JPH068215B2 - Manufacturing method of carbon fiber reinforced carbon material - Google Patents
Manufacturing method of carbon fiber reinforced carbon materialInfo
- Publication number
- JPH068215B2 JPH068215B2 JP1336038A JP33603889A JPH068215B2 JP H068215 B2 JPH068215 B2 JP H068215B2 JP 1336038 A JP1336038 A JP 1336038A JP 33603889 A JP33603889 A JP 33603889A JP H068215 B2 JPH068215 B2 JP H068215B2
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- carbon fiber
- pitches
- prepreg
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、ピッチ類をマトリックス形成原料とする炭素
繊維強化炭素材(以下C/Cコンポジットと称する)の
製造法に関するものである。TECHNICAL FIELD The present invention relates to a method for producing a carbon fiber reinforced carbon material (hereinafter referred to as C / C composite) using pitches as a matrix forming raw material.
[従来の技術] 比強度が高く耐熱性にも優れたC/Cコンポジットは航
空、宇宙用素材等として重要な地位を占めている。[Prior Art] C / C composites having high specific strength and excellent heat resistance occupy an important position as materials for aviation and space.
従来C/Cコンポジットの製造法は2つの方法が知られ
ている。Conventionally, two methods have been known for manufacturing C / C composites.
その第一は、ポリアクリルニトリル(PAN)系、ピッチ
系、あるいはレーヨン系炭素繊維と、炭素マトリックス
原料であるフェノール樹脂、フラン樹脂などの熱硬化性
樹脂、あるいはピッチ類を混合し加熱成形した物を、不
活性ガス雰囲気中において炭素処理し、さらに必要に応
じて樹脂、ピッチ等の含浸、炭化処理のサイクルを繰り
返す方法である(例えば特公昭62-212262号公報)。The first is a product obtained by mixing polyacrylonitrile (PAN) -based, pitch-based or rayon-based carbon fiber with a thermosetting resin such as phenol resin or furan resin, which is a carbon matrix raw material, or pitch, and heat-molding the mixture. Is subjected to carbon treatment in an inert gas atmosphere, and if necessary, the cycle of impregnation of resin, pitch, etc., and carbonization treatment is repeated (for example, Japanese Patent Publication No. 62-212262).
第二は、予め炭素繊維を用いて大略の形状に成形した
後、炭素繊維の隙間に化学蒸着法を用いて炭素を堆積さ
せ、C/Cコンポジットを得る方法である(例えばCarb
on Vol.6,p397-403,1968年)。The second is a method of forming a C / C composite by preliminarily shaping the carbon fiber into an approximate shape and then depositing carbon in the gap between the carbon fibers by a chemical vapor deposition method (for example, Carb.
on Vol.6, p397-403, 1968).
現在、上記の中でピッチ類をマトリックスとするC/C
コンポジットを製造するには、ピッチ類を粉のままで炭
素繊維と混合し、それをそのまま金型に入れプレス成形
するか、ピッチ類を250℃以上に加熱して溶融し、その
中へ炭素繊維を通すことによってピッチ類を炭素繊維に
付着させプリプレグとした後、金型に入れプレス成形す
る方法が行われている。Currently, among the above, C / C using pitches as a matrix
To produce a composite, the pitches are mixed with the carbon fibers as powder and put into a mold as it is and press-formed, or the pitches are heated to 250 ° C. or higher and melted, and then the carbon fibers are put therein. There is a method in which pitches are adhered to carbon fibers by passing through them to form a prepreg, which is then put into a mold and press-molded.
[発明が解決しようとする課題] しかしながら、ピッチ類をマトリックスとするC/Cコ
ンポジットを製造する際に、ピッチ類を粉のままで混合
すると均一に混合するには難しいし、この方法では、数
mmの短繊維しか使用できず長繊維や織物の使用が困難で
ある。またピッチ類を加熱して溶融してその中へ炭素繊
維を通してプリプレグを作るには、250℃以上の温度が
必要であり装置、安全等の問題が難しくなる。[Problems to be Solved by the Invention] However, when producing a C / C composite having pitches as a matrix, if the pitches are mixed as powder, it is difficult to uniformly mix them.
Only short fibers of mm can be used, and it is difficult to use long fibers and woven fabrics. Further, in order to heat and melt the pitches and pass the carbon fibers into the prepreg to form a prepreg, a temperature of 250 ° C. or higher is required, which makes problems such as equipment and safety difficult.
また、単にピッチ類を溶剤に懸濁させた状態で、炭素繊
維を通して炭素繊維にピッチ類を付着させても、乾燥し
てプリプレグにすると、ピッチ類が完全に溶けていない
ため不均一になることとピッチ類には可とう性がなく、
後工程の作業中にピッチ類が炭素繊維から脱落してしま
う。Further, even if the pitches are simply suspended in a solvent and the pitches are attached to the carbon fibers through the carbon fibers, if they are dried and made into a prepreg, the pitches are not completely melted and become non-uniform. And pitches are not flexible,
Pitches fall off from the carbon fiber during post-process work.
そこで本発明の目的は、ピッチ類をマトリックス形成原
料とするC/Cコンポジットを製造する際に、加熱等の
特別な装置を使用せず、ピッチ類を炭素繊維に均一に付
着させ効果的な生産をおこなうことにある。Therefore, an object of the present invention is to produce a C / C composite using pitches as a matrix-forming raw material by uniformly adhering the pitches to carbon fibers without using a special device such as heating, thereby effectively producing the C / C composite. To perform.
[課題を解決するための手段] 即ち、本発明は、ピッチ類をマトリックス形成原料とす
るC/Cコンポジットの製造において、溶剤中にピッチ
付着剤としてポリスチレン、ポリビニルアルコールを溶
解しピッチ類を懸濁させた溶液を炭素繊維の表面に付着
させ、その後溶剤を除去してプリブレグとし、前記プリ
プレグを用いて加熱成形、ついで炭化処理、含浸、炭化
処理さらに必要に応じて最終熱処理を行うC/Cコンポ
ジットの製造法である。[Means for Solving the Problems] That is, according to the present invention, in the production of a C / C composite using pitches as a matrix forming raw material, polystyrene and polyvinyl alcohol are dissolved as a pitch adhesive in a solvent to suspend the pitches. The C / C composite in which the solution thus prepared is adhered to the surface of the carbon fiber, the solvent is then removed to form a prepreg, and the prepreg is used for heat molding, followed by carbonization, impregnation, carbonization, and, if necessary, final heat treatment. Is a manufacturing method of.
本発明は、前述のように溶液中にピッチ付着としてポリ
スチレン、ポリビニルアルコールを溶解しピッチ類を懸
濁させた溶液を炭素繊維の表面に付着させ、その後溶剤
を除去してプリプレグとすることにより、容易にかつ均
一にピッチ類が炭素繊維の表面に付着したプリプレグと
するところに特徴があり、このプリプレグを用いるため
ピッチ類の脱落もなく所望の組成のC/Cコンポジット
とすることができる。The present invention, polystyrene as a pitch adhesion in the solution as described above, a solution in which polyvinyl alcohol is dissolved and pitches are suspended is adhered to the surface of the carbon fiber, and then the solvent is removed to obtain a prepreg. The prepreg is characterized in that the pitches are easily and uniformly adhered to the surface of the carbon fiber. Since this prepreg is used, the C / C composite having a desired composition can be obtained without the pitches falling off.
以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.
本発明に用いられる補強用の炭素繊維は、ポリアクリロ
ニトリル(PAN)系、レーヨン系、ピッチ系のいずれで
あってもよく、また炭素質、黒鉛質のいずれであっても
よい。炭素繊維の形態は、長さ0.05〜50mm程度の短繊維
であっても連続繊維であっても使用できる。またクロス
やフェルト、マットなどシート状等の炭素繊維構造物と
なった状態であってもよい。上記炭素繊維は、マトリッ
クス中にそのままの状態で、または解繊された状態で全
くランダムな方向を向いても良いし、任意の特定の方向
に向けて配向せしめられてもよい。The reinforcing carbon fiber used in the present invention may be any of polyacrylonitrile (PAN) type, rayon type and pitch type, and may be carbonaceous or graphitic. The form of the carbon fiber may be a short fiber having a length of about 0.05 to 50 mm or a continuous fiber. Further, it may be in a state of a sheet-like carbon fiber structure such as cloth, felt or mat. The carbon fibers may be oriented in a completely random direction as they are in the matrix or in the defibrated state, or may be oriented in any specific direction.
また、マトリックス形成原料となるピッチ類は、含浸ピ
ッチ、バインダーピッチ等のピッチ30〜70重量%と、生
コークス、カーボンブラック等の炭素質粉末70〜30重量
%をニーダー等を使用して混合する。このときピッチが
30重量%未満であるとC/Cコンポジット成形時にバイ
ンダーが少ないため成形体とすることが困難であり、70
重量%超であると成形時にピッチの流失がはげしく目的
の成形材ができない。Further, the pitches used as the matrix forming raw material are 30 to 70% by weight of pitches such as impregnated pitch and binder pitch, and 70 to 30% by weight of carbonaceous powder such as raw coke and carbon black are mixed using a kneader or the like. . At this time the pitch is
If it is less than 30% by weight, it is difficult to form a molded product because the amount of the binder is small at the time of molding the C / C composite.
If it exceeds 5% by weight, the pitch will be lost during molding and the intended molding material cannot be obtained.
この時、ピッチ類の粒径としては、粒径が大きいと炭素
繊維間に十分入らず高強度のC/Cコンポジットができ
ないので、出来るだけ微粒とする方がよく100μm以下
とすることが望ましい。At this time, the particle size of the pitches is preferably as small as possible, and is preferably 100 μm or less, because if the particle size is large, the carbon particles cannot sufficiently enter into the carbon fiber and a high-strength C / C composite cannot be obtained.
かかるピッチ類を、ポリスチレン、ポリビニルアルコー
ルと一緒に用い溶剤に懸濁させて溶液とし使用する。ピ
ッチ付着剤としてのポリスチレン、ポリビニルアルコー
ルは溶剤に溶解し、溶剤を除去した後にはバインダー的
に作用し、プリプレグとしたときに、炭素繊維の表面よ
り付着力が弱く可とう性のないピッチ類が脱落する事を
防ぐために用いるものである。また、ピッチ付着剤とし
てのポリスチレン、ポリビニルアルコールは、炭化時に
は、ガス化して数μm〜数+μmの開気孔を作るため、
含浸炭化処理において含浸剤が多く開気孔に入り密度を
上げる働きもする。溶剤としては、ポリスチレンであれ
ば、クロロホルム、ベンゼン等の有機溶剤、ポリビニル
アルコールであれば、水等が利用できる。また、本発明
の方法ではピッチ類は、有機溶剤を用いた場合には、成
分の一部が溶解することがあっても大部分は不溶であ
り、溶剤として水を用いる場合にはピッチ類はほとんど
溶解しないから、いずれも懸濁した状態で用いられる。Such pitches are used as a solution by suspending them in a solvent together with polystyrene and polyvinyl alcohol. Polystyrene as a pitch adhesive, polyvinyl alcohol is dissolved in a solvent, and after removing the solvent acts as a binder, and when made into a prepreg, the pitch is less flexible than the surface of the carbon fiber and is not flexible. It is used to prevent falling off. Further, since polystyrene and polyvinyl alcohol as pitch adhesives are gasified at the time of carbonization to form open pores of several μm to several + μm,
In the impregnation and carbonization treatment, a large amount of the impregnating agent enters the open pores and also functions to increase the density. As the solvent, organic solvents such as chloroform and benzene can be used in the case of polystyrene, and water can be used in the case of polyvinyl alcohol. Further, in the method of the present invention, the pitches are mostly insoluble even if a part of the components may be dissolved when an organic solvent is used, and when water is used as the solvent, the pitches are Since they hardly dissolve, they are used in a suspended state.
この溶液中に炭素繊維あるいは炭素繊維束等を浸漬し、
溶液を繊維内に含浸後、溶剤を乾燥することにより除去
し、プリプレグを得る。かかるプリプレグを積層もしく
は切断し混合したものを、加熱成形等を行って成形体と
する。Immerse carbon fibers or carbon fiber bundles in this solution,
After impregnating the solution into the fiber, the solvent is removed by drying to obtain a prepreg. A mixture obtained by stacking or cutting such prepregs and mixing them is subjected to heat molding or the like to obtain a molded body.
前記成形体において、炭素繊維または炭素繊維構造物
は、20〜90重量%、好ましくは40〜80重量%含有される
ことが望ましい。炭素繊維が20重量%未満では、得られ
るC/Cコンボジットの補強繊維が少なすぎる為、強度
が低くなる。一方90重量%を越えた場合には、マトリッ
クスの含有量が少なすぎる為、層間におけるせん断強度
が低下し、炭素繊維の補強効果が充分に発揮されない。In the molded body, it is desirable that the carbon fiber or the carbon fiber structure is contained in an amount of 20 to 90% by weight, preferably 40 to 80% by weight. If the carbon fiber content is less than 20% by weight, the reinforcing fibers of the C / C convoyit obtained will be too small, resulting in low strength. On the other hand, when it exceeds 90% by weight, the content of the matrix is too small, the shear strength between the layers is lowered, and the reinforcing effect of the carbon fiber is not sufficiently exhibited.
この成形体を、窒素、アルゴン等の非酸化性ガス雰囲気
中で炭化する。この時、前記成形体をそのまま炭化する
と膨れを引き起こすので、炭化時の高温においても変形
しない材料からなる固定材を用いて固定した状態でその
まま炭化処理を行うことが好ましい。The molded body is carbonized in a non-oxidizing gas atmosphere such as nitrogen and argon. At this time, since carbonization of the molded body as it is causes swelling, it is preferable to carry out the carbonization treatment as it is while being fixed using a fixing material made of a material that does not deform even at a high temperature during carbonization.
炭化処理の際の温度としては800℃以上、1100℃以下が
用いられる。この場合、炭化時の昇温速度が早すぎると
マトリックス材料(ピッチ類)の熱分解による収縮と、
ガス発生が激しくなり、大きな亀裂が発生しやすくな
る。そのため昇温速度は、通常100℃/hr以下、好ましく
は20℃/hr以下とすることが望ましい。The temperature during the carbonization treatment is 800 ° C or higher and 1100 ° C or lower. In this case, if the rate of temperature rise during carbonization is too fast, the matrix material (pitch) contracts due to thermal decomposition,
Gas generation becomes more intense and large cracks are more likely to occur. Therefore, the rate of temperature rise is usually 100 ° C./hr or less, preferably 20 ° C./hr or less.
このようにして炭化処理されて得られた最初の中間体
は、いまだ気孔率が大きく、高密度、高強度のC/Cコ
ンポジットを得るためにさらにこの中間体にピッチまた
は炭化可能な樹脂を含浸する含浸処理を施し、ふたたび
アルゴン等の非酸化性ガス雰囲気中で炭化処理を施す。
このときの温度は、800℃以上、1100℃以下が好ましく
所定の温度で1時間程度保持する。The first intermediate obtained by the carbonization treatment in this way is still high in porosity and further impregnated with a pitch or carbonizable resin to obtain a high density, high strength C / C composite. Then, the carbonization treatment is performed again in a non-oxidizing gas atmosphere such as argon.
The temperature at this time is preferably 800 ° C. or higher and 1100 ° C. or lower, and is kept at a predetermined temperature for about 1 hour.
含浸処理、炭化処理は、炭素繊維強化炭素材の細孔がう
まり、密度がほぼ一定になるまで繰り返すことが望まし
い。そして、必要に応じて最終的な黒鉛化処理を窒素、
アルゴン等の非酸化性ガス雰囲気中で1200℃〜3000℃で
行い最終のC/Cコンポジットとする。黒鉛化処理時間
は、特性を安定させるために所定温度で30分以上好まし
くは1時間以上加熱する。It is desirable to repeat the impregnation treatment and the carbonization treatment until the pores of the carbon fiber reinforced carbon material are filled and the density becomes almost constant. And, if necessary, the final graphitization treatment is nitrogen,
The final C / C composite is obtained by carrying out at 1200 ° C to 3000 ° C in an atmosphere of non-oxidizing gas such as argon. The graphitization time is 30 minutes or more, preferably 1 hour or more, at a predetermined temperature in order to stabilize the characteristics.
以下、実施例に従って、本発明を説明する。Hereinafter, the present invention will be described according to examples.
[実 施 例] 平均粒度10μm、軟化点240℃のピッチ50重量%と、平
均粒度10μmの生コークス(揮発分10%)50重量%を、
ニーダーを使用し270℃で混合し、その後この混合物を1
00μm以下に粒度調整し原料ピッチ混合物とした。[Example] 50% by weight of a pitch having an average particle size of 10 μm and a softening point of 240 ° C. and 50% by weight of raw coke (volatile content of 10%) having an average particle size of 10 μm,
Mix at 270 ° C using a kneader, then mix this mixture 1
The particle size was adjusted to 00 μm or less to obtain a raw material pitch mixture.
実施例1 原料ピッチ混合物150 重量部とピッチ付着剤のポリスチ
レン150 重量部を溶剤のクロロホルム1000重量部中に入
れ撹拌してポリスチレンを溶解させピッチ類が懸濁した
溶液を調整した。Example 1 150 parts by weight of a raw material pitch mixture and 150 parts by weight of polystyrene as a pitch adhesive were put in 1000 parts by weight of chloroform as a solvent and stirred to dissolve polystyrene to prepare a solution in which pitches were suspended.
この溶液にフィラメント数6000本のPAN系炭素繊維束
クロス(失子織り)を浸漬した後、乾燥させて溶剤を除
去してプリプレグにしたものを、120×120mm角に切断し
金型に25枚積層し、温度300℃、圧力100kg/cm2でプレス
成形した。After dipping a PAN-based carbon fiber bundle cloth (sporeless weave) with 6000 filaments in this solution, it is dried to remove the solvent and made into a prepreg, which is cut into 120 x 120 mm squares and 25 pieces are placed in a mold. The layers were laminated and pressed at a temperature of 300 ° C. and a pressure of 100 kg / cm 2 .
実施例2 実施例1においてピッチ付着剤のポリスチレンの代りに
ポリビニルアルコールを、溶剤のクロロホルムの代わり
に水を用い、実施例1と同様にプリプレグを作り、同条
件でプレス成形した。Example 2 In Example 1, polyvinyl alcohol was used instead of polystyrene as the pitch adhesive, and water was used instead of chloroform as the solvent, a prepreg was prepared in the same manner as in Example 1, and press-molded under the same conditions.
比較例1 実施例1においてピッチ付着剤のポリスチレンを使用せ
ず、実施例1と同様にプリプレグを作り、同条件でプレ
ス成形した。Comparative Example 1 A prepreg was prepared in the same manner as in Example 1 except that the pitch adhesive polystyrene was not used, and press molding was performed under the same conditions.
比較例2 原料ピッチ混合物粉末と実施例1と同様の120×120mm角
に切断した炭素繊維束クロス(朱子織り)を、ピッチ粉
末と炭素繊維の割合が実施例1と同じになるように交互
に手で金型に積層し、実施例1と同条件でプレス成形し
た。Comparative Example 2 Raw material pitch mixture powder and carbon fiber bundle cloth (satin weave) cut into 120 × 120 mm squares similar to those in Example 1 were alternately used so that the ratio of pitch powder and carbon fiber was the same as in Example 1. It was laminated on the mold by hand and press-molded under the same conditions as in Example 1.
実施例3 原料ピッチ混合物150 重量部とピッチ付着剤のポリスチ
レン150 重量部を溶剤のクロロホルム1000重量部中に入
れ撹拌してポリスチレンを溶解させピッチ類が懸濁した
溶液を調整した。Example 3 150 parts by weight of the raw material pitch mixture and 150 parts by weight of polystyrene as a pitch adhesive were put in 1000 parts by weight of chloroform as a solvent and stirred to dissolve polystyrene to prepare a solution in which pitches were suspended.
この溶液にフィラメント数12000本のPAN系連続炭素
繊維を浸漬した後、乾燥させて溶剤を除去してプリプレ
グにし30mmの短繊維に切断したものを、120×120mm角の
金型に積層し温度300 ℃、圧力100kg/cm2でプレス成形
した。After immersing 12,000 filaments of PAN-based continuous carbon fiber in this solution, it was dried to remove the solvent and made into prepreg, which was cut into 30 mm short fibers and laminated on a 120 x 120 mm square mold to obtain a temperature of 300 Press molding was carried out at a temperature of 100 ° C. and a pressure of 100 kg / cm 2 .
比較例3 実施例3においてピッチ付着剤のポリスチレンを使用せ
ず、実施例3と同様にプリプレグを作り、同条件でプレ
ス成形した。Comparative Example 3 A prepreg was prepared in the same manner as in Example 3 except that the pitch adhesive polystyrene was not used, and press molding was performed under the same conditions.
比較例4 原料ピッチ混合物とフィラメント数12000 本のPAN系
連続炭素繊維を30mmの短繊維に切断したものを、ピッチ
と炭素繊維の割合が実施例3と同じになるように混ぜ、
乾式ブレンダーで混合し、金型にいれ実施例3と同条件
でプレス成形した。Comparative Example 4 Raw material pitch mixture and 12,000 filaments of PAN-based continuous carbon fiber cut into 30 mm short fibers were mixed so that the ratio of pitch and carbon fiber was the same as in Example 3,
The mixture was mixed with a dry blender, placed in a mold, and press-molded under the same conditions as in Example 3.
得られたプレス成型の結果を第1表に示した。The obtained press molding results are shown in Table 1.
ピッチ付着剤としてポリスチレン、ポリビニルアルコー
ル(実施例1,2,3)を使用したものは、きれいな成
型体ができたが、ピッチ付着剤を使用せずにプリプレグ
を作ったものは(比較例1,3)ピッチが脱落し成形体
ができなかった。またプリプレグを作らず原料ピッチ混
合物粉末を炭素繊維と直接混ぜる(比較例2,4)と不
均一で密度の低い成形体となった。 The ones using polystyrene and polyvinyl alcohol (Examples 1, 2 and 3) as pitch adhesives produced clean molded bodies, but those using prepregs without using the pitch adhesives (Comparative Example 1, 3) The pitch fell off and a molded body could not be formed. Further, when the raw material pitch mixture powder was directly mixed with the carbon fiber without making a prepreg (Comparative Examples 2 and 4), a molded product having a non-uniform and low density was obtained.
このように、ポリスチレン等のピッチ付着剤を使用して
プリプレグを準備することにより成形体を容易に製造す
ることができる。In this way, a molded product can be easily manufactured by preparing a prepreg using a pitch adhesive such as polystyrene.
実施例4 実施例1の成形体をステンレス板に挟み、ボルトを使用
して固定した。Example 4 The molded body of Example 1 was sandwiched between stainless steel plates and fixed with bolts.
これを、窒素雰囲気中10℃/hrの昇温速度で600 ℃まで
昇温しマトリックスを炭化した。次に、固定材を取り外
した後、窒素雰囲気中10℃/hrの昇温速度で1000℃まで
昇温し1時間保持し炭化処理した。さらに、この炭化し
た最初の中間体に含浸用ピッチを真空下、200 ℃で含浸
した後、この含浸体を窒素雰囲気下にて10℃/hrの昇温
速度で1000℃まで昇温し含浸したピッチを完全に炭化さ
せた。続いて、上記含浸、炭化工程をさらに3回繰り返
して中間体を得た。This was heated to 600 ° C in a nitrogen atmosphere at a heating rate of 10 ° C / hr to carbonize the matrix. Then, after removing the fixing material, the temperature was raised to 1000 ° C. in a nitrogen atmosphere at a temperature rising rate of 10 ° C./hr, and the temperature was maintained for 1 hour for carbonization. Further, the carbonized first intermediate was impregnated with impregnating pitch at 200 ° C. under vacuum, and then the impregnated body was heated to 1000 ° C. at a heating rate of 10 ° C./hr in a nitrogen atmosphere and impregnated. The pitch was completely carbonized. Subsequently, the impregnation and carbonization steps were repeated three more times to obtain an intermediate.
得られた中間体をアルゴン雰囲気中10℃/minの昇温速
度で2000℃まで昇温し1時間保持してC/Cコンポジッ
トを得た。The obtained intermediate was heated to 2000 ° C. at a temperature rising rate of 10 ° C./min in an argon atmosphere and kept for 1 hour to obtain a C / C composite.
比較例5 比較例2の成形体を、実施例4と同一条件で炭化等を行
いC/Cコンポジットを得た。Comparative Example 5 The molded body of Comparative Example 2 was carbonized under the same conditions as in Example 4 to obtain a C / C composite.
得られたC/Cコンポジットの強度試験の結果を第2表
に示す。The results of the strength test of the obtained C / C composite are shown in Table 2.
ピッチ付着剤のポリスチレン(実施例4)を使用したも
のは、比較例5に比べ曲げ強度、硬度が優れている。こ
のように、ピッチ付着剤を使用してプリプレグを作った
ものは、炭素繊維中のマトリックスの分布が均一になる
ため強度等の優れたC/Cコンポジットになった。 The one using polystyrene (Example 4) as the pitch adhesive has excellent bending strength and hardness as compared with Comparative Example 5. As described above, the prepreg prepared by using the pitch adhesive was a C / C composite having excellent strength and the like because the matrix distribution in the carbon fiber was uniform.
[発明の効果] 本発明のピッチ付着剤の使用により、ピッチ類をマトリ
ックスとするC/Cコンポジットを製造する際に、原料
ピッチを溶解するための加熱装置等を使用せずに容易に
かつ均一でピッチ類を脱落しないプリプレグを作ること
ができ、加えてプリプレグの作業性を上げ、均一で強度
物性の高いC/Cコンポジットを作ることが可能になっ
た。[Advantages of the Invention] By using the pitch adhesive of the present invention, when a C / C composite having pitches as a matrix is produced, it is easy and uniform without using a heating device or the like for melting the raw material pitch. It is possible to make a prepreg that does not drop pitches, and in addition to improve the workability of the prepreg, it is possible to make a uniform C / C composite with high strength properties.
ピッチを原料とするC/Cコンポジットは、樹脂を原料
とするものよりも耐酸化性が高く、利用分野が広がるも
のと期待される。C / C composites made from pitch have higher oxidation resistance than those made from resin, and are expected to have wider application fields.
Claims (1)
素繊維強化炭素材の製造において、溶剤中にピッチ付着
剤としてポリスチレン、ポリビニルアルコールを溶解し
ピッチ類を懸濁させた溶液を炭素繊維の表面に付着さ
せ、その後溶剤を除去してプリプレグとし、前記プリプ
レグを用いて加熱成形、ついで炭化処理、含浸、炭化処
理さらに必要に応じて最終熱処理することを特徴とする
炭素繊維強化炭素材の製造法。1. A method for producing a carbon fiber reinforced carbon material using pitches as a matrix forming raw material, wherein a solution of polystyrene and polyvinyl alcohol as a pitch adhering agent in which a pitch is suspended and a pitch is suspended on a surface of the carbon fiber. A method for producing a carbon fiber reinforced carbon material, which comprises: adhering, then removing a solvent to obtain a prepreg, heat-molding using the prepreg, followed by carbonization treatment, impregnation, carbonization treatment and, if necessary, final heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1336038A JPH068215B2 (en) | 1989-12-25 | 1989-12-25 | Manufacturing method of carbon fiber reinforced carbon material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1336038A JPH068215B2 (en) | 1989-12-25 | 1989-12-25 | Manufacturing method of carbon fiber reinforced carbon material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03197360A JPH03197360A (en) | 1991-08-28 |
JPH068215B2 true JPH068215B2 (en) | 1994-02-02 |
Family
ID=18295065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1336038A Expired - Lifetime JPH068215B2 (en) | 1989-12-25 | 1989-12-25 | Manufacturing method of carbon fiber reinforced carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH068215B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014104717A (en) * | 2012-11-29 | 2014-06-09 | Cfc Design Inc | Intermediate material for carbon/carbon composite |
JP6553952B2 (en) * | 2015-05-28 | 2019-07-31 | 株式会社Cfcデザイン | Method for producing carbon / carbon composite precursor, and method for producing carbon / carbon composite using the same |
CN117046027B (en) * | 2023-06-27 | 2024-07-05 | 湖北及安盾消防科技有限公司 | High-insulation low-corrosion pulse type aerosol fire extinguishing agent and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6311570A (en) * | 1985-12-16 | 1988-01-19 | 住友金属工業株式会社 | Manufacture of carbon fiber reinforced carbon material |
-
1989
- 1989-12-25 JP JP1336038A patent/JPH068215B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03197360A (en) | 1991-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3096716B1 (en) | Method for producing fiber-reinforced silicon carbide composite | |
US20060177663A1 (en) | Carbon-carbon composite article manufactured with needled fibers | |
DE68916086T2 (en) | Process for the production of carbon / carbon composites. | |
US4101354A (en) | Coating for fibrous carbon material in boron containing composites | |
JPH03150266A (en) | Production of carbon/carbon composite material | |
JPH068215B2 (en) | Manufacturing method of carbon fiber reinforced carbon material | |
JPH0816032B2 (en) | High-strength carbon-carbon composite manufacturing method | |
JPH0355430B2 (en) | ||
DE3203659A1 (en) | Process for producing a sintered body | |
GB2112827A (en) | Carbon fiber materials | |
GB2119777A (en) | Process for the preparation of sintered bodies | |
JP2018052791A (en) | Matrix composition for precursor for carbon/carbon composite material and manufacturing method of prepreg using the same | |
JPH01133914A (en) | Carbon fiber reinforced carbon composite material and production thereof | |
JP3288433B2 (en) | Carbon fiber reinforced carbon composite precursor | |
JPH04292462A (en) | Production of composite molded article of carbon fiber | |
KR0145784B1 (en) | Carbon fiber-reinforced c/c composite | |
JPS63967A (en) | Manufacture of electrode base plate for fuel cell | |
JPH0551257A (en) | Production of carbon fiber reinforced carbon material | |
Ōtani et al. | Some properties of a condensed polynuclear aromatic resin (COPNA) as a binder for carbon fibre composites | |
JPH05148062A (en) | Production of carbon material | |
JPH0456789B2 (en) | ||
JPH0352426B2 (en) | ||
JPH09268082A (en) | Production of carbon fiber-reinforced carbon material | |
JP2024031548A (en) | Carbonaceous fiber structure and method for producing the same | |
JPH0426547A (en) | Production of carbon reinforced carbon composite material |