
に操舵トルクセンサ(操舵力検知手段)(21)および制
御回路(63)が、下方のケース(17)内には駆動回路
(65)が設けられている。操舵トルクセンサ(21)は、
第3図に示すように、ピニオンホルダ(14)の上面に突
設された可動コア(14a)とケース(17)内に固着され
た差動変圧器(22)とにより構成されている。差動変圧
器(22)は、ケース(17)に固定されたE形をなす鉄芯
(23)に1次コイル(24)、2つの2次コイル(25),
(25)および1次コイル(24)の周囲に補償用の3次コ
イル(図示省略)を巻線してなり、操舵トルクすなわち
操向ハンドルに作用する操舵反力を可動コア(14a)の
変位で検出する。この操舵トルクセンサ(21)は、1次
コイル(24)に制御回路(63)からの交流パルス信号が
印加され、2次コイル(25),(25)がピニオンホルダ
(14)の回転に伴う可動コア(14a)との相対変位に対
応して差動的に操舵トルク検出信号(S1),(S2)を制
御回路(63)に出力する。なお、第2図中、(27)はシ
ール部材、(28)はキャップ、(29)はバッテリ電源に
接続される電源コードである。
A steering torque sensor (steering force detection means) (21) and a control circuit (63) are provided above the case (17) around the pinion shaft (11), and a drive circuit (see FIG. 65) is provided. The steering torque sensor (21)
As shown in FIG. 3, the pinion holder (14) is composed of a movable core (14a) protruding from the upper surface and a differential transformer (22) fixed in the case (17). The differential transformer (22) includes a primary coil (24), two secondary coils (25), and an E-shaped iron core (23) fixed to the case (17).
A compensation tertiary coil (not shown) is wound around the (25) and the primary coil (24) so that the steering torque, that is, the steering reaction force acting on the steering wheel is displaced by the displacement of the movable core (14a). Detect with. In this steering torque sensor (21), an AC pulse signal from the control circuit (63) is applied to the primary coil (24), and the secondary coils (25) and (25) follow the rotation of the pinion holder (14). The steering torque detection signals (S 1 ) and (S 2 ) are differentially output to the control circuit (63) corresponding to the relative displacement with the movable core (14a). In FIG. 2, (27) is a seal member, (28) is a cap, and (29) is a power cord connected to a battery power source.

ラック軸(20)はその両端が図外の操向車輪にタイロッ
ド等を介して連結され、図中右方のピニオンギヤ(11
a)の近傍でラックガイド(図示省略)を介し、また、
図中左方でメタル軸受(31)を介しケース(17)に軸方
向移動可能に支持されている。
Both ends of the rack shaft (20) are connected to steering wheels (not shown) through tie rods and the like, and the pinion gear (11
via a rack guide (not shown) near a),
It is axially movably supported by a case (17) via a metal bearing (31) on the left side in the figure.

また、ケース(17)内には、ラック軸(20)の中央部の
周囲に操舵補助力を発生する電動機(5)が設けられて
いる。この電動機(5)は、ラックケース(17)の内周
面に固着された界磁石(33)と、ラック軸(20)の周囲
に回転自在に配設されたロータ(34)と、ラックケース
(17)に固定されたホルダ(35)内に収納された整流子
(36)と、この整流子(36)に摺接するブラシ(37)
と、を有している。ロータ(34)は軸受(38),(39)
により回転自在に支承されて出力軸として機能する筒軸
(40)を備え、この筒軸(40)の外周にはスキュー溝を
有する積層鉄芯(41)および多重巻された電機子巻線
(42)が同軸かつ一体的に固定されている。この電機子
巻線(42)は、整流子(36)およびブラシ(37)を介し
制御装置(62)の後述する電動機駆動回路(65)に接続
され、制御回路(63)により駆動制御される。
Further, in the case (17), an electric motor (5) that generates a steering assist force is provided around the center of the rack shaft (20). The electric motor (5) includes a field magnet (33) fixed to an inner peripheral surface of a rack case (17), a rotor (34) rotatably arranged around a rack shaft (20), and a rack case. A commutator (36) housed in a holder (35) fixed to (17), and a brush (37) slidingly contacting the commutator (36).
And have. The rotor (34) has bearings (38), (39)
A cylindrical shaft (40) that is rotatably supported by and functions as an output shaft, and a laminated iron core (41) having a skew groove on the outer periphery of the cylindrical shaft (40) and a multi-turned armature winding ( 42) is coaxially and integrally fixed. The armature winding (42) is connected to a later-described electric motor drive circuit (65) of the control device (62) via the commutator (36) and the brush (37), and is drive-controlled by the control circuit (63). .

この電動機(5)の近傍には、ケース(17)の内壁に制
御回路(63)と結線された温度センサ(温度検知手段)
(60)が配設されている。この温度センサ(60)は、温
度変化に応じて抵抗値が変化するサーミスタから成り、
温度変化に対して略反比例的な電圧特性の温度検出信号
(S3)を制御回路(63)へ出力する。なお、言うまでも
無いが、この温度センサ(60)は、熱電対等の同等の機
能を有するもので代替することも可能である。
Near the electric motor (5), a temperature sensor (temperature detecting means) connected to the control circuit (63) on the inner wall of the case (17).
(60) is provided. This temperature sensor (60) is composed of a thermistor whose resistance value changes according to temperature change,
A temperature detection signal (S 3 ) having a voltage characteristic that is substantially inversely proportional to the temperature change is output to the control circuit (63). Needless to say, the temperature sensor (60) may be replaced with one having an equivalent function such as a thermocouple.

さらに、ケース(17)内には、電動機(5)の図中左方
にギヤ(40a),(43),(44),(45)から構成され
た減速装置(46)が設けられている。この減速装置(4
6)は、第4図に示すように、ギヤ(40a)が筒軸(40)
の外周に形成され、このギヤ(40a)に小径ギヤ(43)
が噛合し、このギヤ(43)に一体連結された小径ギヤ
(44)がねじ軸(48)に固着された大径ギヤ(45)と噛
合している。ねじ軸(48)は、第2図に示すように、ラ
ックケース(17)内にラック軸(20)と平行に軸受(4
9),(50)により回転自在に支承され、ラック軸(2
0)の移動可能距離に対応した範囲にわたって螺旋溝(4
8a)が形成されている。このねじ軸(48)には、第5図
に示すように、内周面に螺旋溝(52a)を形成されたナ
ット部材(52)が図示しない多数のボールを介して嵌合
している。これら螺旋溝(48a),(52a)およびボール
は周知のボールねじ機構(53)を構成し、このボールね
じ機構(53)によってねじ軸(48)とナット部材(52)
とが動力伝達可能に連結されている。
Further, in the case (17), a speed reducer (46) including gears (40a), (43), (44) and (45) is provided on the left side of the electric motor (5) in the figure. . This reduction gear (4
6), as shown in FIG. 4, the gear (40a) is the cylinder shaft (40).
It is formed on the outer circumference of this gear (40a) and has a small diameter gear (43)
Mesh with each other, and the small diameter gear (44) integrally connected to the gear (43) meshes with the large diameter gear (45) fixed to the screw shaft (48). As shown in FIG. 2, the screw shaft (48) is mounted in the rack case (17) in parallel with the bearing shaft (4).
9), (50) are rotatably supported by the rack shaft (2
0) spiral groove (4
8a) has been formed. As shown in FIG. 5, a nut member (52) having a spiral groove (52a) formed on its inner peripheral surface is fitted to the screw shaft (48) through a large number of balls (not shown). The spiral grooves (48a), (52a) and the balls constitute a well-known ball screw mechanism (53), and the ball screw mechanism (53) causes the screw shaft (48) and the nut member (52).
And are connected so that power can be transmitted.

ナット部材(52)は、一対のフランジ(54),(54)を
有し、このフランジ(54),(54)はそれぞれブッシュ
(55),(55)を介して貫通するボルト(56),(56)
によりラックホルダ(57)に固定され、ラック軸(20)
と一体の軸方向運動のみが許容されている。ラックホル
ダ(57)は、ボルト(58)によりラック軸(20)に一体
的に締結されてラック軸(20)とナット部材(52)とを
ボルト(56),(56)およびブッシュ(55),(55)を
介し結合し、ナット部材(52)にラック軸(20)と一体
の軸方向移動のみを許容する。上記ブッシュ(55),
(55)は、ラック軸(20)に操舵反力に伴い作用する曲
げモーメントを吸収し、ボールねじ機構(53)のねじ軸
(48)に不要な荷重が加わることを防止する。
The nut member (52) has a pair of flanges (54), (54), and the flanges (54), (54) pass through the bushes (55), (55), respectively, and the bolts (56), (56)
Fixed to the rack holder (57) by the rack shaft (20)
Only axial movement integral with is allowed. The rack holder (57) is integrally fastened to the rack shaft (20) with bolts (58) to connect the rack shaft (20) and the nut member (52) to the bolts (56), (56) and the bush (55). , (55) to allow the nut member (52) to move only in the axial direction integrally with the rack shaft (20). Above bush (55),
The (55) absorbs a bending moment acting on the rack shaft (20) due to a steering reaction force, and prevents an unnecessary load from being applied to the screw shaft (48) of the ball screw mechanism (53).

制御装置(62)は、第6図に示すように、制御回路(補
正手段,電流値決定手段)(63)および電動機駆動回路
(通電手段)(65)を有している。これら制御回路(6
3)および電動機駆動回路(65)は、リレー回路(75)
およびヒューズ回路(73)を介し車載バッテリ電源(7
2)に接続され、該電源(72)から電力の供給を受け
る。リレー回路(75)は、キースイッチ(74)および制
御回路(63)に接続され、これらにより駆動されて電力
の供給・遮断を行う。
As shown in FIG. 6, the control device (62) has a control circuit (correction means, current value determination means) (63) and a motor drive circuit (energization means) (65). These control circuits (6
3) and motor drive circuit (65) are relay circuits (75)
And the in-vehicle battery power supply (7
2) and is supplied with power from the power source (72). The relay circuit (75) is connected to the key switch (74) and the control circuit (63) and driven by these to supply and cut off power.

制御回路(63)は、マイクロコンピュータ回路(66)、
水晶発振回路(67)、温度センサ(60)用のインターフ
ェース回路(68)、トルクセンサ(21)用のインターフ
ェース回路(69)、定電圧回路(70)および増幅回路
(71)等が混成されている。マイクロコンピュータ回路
(66)には、インターフェース回路(68)を経て温度セ
ンサ(60)から温度検出振信号(S3)が入力するととも
にインターフェース回路(69)を経て操舵トルクセンサ
(21)から操舵トルク検出信号(S1),(S2)が入力
し、また、増幅回路(71)から信号(S4)が入力し、さ
らに、水晶発振回路(67)から基準クロック信号(C)
が入力している。温度センサ(60)用のインターフェー
ス回路(68)は、温度センサ(60)を1つの抵抗要素と
する抵抗ブリッジ回路と、該ブリッジ回路の出力を増幅
する増幅回路とを有し、温度センサ(60)の抵抗すなわ
ち温度(θ)を表す温度検出信号(S3)を出力する。操
舵トルクセンサ(21)用のインターフェース回路(69)
は、マイクロコンピュータ回路(66)から入力する基準
パルス信号を交流信号に変換して差動変圧器(22)の1
次コイル(24)に供給し、また、差動変圧器(22)の2
次コイル(25)および3次コイルの出力を整流平滑化
し、操舵トルクの作用方向と大きさを示す操舵トルク検
出信号(S1),(S2)を出力する。増幅回路(71)は後
述する電動機駆動回路(65)の電流検出回路(80)の出
力信号を増幅して電動機(5)に通電されている電流値
を表す信号(S4)を出力し、定電圧回路(70)は上述し
たリレー回路(75)からの電力を定電圧に保持して各回
路に供給する。マイクロコンピュータ回路(66)は、メ
モリおよび演算処理部等から構成され、メモリに記憶さ
れたプログラムに従い各信号(S1),(S2),(S3),
(S4)を処理してパルス幅変調制御信号(PWM)信号
(g),(h),(i),(j)を電動機駆動回路(6
5)へ出力する。
The control circuit (63) is a microcomputer circuit (66),
A crystal oscillator circuit (67), an interface circuit (68) for the temperature sensor (60), an interface circuit (69) for the torque sensor (21), a constant voltage circuit (70), an amplifier circuit (71), etc. are mixed. There is. The temperature detection vibration signal (S 3 ) is input from the temperature sensor (60) to the microcomputer circuit (66) via the interface circuit (68) and the steering torque sensor (21) to the steering torque via the interface circuit (69). The detection signals (S 1 ) and (S 2 ) are input, the signal (S 4 ) is input from the amplifier circuit (71), and the reference clock signal (C) is input from the crystal oscillation circuit (67).
Is typing. The interface circuit (68) for the temperature sensor (60) has a resistance bridge circuit having the temperature sensor (60) as one resistance element and an amplifier circuit for amplifying the output of the bridge circuit. ), That is, a temperature detection signal (S 3 ) representing the temperature (θ) is output. Interface circuit (69) for steering torque sensor (21)
Converts the reference pulse signal input from the microcomputer circuit (66) into an AC signal, and converts the reference pulse signal into 1 of the differential transformer (22).
It is supplied to the secondary coil (24), and also to the differential transformer (22).
The outputs of the secondary coil (25) and the tertiary coil are rectified and smoothed, and steering torque detection signals (S 1 ) and (S 2 ) indicating the direction and magnitude of the steering torque are output. The amplifier circuit (71) amplifies the output signal of the current detection circuit (80) of the electric motor drive circuit (65), which will be described later, and outputs a signal (S 4 ) representing the current value being supplied to the electric motor (5), The constant voltage circuit (70) holds the electric power from the above-mentioned relay circuit (75) at a constant voltage and supplies it to each circuit. The microcomputer circuit (66) is composed of a memory, an arithmetic processing unit, etc., and each signal (S 1 ), (S 2 ), (S 3 ), according to the program stored in the memory,
(S 4 ) is processed to output a pulse width modulation control signal (PWM) signal (g), (h), (i), (j) to the motor drive circuit (6
Output to 5).

電動機駆動回路(65)は、ゲートドライブ回路(77)
と、4つの電界効果型トランジスタ(FET)(Q1),(Q
2),(Q3),(Q4)を有するブリッジ回路(78)と、
昇圧回路(76)と、リレー回路(79)と、電流検出回路
(80)とを混成化して構成されている。ゲートドライブ
回路(77)は、昇圧回路(76)により電源電圧の2倍以
上に昇圧された電圧を印加され、マイクロコンピュータ
回路(66)から入力するPWM信号(g),(h),
(i),(j)に基づいてブリッジ回路(78)の各FET
へ駆動信号を出力する。ブリッジ回路(78)は、FET(Q
1),(Q4)のドレイン端子がリレー回路(75)にソー
ス端子がFET(Q2),(Q3)のドレイン端子にそれぞれ
接続され、また、FET(Q2),(Q3)のソース端子が電
源(72)の−端子に接続され、これらFET(Q1),
(Q2)のソース・ドレイン端子とFET(Q4)(Q3)のソ
ース・ドレイン端子との間に電動機(5)が接続されて
いる。このブリッジ回路(78)は、各FET(Q1),
(Q2),(Q3),(Q4)のゲートにゲートドライブ回路
(76)から駆動信号が入力し、FET(Q1),(Q3)また
はFET(Q2),(Q4)が一体かつ選択的にON駆動されて
電動機(5)へ通電する電流の方向と値を制御する。な
お、のブリッジ回路(78)は各PWM信号(g),
(h),(i),(j)に応じた衝撃係数(デューティ
ファクタ)の断続電流を電動機(5)に通電する。ここ
で、PWM信号(g)はFET(Q1)の衝撃係数に対応する信
号であり、以下同様に、PWM信号(h)はFET(Q4)、PW
M信号(i)はFET(Q3)、PWM信号(j)はFET(Q2)の
衝撃係数に対応する信号である。
Motor drive circuit (65), gate drive circuit (77)
And four field effect transistors (FET) (Q 1 ), (Q
2), and (Q 3), (a bridge circuit having Q 4) (78),
The booster circuit (76), the relay circuit (79), and the current detection circuit (80) are hybridized. The gate drive circuit (77) is applied with a voltage boosted at least twice the power supply voltage by the booster circuit (76), and the PWM signals (g), (h), which are input from the microcomputer circuit (66),
Each FET of the bridge circuit (78) based on (i) and (j)
Output a drive signal to. The bridge circuit (78) has a FET (Q
The drain terminals of 1 ) and (Q 4 ) are connected to the relay circuit (75), and the source terminals are connected to the drain terminals of FETs (Q 2 ) and (Q 3 ), respectively, and FETs (Q 2 ) and (Q 3 ) The source terminal of is connected to the-terminal of the power supply (72), and these FETs (Q 1 ),
The electric motor (5) is connected between the source / drain terminal of (Q 2 ) and the source / drain terminal of the FETs (Q 4 ) and (Q 3 ). This bridge circuit (78) consists of each FET (Q 1 ),
A drive signal is input from the gate drive circuit (76) to the gates of (Q 2 ), (Q 3 ), (Q 4 ), and FET (Q 1 ), (Q 3 ) or FET (Q 2 ), (Q 4 ) Is integrally and selectively driven ON to control the direction and value of the current flowing to the electric motor (5). In addition, the bridge circuit (78) of each PWM signal (g),
An intermittent current having an impact coefficient (duty factor) corresponding to (h), (i), and (j) is applied to the electric motor (5). Here, the PWM signal (g) is a signal corresponding to the impact coefficient of the FET (Q 1 ), and similarly, the PWM signal (h) is the FET (Q 4 ), PW
The M signal (i) is a signal corresponding to the impact coefficient of the FET (Q 3 ) and the PWM signal (j) is a signal corresponding to the impact coefficient of the FET (Q 2 ).

リレー回路(79)は、マイクロコンピュータ回路(66)
に接続され、マイクロコノユータ回路(66)の出力信号
に応じて電動機(5)とブリッジ回路(78)との間を遮
断・接続し、また、電流検出回路(80)は、電動機
(5)に通電された電流値を検出して該電流値を表す信
号を増幅回路(71)へ出力する。
Relay circuit (79) is a microcomputer circuit (66)
Connected between the electric motor (5) and the bridge circuit (78) in accordance with the output signal of the micro-computer circuit (66), and the current detection circuit (80) is connected to the electric motor (5). The current value applied to the circuit is detected and a signal representing the current value is output to the amplifier circuit (71).

次に、本実施例の作用を第7図を参照して説明する。Next, the operation of this embodiment will be described with reference to FIG.

この電動機式動力舵取装置は、マイクロコンピュータ回
路(66)において第7図のフローチャートに示す一連の
処理を実行して電動機(5)の制御を行う。
This electric motor type power steering apparatus controls the electric motor (5) by executing a series of processes shown in the flowchart of FIG. 7 in the microcomputer circuit (66).

まず、イグニッションキーが操作されてキースイッチ
(74)がONに投入されると、マイクロコンピュータ回路
(66)等に電力が供給され、マイクロコンピュータ回路
(66)は制御を開始する(ステップP1)。次にステップ
P2では、マイクロコンピュータ回路(66)の初期化(イ
ニシャライズ)が行なわれ、内部のレジスタ等の記憶デ
ータの消去等を行う。続いて、ステップP3においては、
他に定義されているサブルーチンに従い初期故障診断が
行なわれ、全てが正常に機能している場合にのみステッ
プP4へ進む。
First, when the ignition key is operated and the key switch (74) is turned on, electric power is supplied to the microcomputer circuit (66) and the like, and the microcomputer circuit (66) starts control (step P 1 ). . Next step
In P 2, initialization of the microcomputer circuit (66) (initialization) is performed, erasing or the like of the stored data, such as internal register. Then, in step P 3 ,
Initial failure diagnosis is performed according to another defined subroutine, and only when all functions are normal, proceed to step P 4 .

ステップP4においては、操舵トルク検出検出信号
(S1),(S2)を読み込み、ステップP5で他に定義され
ているサブルーチンに従い操舵トルクセンサ(21)の故
障診断が行なわれる。このステップP5で操舵トルクセン
サ(21)が正常に機能している場合にのみ、ステップP6
へ進む。ステップP6では、信号値(S1)から信号値
(S2)を減算し、操舵トルクを表示する内部信号T(以
下、操舵トルクTと称す)を得る。次のステップP7
は、操舵トルクTの正負の判別を行い、操舵トルクTが
正または0であればステップP8で操舵方向表示用のフラ
グFに0を設定し、また、操舵トルクTが負であればス
テップP9,P10で操舵トルクTの符号反転処理すなわち絶
対値化とともに上記フラグに1を設定する。続くステッ
プP11においては、第9図に示すデータテーブル1から
操舵トルクTに基づき摩擦抵抗成分DF(T)を検索して
これを表す内部信号(以下、摩擦抵抗成分DF(T)と称
す)を生成し、また同様に、ステップP12においては、
第10図に示すデータテーブル2から操舵トルクTに基づ
き路面負荷成分DL(T)を検索してこれを表す内部信号
(以下、路面負荷成分DL(T)と称す)を生成する。な
お、摩擦抵抗成分DF(T)は操舵トルクTの作用時にお
いて操舵力の伝達系の摩擦抵抗を表し、同様に、路面負
荷成分DL(T)は操向車輪の転舵時の路面抵抗を表す。
In step P 4 , the steering torque detection detection signals (S 1 ) and (S 2 ) are read, and the failure diagnosis of the steering torque sensor (21) is performed according to the subroutine defined elsewhere in step P 5 . Only when the steering torque sensor in step P 5 (21) are functioning properly, step P 6
Go to. In step P 6 , the signal value (S 2 ) is subtracted from the signal value (S 1 ) to obtain an internal signal T (hereinafter, referred to as steering torque T) indicating the steering torque. In the next step P 7 , whether the steering torque T is positive or negative is determined. If the steering torque T is positive or 0, the flag F for displaying the steering direction is set to 0 in step P 8 and the steering torque T is If the value is negative, the sign of the steering torque T is inverted in steps P 9 and P 10 , that is, the absolute value is set, and the flag is set to 1. In the following step P 11 , the frictional resistance component DF (T) is retrieved from the data table 1 shown in FIG. 9 based on the steering torque T, and an internal signal indicating this is obtained (hereinafter referred to as the frictional resistance component DF (T)). And similarly in step P 12 ,
The road surface load component DL (T) is searched from the data table 2 shown in FIG. 10 based on the steering torque T, and an internal signal indicating this is generated (hereinafter referred to as road surface load component DL (T)). The frictional resistance component DF (T) represents the frictional resistance of the steering force transmission system when the steering torque T acts, and similarly, the road surface load component DL (T) represents the road surface resistance during steering of the steered wheels. Represent

次に、ステップP13においては、温度検出信号(S3)を
読み込み、続くステップP14で他に定義されているサブ
ルーチンに従い温度センサ(60)の故障診断が行なわれ
る。そして、このステップP14で温度センサ(60)が正
常に機能していると判断された場合にのみステップP15
以降の処理を行う。ステップP15では、温度検出信号(S
3)をケース(17)内の温度θを表示する内部信号(以
下、温度θと称す)に変換し、次のステップP16におい
て、第11図に示すデータテーブル3から温度θに基づき
温度係数K(θ)を検索してこれを表す内部信号(以
下、温度係数K(θ)と称す)を生成する。第11図から
明らかなように、この温度係数K(θ)は、温度が0か
ら所定値θまでの範囲で1の値を採るが、温度θが所
定値θを超える範囲において温度θの増大とともに減
少して所定値θで0の値を採る。続いて、ステップP
17において、路面負荷成分DL(T)と温度係数K(θ)
とを乗算して路面負荷成分DL(T)を補正し、次に、ス
テップP18で、補正された路面負荷成分DL(T)と摩擦
抵抗成分DF(T)とを加算して補正操舵力D(T)を算
出し、この補正操舵力D(T)を表す信号(以下、補正
操舵力D(T)と称す)を生成する。この補正操舵力D
(T)は、後述するように、PWM信号(g),(h),
(i),(j)の衝撃係数を表示する。
Next, in step P 13, reads the temperature detection signal (S 3), the failure diagnosis of the temperature sensor (60) is carried out in accordance with a subroutine defined in the other in the subsequent step P 14. Then, only when it is determined in this step P 14 that the temperature sensor (60) is functioning normally, the step P 15
Perform the following processing. In step P 15, a temperature detection signal (S
3 ) is converted into an internal signal (hereinafter referred to as temperature θ) that displays the temperature θ in the case (17), and in the next step P 16 , the temperature coefficient is calculated from the data table 3 shown in FIG. 11 based on the temperature θ. K (θ) is searched and an internal signal representing this (hereinafter referred to as temperature coefficient K (θ)) is generated. As is clear from FIG. 11, the temperature coefficient K (θ) takes a value of 1 in the range of the temperature from 0 to the predetermined value θ 1, but in the range where the temperature θ exceeds the predetermined value θ 1 , the temperature θ It decreases with an increase of 0 and takes a value of 0 at a predetermined value θ 2 . Then, step P
17 , the road surface load component DL (T) and the temperature coefficient K (θ)
The road surface load component DL (T) is corrected by multiplying by and then, in step P 18 , the corrected road surface load component DL (T) and the frictional resistance component DF (T) are added to correct the steering force. D (T) is calculated, and a signal representing the corrected steering force D (T) (hereinafter referred to as corrected steering force D (T)) is generated. This corrected steering force D
(T) is the PWM signal (g), (h),
The impact coefficients of (i) and (j) are displayed.

続くステップP19においては、補正操舵力D(T)の値
を判別し、補正操舵力D(T)が0であればステップP
20で前述のPWM信号(g),(h),(i),(j)の
衝撃係数(便宜上、信号と同一符号で表す。以下同
じ。)を全て0とし、また、補正操舵力D(T)が0を
超えていればすなわち補正操舵力D(T)が0を超えて
1以下であればステップP23に進む。ステップP23におい
ては、フラグFの値を判別し、フラグFが0であればス
テップP24,P25でPWM信号(g),(h),(i),
(j)の衝撃係数をそれぞれ1,0,D(T),0に設定し、
また、フラグFが1であればステップP26,P27でPWM信号
(g),(h),(i),(j)の衝撃係数をそれぞれ
0,1,0,D(T)に設定する。そして、次のステップP21
PWM信号(g),(h),(i),(j)を電動機駆動
回路(65)へ出力する。この後、ステップP22におい
て、電流検出回路(80)の出力信号(S4)に基づいて電
動機(5)の故障診断を行い、電動機(5)が正常に機
能している場合にのみ再度ステップP4からの一連の処理
を繰り返す。
In the following step P 19 , the value of the corrected steering force D (T) is determined, and if the corrected steering force D (T) is 0, the step P
At 20 , all the impact coefficients of the PWM signals (g), (h), (i), and (j) described above (for convenience, are represented by the same reference numerals as the signals; the same applies hereinafter) are set to 0, and the corrected steering force D ( if T) exceeds the 0 that correction steering force D (T) is more than 0 1 or less goes to step P 23. Step In P 23 discriminates the value of the flag F, the step P 24 If the flag F is at 0, P 25 in the PWM signal (g), (h), (i),
Set the impact coefficient of (j) to 1,0, D (T), 0 respectively,
Further, PWM signal in step P 26, P 27 If the flag F is at 1 (g), (h) , the duty cycle of (i), (j), respectively
Set to 0,1,0, D (T). And in the next step P 21
The PWM signals (g), (h), (i), (j) are output to the motor drive circuit (65). Thereafter, in step P 22, performs a failure diagnosis of the electric motor (5) based on the output signal of the current detection circuit (80) (S 4), again step only when the electric motor (5) is functioning normally A series of processing from P 4 is repeated.

このように、本実施例における電動機式動力舵取装置に
あっては、伝達系の温度θに応じ操舵力Tの路面負荷成
分DL(T)を補正して伝達系の高温時に小さくし、この
補正された操舵力に基づいて電動機(5)へ通電する電
流値を制御する。したがって、伝達系の高温時におい
て、操舵フィーリングを悪化させること無く、電動機
(5)および駆動回路(65)等における発熱を抑制で
き、電動機(5)等の機器への熱影響を低減することが
できる。そして、伝達系の温度θが前述した所定温度θ
を超える高温になっても、電動機(5)は伝達系にお
ける摩擦抵抗成分に相当する補助力を発生するため、緊
急回避等の操舵を確実に行なえる。
As described above, in the electric power steering apparatus according to the present embodiment, the road surface load component DL (T) of the steering force T is corrected according to the temperature θ of the transmission system to reduce it at high temperature of the transmission system. Based on the corrected steering force, the value of current flowing to the electric motor (5) is controlled. Therefore, at a high temperature of the transmission system, it is possible to suppress heat generation in the electric motor (5) and the drive circuit (65) without deteriorating the steering feeling, and reduce the thermal influence on the electric motor (5) and other devices. You can Then, the transmission system temperature θ is the above-mentioned predetermined temperature θ
Even when the temperature exceeds 2 , the electric motor (5) generates an auxiliary force corresponding to the frictional resistance component in the transmission system, so that steering such as emergency avoidance can be reliably performed.

次に、本発明の他の実施例を第8図のフローチャートに
基づいて説明する。なお、以下、先の実施例と異なる部
分(ステップP11〜P19)についてのみ説明し、他の部分
についての説明を省略する。
Next, another embodiment of the present invention will be described based on the flowchart of FIG. In the following, only the parts (steps P 11 to P 19 ) different from the previous embodiment will be described, and description of the other parts will be omitted.

本実施例では、ステップP11において、第10図に示すデ
ータテーブル2から操舵トルクTに基づき路面負荷成分
DL(T)を検索し、続くステップP12で温度検出信号(S
3)を読み込み、ステップP13で温度センサ(60)の故障
診断が行なわれる。次のステップP14では、温度検出信
号(S3)を温度θに変換し、ステップP15において、第1
1図のデータテーブル3から温度θに基づき温度係数K
(θ)を検索する。
In this embodiment, in step P 11 , the road surface load component is calculated based on the steering torque T from the data table 2 shown in FIG.
Find the DL (T), followed by the temperature detection signal in step P 12 (S
3) Load the failure diagnosis of the temperature sensor (60) is performed in step P 13. In the next step P 14 , the temperature detection signal (S 3 ) is converted into the temperature θ, and in step P 15 , the first
Temperature coefficient K based on temperature θ from data table 3 in Fig. 1
Search for (θ).

ステップP16においては、路面負荷成分DL(T)と温度
係数K(θ)とを乗算して路面負荷成分DL(T)を補正
する。そして、ステップP17で、第12図に示すデータテ
ーブル4から温度θに基づき摩擦抵抗成分DF(θ)を検
索する。この摩擦抵抗成分DF(θ)は、操舵力Tと無関
係な伝達系の摩擦抵抗力すなわち潤滑油の粘性によって
影響を受ける伝達系の機構部分の摺動部等の摩擦抵抗を
表し、第12図から明らかなように温度θ低温域において
大きくなるように設定されている。次に、ステップP18
において、操舵トルクTが不感帯領域を定める値A以上
か否かを判別し、操舵トルクTが値A以上であればステ
ップP19へ進み、路面負荷成分DL(T)が値Aより小さ
ければステップP20で摩擦抵抗成分DF(θ)を0とした
後にステップP19へ進む。ステップP19においては、先の
実施例で述べたように、補正された路面負荷成分DL
(T)と摩擦抵抗成分DF(θ)とを加算して補正操舵力
D(T)を算出し、後のステップP21以降の処理におい
てこの補正操舵力D(T)をPWM信号(i),(j)の
衝撃係数とする。
In step P 16 , the road surface load component DL (T) is multiplied by the temperature coefficient K (θ) to correct the road surface load component DL (T). Then, in step P 17 , the frictional resistance component DF (θ) is retrieved from the data table 4 shown in FIG. 12 based on the temperature θ. This frictional resistance component DF (θ) represents the frictional resistance force of the transmission system unrelated to the steering force T, that is, the frictional resistance of the sliding portion of the mechanical portion of the transmission system which is affected by the viscosity of the lubricating oil. As is clear from the above, the temperature is set to be large in the low temperature region. Then step P 18
In the steering torque T, it is determined whether or not more than the value A for determining the dead zone, the steering torque T advances to step P 19 equal to or greater than the value A, if the road load component DL (T) is smaller than the value A step After the frictional resistance component DF (θ) is set to 0 at P 20 , the process proceeds to step P 19 . In Step P 19 , as described in the previous embodiment, the corrected road surface load component DL
(T) and the frictional resistance component DF (theta) and the addition to calculating the corrected steering force D (T), after the step P 21 the corrected steering force D (T) of the PWM signal in the subsequent processing (i) , (J) of the impact coefficient.

この電動機式動力舵取装置においては、温度θの低温時
すなわち伝達系の機構成分の摺動部を潤滑する潤滑油の
粘度が高く摩擦抵抗が大きい時に摩擦抵抗成分DF(θ)
が大きくなって電動機(5)が発生する補助力も大きく
なり、温度変化にともなう潤滑油の粘性の影響を排除す
ることができ、温度θにかかわらず一定の操舵フィーリ
ングが得られる。そして、温度θの高温時にあっては、
摩擦抵抗成分DF(θ)が小さくなるため、先の実施例と
同様に電動機(5)へ通電される電流値も抑制されて電
動機(5)等の発熱が小さくなり、機器を保護すること
が可能となる。
In this electric power steering system, the frictional resistance component DF (θ) is obtained when the temperature θ is low, that is, when the viscosity of the lubricating oil that lubricates the sliding parts of the mechanical components of the transmission system is high and the frictional resistance is large.
Becomes larger, the auxiliary force generated by the electric motor (5) also becomes larger, the influence of the viscosity of the lubricating oil due to the temperature change can be eliminated, and a constant steering feeling can be obtained regardless of the temperature θ. And when the temperature θ is high,
Since the frictional resistance component DF (θ) becomes small, the current value supplied to the electric motor (5) is suppressed as in the previous embodiment, and the heat generation of the electric motor (5) and the like becomes small, so that the equipment can be protected. It will be possible.

(発明の効果) 以上説明してきたように、本発明にかかる電動機式動力
舵取装置によれば、操舵力の伝達系に作用する操舵力を
伝達系の温度により補正し、補正された操舵力に基づき
伝達系の摩擦抵抗成分に相当する補助力を確保して電動
機へ通電する電流を伝達系の高温時に小さくなるように
制御する。このため、電動機が発生する補助力の操舵力
依存特性を失うこと無く電動機等の発熱量を低減でき、
操舵フィーリングを悪化させること無く電動機等を熱か
ら保護することができるようになり、さらに、緊急回避
時等の操舵を確実に行なうことができるようになる。
(Effects of the Invention) As described above, according to the electric power steering apparatus of the present invention, the steering force acting on the steering force transmission system is corrected by the temperature of the transmission system, and the corrected steering force is corrected. Based on the above, an auxiliary force corresponding to the frictional resistance component of the transmission system is secured, and the current supplied to the electric motor is controlled so as to be small when the temperature of the transmission system is high. Therefore, the amount of heat generated by the electric motor can be reduced without losing the steering force-dependent characteristics of the auxiliary force generated by the electric motor.
It becomes possible to protect the electric motor and the like from heat without deteriorating the steering feeling, and moreover, it becomes possible to reliably carry out steering during emergency avoidance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電動機式動力舵取装置の全体構成図で
ある。第2図から第7図は本発明の一実施例にかかる電
動機式動力舵取装置を示し、第2図が縦断面図、第3図
が第2図のIII−III矢視断面図、第4図が第2図のIV−
IV矢視断面図、第5図が第2図のV−V矢視断面図、第
6図は電気回路のブロック図、第7図は制御処理のフロ
ーチャートである。第8図は本発明の他の実施例にかか
る電動機式動力舵取装置の制御処理を示すフローチャー
トである。第9図、第10図、第11図および第12図は各実
施例の制御処理に用いるデータテーブルを表す。 5……電動機 21……操舵トルクセンサ(操舵力検知手段) 60……温度センサ(温度検知手段) 62……制御装置 63……制御回路(補正手段、電流値決定手段) 65……電動機駆動回路(通電手段)
FIG. 1 is an overall configuration diagram of an electric motor type power steering apparatus of the present invention. 2 to 7 show an electric motor type power steering apparatus according to an embodiment of the present invention. FIG. 2 is a longitudinal sectional view, FIG. 3 is a sectional view taken along the line III-III in FIG. Figure 4 is IV- in Figure 2.
A sectional view taken along the line IV, FIG. 5 is a sectional view taken along the line VV of FIG. 2, FIG. 6 is a block diagram of the electric circuit, and FIG. 7 is a flowchart of the control process. FIG. 8 is a flowchart showing the control processing of the electric motor type power steering apparatus according to another embodiment of the present invention. FIG. 9, FIG. 10, FIG. 11 and FIG. 12 show data tables used for the control processing of each embodiment. 5 ... Electric motor 21 ... Steering torque sensor (steering force detection means) 60 ... Temperature sensor (temperature detection means) 62 ... Control device 63 ... Control circuit (correction means, current value determination means) 65 ... Electric motor drive Circuit (energizing means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】操舵力の伝達系に操舵補助力を発生する電
動機を備え、該電動機への通電量を、少なくとも前記伝
達系の操舵力を検出する操舵力検知手段および前記伝達
系の温度を検出する温度検知手段の出力信号に基づき制
御する電動機式動力舵取装置において、 前記操舵力検知手段により検出された操舵力を前記温度
検知手段により検知された温度に基づき補正して補正操
舵力を決定する補正手段と、 該補正手段により決定された補正操舵力に基づいて少な
くとも高温時に前記伝達系の摩擦抵抗成分に相当する補
助力が確保された目標電流値を決定する電流値決定手段
と、 該電流値決定手段の出力信号に基づいて前記電動機へ前
記目標電流値の電流を通電する通電手段と、 を有することを特徴とする電動機式動力舵取装置。 前記補正手段は、 前記操舵力検知手段の出力信号に基づき前記操舵力の路
面負荷成分を算出する路面負荷決定手段と、 前記操舵力検知手段または前記温度検知手段の少なくと
も一方の出力信号に基づき前記操舵力の前記伝達系によ
る前記摩擦抵抗成分を算出する摩擦抵抗決定手段と、 前記温度検知手段の出力信号に基づき前記伝達系の温度
に応じた温度係数を設定する温度係数決定手段と、 該温度計数決定手段と前記路面負荷決定手段との出力信
号に基づき前記路面負荷成分に前記温度係数を乗じて補
正路面負荷成分を算出する路面負荷補正手段と、 該路面負荷補正手段と前記摩擦抵抗決定手段との出力信
号に基づき前記摩擦抵抗成分と前記補正路面負荷成分と
を加えて前記補正操舵力を算出する補正操舵力算出手段
と、 を備えることを特徴とする特許請求の範囲第1項記載の
電動機式動力舵取装置。
1. A steering force transmission system is provided with an electric motor for generating a steering assist force, and the amount of electric power supplied to the electric motor is at least the steering force detection means for detecting the steering force of the transmission system and the temperature of the transmission system. In a motor-driven power steering apparatus that controls based on an output signal of a temperature detecting unit that detects, a steering force detected by the steering force detecting unit is corrected based on a temperature detected by the temperature detecting unit to obtain a corrected steering force. Correction means for determining, and a current value determination means for determining a target current value that secures an auxiliary force corresponding to a frictional resistance component of the transmission system at least at high temperature based on the corrected steering force determined by the correction means, An electric motor type power steering apparatus comprising: an electric current supplying means for supplying a current having the target current value to the electric motor based on an output signal of the electric current value determining means. The correction means calculates a road surface load component of the steering force based on an output signal of the steering force detection means, and a road surface load determination means based on an output signal of at least one of the steering force detection means and the temperature detection means. A frictional resistance determining means for calculating the frictional resistance component of the steering force by the transmission system; a temperature coefficient determining means for setting a temperature coefficient according to the temperature of the transmission system based on an output signal of the temperature detecting means; Road surface load correction means for calculating a corrected road surface load component by multiplying the road surface load component by the temperature coefficient based on the output signals of the count determination means and the road surface load determination means, and the road surface load correction means and the frictional resistance determination means. And a corrected steering force calculation means for calculating the corrected steering force by adding the frictional resistance component and the corrected road surface load component based on the output signal of Motor power steering apparatus ranging first claim of claims to symptoms.
JP21780886A 1986-09-16 1986-09-16 Electric power steering device Expired - Fee Related JPH0686221B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21780886A JPH0686221B2 (en) 1986-09-16 1986-09-16 Electric power steering device
US07/097,020 US4771843A (en) 1986-09-16 1987-09-16 Motor-operated power steering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21780886A JPH0686221B2 (en) 1986-09-16 1986-09-16 Electric power steering device

Publications (2)

Publication Number Publication Date
JPS6371480A JPS6371480A (en) 1988-03-31
JPH0686221B2 true JPH0686221B2 (en) 1994-11-02

Family

ID=16710059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21780886A Expired - Fee Related JPH0686221B2 (en) 1986-09-16 1986-09-16 Electric power steering device

Country Status (2)

Country Link
US (1) US4771843A (en)
JP (1) JPH0686221B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427743Y2 (en) * 1986-10-27 1992-07-03
JP2682564B2 (en) * 1987-07-01 1997-11-26 本田技研工業株式会社 Electric power steering device
US5097917A (en) * 1987-12-26 1992-03-24 Honda Giken Kogyo Kabushiki Kaisha Steering system of vehicle
US4977507A (en) * 1988-09-06 1990-12-11 Koyo Seiko Co., Ltd. Motor-driven power steering control apparatus
JPH0292781A (en) * 1988-09-28 1990-04-03 Mitsubishi Electric Corp Motor-driven power steering device
US4916379A (en) * 1989-06-07 1990-04-10 Trw Inc. DC-to-DC converter using relay coil
JPH0730455Y2 (en) * 1989-08-07 1995-07-12 本田技研工業株式会社 Vehicle steering system
US5330023A (en) * 1989-08-07 1994-07-19 Honda Giken Kogyo Kabushiki Kaisha Vehicle steering system with a steering output sensor
US5234068A (en) * 1989-08-07 1993-08-10 Honda Giken Kogyo Kabushiki Kaisha Electric power steering system
FR2676982B1 (en) * 1991-05-29 1998-01-02 Valeo Electronique ELECTRIC POWER STEERING DEVICE FOR VEHICLE.
JPH05185938A (en) * 1991-09-30 1993-07-27 Koyo Seiko Co Ltd Motor-driven power steering device
FR2685986B1 (en) * 1992-01-03 1994-06-24 Valeo Electronique METHOD AND DEVICE FOR THERMAL CONTROL OF AN ELECTRIC MOTOR ON BOARD ON VEHICLE AND APPLICATION TO A POWER STEERING SYSTEM.
US5257828A (en) * 1992-06-03 1993-11-02 Trw Inc. Method and apparatus for controlling damping in an electric assist steering system for vehicle yaw rate control
US5623409A (en) * 1994-10-31 1997-04-22 Trw Inc. Method and apparatus for non-linear damping of an electric assist steering system for vehicle yaw rate control
JPH1111333A (en) * 1997-06-25 1999-01-19 Honda Motor Co Ltd Motor driven power steering device
JP2966818B2 (en) * 1997-07-01 1999-10-25 本田技研工業株式会社 Electric power steering device
JP3991416B2 (en) * 1998-01-23 2007-10-17 日本精工株式会社 Control device for electric power steering device
JP3481468B2 (en) * 1998-09-30 2003-12-22 三菱電機株式会社 Electric power steering device
JP3652142B2 (en) * 1998-11-10 2005-05-25 光洋精工株式会社 Power steering device
JP3641160B2 (en) * 1999-04-07 2005-04-20 光洋精工株式会社 Power steering device
JP3715136B2 (en) * 1999-06-03 2005-11-09 トヨタ自動車株式会社 Electric power steering device
JP3723748B2 (en) * 2001-06-05 2005-12-07 三菱電機株式会社 Electric power steering control system
JP3865631B2 (en) * 2001-12-26 2007-01-10 株式会社ジェイテクト Electric power steering device
US7084593B2 (en) * 2002-04-10 2006-08-01 Visteon Global Technologies, Inc. Method and apparatus for thermal management of an electric power assist steering control system by compensating steering motor current
JP4131393B2 (en) * 2003-02-17 2008-08-13 株式会社デンソー Control device for electric power steering
US7600913B2 (en) * 2003-04-15 2009-10-13 Tedrive Holding B.V. Saturated transistor based temperature sensor
JP4508783B2 (en) * 2004-08-27 2010-07-21 株式会社ショーワ Electric power steering device
JP4475403B2 (en) * 2004-09-07 2010-06-09 三菱電機株式会社 Electric power steering control device
JP4654765B2 (en) * 2005-05-25 2011-03-23 株式会社デンソー Load driving device and output adjusting method of load driving device
JP4859029B2 (en) * 2006-03-22 2012-01-18 本田技研工業株式会社 Motor protection device
JP4297144B2 (en) * 2006-09-15 2009-07-15 トヨタ自動車株式会社 Vehicle steering control device
JP4907283B2 (en) * 2006-09-27 2012-03-28 株式会社ショーワ Electric power steering device
KR101285423B1 (en) * 2009-09-15 2013-07-12 주식회사 만도 Electric power steering apparatus and control method for current thereof
JP5269748B2 (en) * 2009-11-05 2013-08-21 本田技研工業株式会社 Overheat protection device
JP2014169061A (en) * 2013-03-05 2014-09-18 Jtekt Corp Electric power steering device
US11738796B2 (en) * 2020-07-28 2023-08-29 Steering Solutions Ip Holding Corporation Recirculating ball power steering system with sliding joint

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970257A (en) * 1982-10-14 1984-04-20 Aisin Seiki Co Ltd Motor-driven power steering device
JPS6025853A (en) * 1983-07-22 1985-02-08 Nippon Seiko Kk Electrical power steering device
JPS6035663A (en) * 1983-08-08 1985-02-23 Aisin Seiki Co Ltd Motor power steering system
JPS6191465A (en) * 1984-10-11 1986-05-09 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
US4771843A (en) 1988-09-20
JPS6371480A (en) 1988-03-31

Similar Documents

Publication Publication Date Title
JPH0686221B2 (en) Electric power steering device
US4771845A (en) Motor-driven power steering system and method of controlling same
JP2682564B2 (en) Electric power steering device
JPH0427743Y2 (en)
JP3484968B2 (en) Control device for electric power steering device
WO2008129558A2 (en) Electric power assist module for steering system
JP2014169061A (en) Electric power steering device
JP2002331946A (en) Electronic motor-driven power steering device
JP2008230540A (en) Electric power steering device
JPH01186468A (en) Motor-driven type power steering device
US4878004A (en) Motor-operated power steering apparatus
KR900005710B1 (en) Motor driven power steering system for a vehicle
JP2009012662A (en) Electric power steering device
JP4189664B2 (en) Electric power steering control device
JP4627012B2 (en) Electric power steering device
JP4626996B2 (en) Electric power steering device
JP4545055B2 (en) Electric power steering device
JP2002053050A (en) Electrical powered steering device
JPH069968B2 (en) Motor drive type power steering control device
JP2002059859A (en) Electric power steering device
JP4715302B2 (en) Control device for electric power steering device
JPH0995247A (en) Electric power steering device
JP3358330B2 (en) Control device for electric power steering device
JP4508783B2 (en) Electric power steering device
JP2004074983A (en) Electric power steering device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees