JPH0679141A - Method for recovering ion by heating photoionized plasma using electromagnetic wave - Google Patents
Method for recovering ion by heating photoionized plasma using electromagnetic waveInfo
- Publication number
- JPH0679141A JPH0679141A JP23851592A JP23851592A JPH0679141A JP H0679141 A JPH0679141 A JP H0679141A JP 23851592 A JP23851592 A JP 23851592A JP 23851592 A JP23851592 A JP 23851592A JP H0679141 A JPH0679141 A JP H0679141A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- electromagnetic wave
- isotope
- ions
- atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electron Sources, Ion Sources (AREA)
Abstract
(57)【要約】
【目的】 光電離プラズマの温度が低く、回収時間が長
くなる場合に、効率良くイオンを回収する方法を提供す
る。
【構成】 同位体を有する蒸気原子にレーザー光を照射
して光電離プラズマ化することによって該原子の着目同
位体を電界を用いて分離する方法において、該プラズマ
に電磁波を照射して該プラズマの温度を上昇させて該同
位体を短時間で回収することを特徴とする方法。
(57) [Summary] [Objective] To provide a method for efficiently collecting ions when the temperature of photoionization plasma is low and the recovery time is long. In a method of separating an atomized isotope of an atom using an electric field by irradiating a vapor atom having an isotope with a laser beam to generate a photoionization plasma, the plasma is irradiated with an electromagnetic wave to generate a plasma of the plasma. A method comprising raising the temperature to recover the isotope in a short time.
Description
【0001】[0001]
【産業上の利用分野】本発明は、レーザー光を用いた原
子法による同位体分離方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an isotope separation method by an atomic method using laser light.
【0002】[0002]
【従来の技術】これまで、レーザー光を用いた原子法に
よるウラン濃縮等の同位体分離においては、レーザー光
によって生成したプラズマ中のイオンは、該プラズマに
電場や磁場等をパルス的に或いは定常的に印加すること
によって、電磁力で電極上に回収されていた。レーザー
濃縮では、パルスレーザー光で選択的に光電離したイオ
ンを高速の蒸気流の中から回収する。その場合に回収速
度が遅いと、イオンの回収率が低下したり、イオンと中
性原子との衝突等によりイオンの濃縮率が低下する。従
って、高速で電極間を通過するレーザー誘起プラズマ中
からのイオン回収率を上げ、且つ電荷交換による損失を
抑えるためにイオンを速やかに回収する必要がある。従
来の技術でイオン回収を行う場合、イオンの移動速度は
空間電荷の影響によりプラズマのイオン温度及び電子温
度で決定される。この場合、レーザー光線による光電離
によって生成されたプラズマのイオン温度及び電子温度
は0.1eV程度と低く、よって荷電粒子の移動速度は
比較的遅くなりイオンをプラズマから電極に抜き出すに
はある程度の時間が必要となる。このため、静電界を用
いてイオンを高速で回収するには、回収電極に高電圧を
印加しなければならない。2. Description of the Related Art Up to now, in isotope separation such as uranium enrichment by an atomic method using laser light, the ions in the plasma generated by the laser light generate an electric field or a magnetic field in the plasma in a pulsed or stationary manner. It was applied onto the electrode by electromagnetic force. In laser concentration, ions that have been selectively photoionized by pulsed laser light are recovered from a high-speed vapor stream. In that case, if the recovery rate is slow, the recovery rate of ions decreases, or the concentration rate of ions decreases due to collision between ions and neutral atoms. Therefore, it is necessary to rapidly collect ions in order to increase the recovery rate of ions from the laser-induced plasma passing between the electrodes at high speed and to suppress the loss due to charge exchange. When performing ion recovery by the conventional technique, the moving speed of ions is determined by the ion temperature and electron temperature of plasma due to the influence of space charge. In this case, the ion temperature and electron temperature of the plasma generated by the photoionization by the laser beam are as low as about 0.1 eV, so that the moving speed of the charged particles is relatively slow, and it takes some time to extract the ions from the plasma to the electrode. Will be needed. Therefore, in order to collect ions at high speed using the electrostatic field, a high voltage must be applied to the collecting electrode.
【0003】しかし、イオン回収率を上げるためにイオ
ン密度を高くすると、回収電極に印加する電圧も高くし
なければならないが、このときに高いエネルギーを得た
イオンのスパッタ現象により、電極面上に回収された同
位体が弾き出される可能性がある。However, if the ion density is increased in order to increase the ion recovery rate, the voltage applied to the recovery electrode must also be increased. At this time, due to the sputtering phenomenon of ions that have obtained high energy, the voltage is applied to the electrode surface. Recovered isotopes may be ejected.
【0004】また、高い電圧を印加したままイオンを回
収することから、回収時に費やすエネルギーも大きくな
ると予測される。Further, since the ions are collected while the high voltage is applied, it is expected that the energy consumed during the collection will be large.
【0005】[0005]
【発明が解決しようとする課題】上記問題点に鑑み、本
発明は光電離プラズマの温度が低く、回収時間が長くな
る場合に、効率良くイオンを回収する方法を提供するこ
とを目的とする。In view of the above problems, it is an object of the present invention to provide a method for efficiently collecting ions when the temperature of the photoionization plasma is low and the recovery time is long.
【0006】[0006]
【課題を解決するための手段】上記課題を解決すべく、
本発明によれば、同位体を有する蒸気原子にレーザー光
を照射して光電離プラズマ化することによって該原子の
着目同位体を電界を用いて分離する方法において、該プ
ラズマに電磁波を照射して該プラズマの温度を上昇させ
て該同位体を短時間で回収することを特徴とする方法が
提供される。[Means for Solving the Problems] In order to solve the above problems,
According to the present invention, in a method of separating an isotope of interest of an atom with an electric field by irradiating a vapor atom having an isotope with a laser beam to generate a photoionization plasma, the plasma is irradiated with an electromagnetic wave. A method is provided which comprises raising the temperature of the plasma to recover the isotope in a short time.
【0007】[0007]
【作用】上述の如く、レーザー光の照射によって光電離
して生成したプラズマの温度は低いので、電場内でのイ
オンの移動速度は比較的遅くなり、イオンをプラズマか
ら抜き出すにはある程度の時間が必要となる。このプラ
ズマに電磁波を照射すると、プラズマ内の荷電粒子、即
ち、イオンや電子が電磁波を吸収することによって、こ
れら荷電粒子の温度が上昇しプラズマ中での運動量が増
大する。その結果イオンを電極に引き付け易くなるの
で、イオンを電極に引き込むまでの時間が減少し、従来
のレーザー光を用いた同位体分離方法に比して短い時間
でイオンの回収を行うことが出来る。As described above, since the temperature of the plasma photoionized by the irradiation of the laser beam is low, the moving speed of the ions in the electric field becomes relatively slow, and it takes some time to extract the ions from the plasma. Becomes When this plasma is irradiated with an electromagnetic wave, the charged particles in the plasma, that is, ions and electrons absorb the electromagnetic wave, so that the temperature of these charged particles rises and the momentum in the plasma increases. As a result, the ions are easily attracted to the electrode, and the time until the ions are attracted to the electrode is reduced, and the ions can be recovered in a shorter time than the conventional isotope separation method using laser light.
【0008】プラズマに照射する電磁波の周波数は、プ
ラズマの温度を上昇せしめるものであれば特に制限はな
いが、電磁波の周波数がプラズマ周波数よりも低い場合
には、プラズマ中の電子を効率よく加熱できるので好ま
しい。照射する電磁波の周波数がプラズマ周波数よりも
高いと、電磁波はプラズマ中を通過してしまうので、プ
ラズマの加熱効率が低下してしまうからである。The frequency of the electromagnetic wave with which the plasma is irradiated is not particularly limited as long as it can raise the temperature of the plasma, but when the frequency of the electromagnetic wave is lower than the plasma frequency, the electrons in the plasma can be efficiently heated. Therefore, it is preferable. This is because if the frequency of the applied electromagnetic wave is higher than the plasma frequency, the electromagnetic wave will pass through the plasma, and the heating efficiency of the plasma will decrease.
【0009】照射するレーザー光は、対象とする蒸気原
子の共鳴波長に同調して該原子を選択的に電離し得るも
のであればよく、パルス的に或いは定常的に印加する。
本発明において好ましくはパルスレーザーを用いて原子
を選択的に光電離せしめる。The laser light to be applied may be any one that can selectively ionize the target vapor atom in synchronization with the resonance wavelength of the vapor atom, and is applied in a pulsed or steady manner.
In the present invention, a pulse laser is preferably used to selectively photoionize the atoms.
【0010】電磁波の印加方法には特に制限はなく、例
えば回収電極付近にアンテナや導波管を設置したり、或
いは電極の一方又は双方に電磁波を印加してもよい。そ
して、電磁波は、パルス状又は定常波に印加してもよ
い。The method of applying the electromagnetic wave is not particularly limited, and for example, an antenna or a waveguide may be installed near the recovery electrode, or the electromagnetic wave may be applied to one or both of the electrodes. Then, the electromagnetic wave may be applied in a pulsed or standing wave.
【0011】本発明の方法によって回収される原子は同
位体を有するものであればその種類に特に制限はない
が、アルカリ金属、アルカリ土類金属又は遷移金属の同
位体分離に本発明の方法を用いることが好ましい。The type of atom recovered by the method of the present invention is not particularly limited as long as it has an isotope, but the method of the present invention is used for the isotope separation of alkali metal, alkaline earth metal or transition metal. It is preferable to use.
【0012】[0012]
【実施例】本発明の方法を実施するための装置の模式図
を図1に示す。分離チャンバー1内に長さ30cmのヒ
ートパイプを設置し、その両側にイオン回収用の平行平
板電極2を配置した。両電極には高圧回収電源6より所
定の電圧を印加した。ヒートパイプ中に封入した金属ナ
トリウム蒸気に、ナトリウム原子のD2線に共鳴させた
パルスレーザー光(〜600μJ、10ns、2mm
φ)を照射し、多光子吸収によってナトリウム原子を電
離せしめプラズマ3を生成させた。このようにして電離
せしめたナトリウムイオンを、低電圧を印加した平行平
板電極に回収した。電極の中心付近には電磁波発生用の
アンテナ5としてコイル電極を設置し、高周波電磁波を
電磁波発生器を用いて印加した。電磁波の周波数は14
0MHzであった。なお、このときのプラズマ周波数
は、300MHz程度であった。この電極2に流れるイ
オン電流の時間波形を観測し、印加する高周波電磁波と
イオン電流波形との関係を測定した。その結果を図2に
示す。EXAMPLE A schematic diagram of an apparatus for carrying out the method of the present invention is shown in FIG. A heat pipe having a length of 30 cm was installed in the separation chamber 1, and parallel plate electrodes 2 for ion collection were arranged on both sides of the heat pipe. A predetermined voltage was applied from the high voltage recovery power supply 6 to both electrodes. Pulsed laser light (-600 μJ, 10 ns, 2 mm, which was made to resonate with D 2 line of sodium atom, was added to metallic sodium vapor enclosed in a heat pipe.
φ) was irradiated to ionize sodium atoms by multiphoton absorption to generate plasma 3. The sodium ions ionized in this manner were collected in a parallel plate electrode to which a low voltage was applied. A coil electrode was installed as an electromagnetic wave generating antenna 5 near the center of the electrode, and a high frequency electromagnetic wave was applied using an electromagnetic wave generator. The frequency of electromagnetic waves is 14
It was 0 MHz. The plasma frequency at this time was about 300 MHz. The time waveform of the ionic current flowing through the electrode 2 was observed, and the relationship between the applied high frequency electromagnetic wave and the ionic current waveform was measured. The result is shown in FIG.
【0013】図2は、プラズマに高周波電磁波を印加し
た場合と、印加しなかった場合に電極2に流れるイオン
電流波形を示したものである。この図より、高周波電磁
波を印加することによってイオン電流のパルスの立ち上
がりが早くなることが分かる。また、高周波電磁波の出
力が増加するに従って、回収時間が短縮されることも分
かる。FIG. 2 shows the waveform of the ion current flowing through the electrode 2 when the high frequency electromagnetic wave is applied to the plasma and when it is not applied. From this figure, it can be seen that the application of high frequency electromagnetic waves accelerates the rise of the pulse of the ion current. It can also be seen that the collection time is shortened as the output of the high frequency electromagnetic wave is increased.
【0014】[0014]
【発明の効果】このように、本発明によれば、プラズマ
の密度が高い場合においてもイオンを所定の時間内に電
極に迅速に回収でき、この結果レーザー光による同位体
分離の効率及び製品量を増加させることができる。As described above, according to the present invention, even when the plasma density is high, ions can be rapidly collected in the electrode within a predetermined time, and as a result, the efficiency and product amount of isotope separation by laser light can be increased. Can be increased.
【図1】本発明を実施するための装置の模式図である。FIG. 1 is a schematic view of an apparatus for carrying out the present invention.
【図2】印加する高周波電磁波とイオン電流波形との関
係を表す図である。FIG. 2 is a diagram showing a relationship between a high-frequency electromagnetic wave to be applied and an ion current waveform.
1 分離チャンバー 2 回収電極 3 光電離プラズマ 4 電磁波 5 アンテナ 6 高圧回収電源 7 電磁波発生器 1 Separation Chamber 2 Recovery Electrode 3 Photoionization Plasma 4 Electromagnetic Wave 5 Antenna 6 High Voltage Recovery Power Supply 7 Electromagnetic Wave Generator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 庸一郎 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 有沢 孝 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Yoichiro Maruyama, Shirahone, Shirahone, Tokai-mura, Naka-gun, Ibaraki Prefecture, Japan 4 Inside the Tokai Research Institute, Japan Atomic Energy Research Institute (72) Takashi Arisawa, Tokai-mura, Naka-gun, Ibaraki Prefecture 4 at Shirane No. 4 Inside the Japan Atomic Energy Research Institute Tokai Research Institute
Claims (3)
照射して光電離プラズマ化することによって該原子の着
目同位体を電界を用いて分離する方法において、該プラ
ズマに電磁波を照射して該プラズマの温度を上昇させて
該同位体を短時間で回収することを特徴とする方法。1. A method for separating an isotope of interest of an atom with an electric field by irradiating a vapor atom having an isotope with a laser beam to generate a photoionization plasma, and irradiating the plasma with an electromagnetic wave. A method comprising raising the temperature of plasma to recover the isotope in a short time.
数よりも低い、請求項1に記載の方法。2. The method according to claim 1, wherein the frequency of the radiating electromagnetic wave is lower than the plasma frequency.
又は遷移金属である、請求項1に記載の方法。3. The method according to claim 1, wherein the atom is an alkali metal, an alkaline earth metal or a transition metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23851592A JPH0679141A (en) | 1992-09-07 | 1992-09-07 | Method for recovering ion by heating photoionized plasma using electromagnetic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23851592A JPH0679141A (en) | 1992-09-07 | 1992-09-07 | Method for recovering ion by heating photoionized plasma using electromagnetic wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0679141A true JPH0679141A (en) | 1994-03-22 |
Family
ID=17031404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23851592A Pending JPH0679141A (en) | 1992-09-07 | 1992-09-07 | Method for recovering ion by heating photoionized plasma using electromagnetic wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0679141A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09501515A (en) * | 1994-04-21 | 1997-02-10 | ブリテイツシユ・ニユクリアー・フユールズ・ピー・エル・シー | Radiation coupling device |
US6787723B2 (en) * | 1999-03-24 | 2004-09-07 | The Regents Of The University Of Michigan | Method for laser induced isotope enrichment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0356125A (en) * | 1989-07-24 | 1991-03-11 | Hitachi Ltd | Ion recovery device |
JPH04187216A (en) * | 1990-11-21 | 1992-07-03 | Hitachi Ltd | Ion recovery device |
-
1992
- 1992-09-07 JP JP23851592A patent/JPH0679141A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0356125A (en) * | 1989-07-24 | 1991-03-11 | Hitachi Ltd | Ion recovery device |
JPH04187216A (en) * | 1990-11-21 | 1992-07-03 | Hitachi Ltd | Ion recovery device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09501515A (en) * | 1994-04-21 | 1997-02-10 | ブリテイツシユ・ニユクリアー・フユールズ・ピー・エル・シー | Radiation coupling device |
US6787723B2 (en) * | 1999-03-24 | 2004-09-07 | The Regents Of The University Of Michigan | Method for laser induced isotope enrichment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3992625A (en) | Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient | |
CA1045581A (en) | Method of and apparatus for the separation of isotopes | |
US20090224182A1 (en) | Laser Heated Discharge Plasma EUV Source With Plasma Assisted Lithium Reflux | |
Nakayama et al. | Neutral particle emission from zinc oxide surface induced by high-density electronic excitation | |
US4213043A (en) | Method for flowing a large volume of plasma through an excitation region | |
US4059761A (en) | Separation of isotopes by time of flight | |
US20040195951A1 (en) | Method and apparatus for trapping and accelerating electrons in plasma | |
US3939354A (en) | Method and apparatus for separation of ions from a plasma | |
Chen | Excitation of large amplitude plasma waves | |
JPH0679141A (en) | Method for recovering ion by heating photoionized plasma using electromagnetic wave | |
JPH025131B2 (en) | ||
Sun et al. | Particle simulations of ion-extraction process from a decaying plasma assisted by radio-frequency plasma heating | |
Walther et al. | Volume production of Li in a small multicusp ion source | |
JPS60500200A (en) | Isotope concentrator | |
Krainov et al. | Nuclear fusion induced by a super-intense ultrashort laser pulse in a deuterated glass aerogel | |
JP2564424B2 (en) | Ion recovery device | |
JP3039985B2 (en) | Microwave ion source for multimer ion generation and ion beam irradiation device using this ion source | |
JP2915164B2 (en) | Ion extraction method from plasma by high frequency electric field | |
Golubev et al. | Formation of charge and energy spectra of multiply charged ions in an expandinglaser plasma | |
Tamura et al. | Charge transfer cross sections for uranium | |
Hatakeyama et al. | An efficient mass separation by using traveling waves with ion cyclotron frequencies | |
JPH08281075A (en) | Isotope separation method and device | |
Demidova et al. | An efficient method for extracting plasma ions in laser isotope separation systems | |
JPH06252096A (en) | Semiconductor processing equipment | |
Janes | Method and apparatus for separation of ions from a plasma |