[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0677024B2 - Velocity measurement probe - Google Patents

Velocity measurement probe

Info

Publication number
JPH0677024B2
JPH0677024B2 JP60122809A JP12280985A JPH0677024B2 JP H0677024 B2 JPH0677024 B2 JP H0677024B2 JP 60122809 A JP60122809 A JP 60122809A JP 12280985 A JP12280985 A JP 12280985A JP H0677024 B2 JPH0677024 B2 JP H0677024B2
Authority
JP
Japan
Prior art keywords
flow velocity
light beam
light
laser light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60122809A
Other languages
Japanese (ja)
Other versions
JPS61281971A (en
Inventor
静男 吉田
Original Assignee
財団法人日本気象協会北海道本部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人日本気象協会北海道本部 filed Critical 財団法人日本気象協会北海道本部
Priority to JP60122809A priority Critical patent/JPH0677024B2/en
Publication of JPS61281971A publication Critical patent/JPS61281971A/en
Publication of JPH0677024B2 publication Critical patent/JPH0677024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、流体を照射したレーザ光ビーム相互間に流体
が及ぼすドツプラ効果によつて生ずる周波数差の変化に
基づいて流体の流速を測定するレーザドツプラベロシメ
ータ(LDV)に用いる流速測定用ブローブに関し、特
に、問題の多い光ファイバーの使用を排した単純な構成
により組立ておよび取扱いを著しく容易にし、野外にお
いても安定かつ高精度に流体の流速を測定し得るように
したものである。
Description: TECHNICAL FIELD The present invention relates to a laser Doppler probe for measuring a flow velocity of a fluid based on a change in frequency difference caused by a Doppler effect exerted by the fluid between laser light beams irradiated on the fluid. Regarding the probe for flow velocity measurement used in the rosimeter (LDV), in particular, the simple construction that eliminates the use of problematic optical fibers makes assembly and handling extremely easy, and the flow velocity of fluid can be measured stably and accurately even in the field. It's something I got to get.

(従来技術とその問題点) 水流の観測に関しては、古くから用いたプロペラ流速計
等の機械的手法や熱線流速計等の電気的手法に替えて、
最近は、光学的手法が導入され、水理学的研究の立場か
ら種々改良が改えられている。かかる流速の光学的測定
方法として新たに開発されたレーザドツプラーベロシメ
ータ(LDV)は、レーザ光に及ぼす流速のドツプラー効
果により流速を光学的に精密測定するものであるが、従
来のレーザドツプラーベロシメータは、完全非接触の流
速測定を目指すあまり、幾多の問題があるうえに、使用
上の簡便さの点で熱線流速計に劣り、価格の問題ととも
にその普及を阻害していた。
(Prior art and its problems) Regarding the observation of water flow, instead of mechanical methods such as propeller anemometers and electrical methods such as hot-wire anemometers, which have been used for a long time,
Recently, an optical method has been introduced, and various improvements have been made from the viewpoint of hydraulic research. A laser Doppler velocimeter (LDV) newly developed as an optical measurement method of such a flow velocity is an optical precision measurement of the flow velocity by the Doppler effect of the flow velocity on the laser light. The planer velocimeter has many problems because it aims at completely non-contact velocity measurement, and it is inferior to the heat ray velocity meter in terms of its ease of use, and it has hindered its popularization along with the problem of price.

本発明者は、かかる従来のレーザドツプラーベロシメー
タ(LDV)の欠点を除去し、流体流速の光学的手法に可
干渉性が極めて良好なレーザ光を導入して流速の精密測
定を可能にしたレーザドツプラーベロシメータに対して
さらに光フアイバを導入することにより、従来のLDVプ
ローブを格段に小型にして、従来は測定困難であつた、
密度が急変する境界面近傍の流速測定や、微小な流体空
間を取扱うプラズマ流の流速測定を可能にした特開昭59
−193362号公報記載の流速測定用プローブをさきに開発
した。
The present inventor eliminates the drawbacks of the conventional laser Doppler velociometer (LDV) and introduces a laser beam having an extremely good coherence to the optical method of the fluid flow velocity to enable the precise measurement of the flow velocity. By introducing an optical fiber to the laser Doppler velociometer, the conventional LDV probe was made significantly smaller, and it was difficult to measure in the past.
JP-A-59 has made it possible to measure the flow velocity near the boundary surface where the density suddenly changes, and the flow velocity of the plasma flow that handles a minute fluid space.
The probe for flow velocity measurement described in Japanese Patent No. 193362 was first developed.

しかしながら、光ファイバを用いた上述の流速測定用ブ
ローブには、つぎのような種々の問題点があつた。
However, the above-mentioned flow velocity measuring probe using the optical fiber has various problems as described below.

(1) 従来、離隔して配置した光源からのレーザ光を
測定用プローブ内に導くために光フアイバーに注入する
方法として、光源から放射する拡散光を集光し、その集
光した個所に光ファイバーの入射開口端を正確に位置さ
せることにより、光源から放射したレーザ光をできるだ
け有効に利用するようにしていたが、光フアイバーのコ
ア領域の開口端面が極めて小さいので、放射レーザ光の
一部しかコア領域に注入し得ず、損失光量がかなり大き
かつた。また、光フアイバーの位置が測定機器の移動時
の振動や衝撃などなよつてわずかでもずれると、レーザ
光の注入状態の維持が困難になり、正確な注入位置の復
元に多大の時間を要した。
(1) Conventionally, as a method of injecting a laser beam from a light source arranged apart from a light source into a measurement probe, a diffused light emitted from a light source is collected and an optical fiber is collected at the collected point. Although the laser beam emitted from the light source was used as effectively as possible by accurately locating the incident aperture end of the, the aperture end face of the core area of the optical fiber was extremely small, so only a part of the emitted laser beam was emitted. It could not be injected into the core region, and the amount of lost light was considerably large. Also, if the position of the optical fiber deviates even slightly due to vibration or shock when the measuring instrument moves, it becomes difficult to maintain the injection state of the laser light, and it took a lot of time to restore the accurate injection position. .

(2) 一方、流体の流速に対応したドツプラー周波数
成分を有するレーザ光を受光するには、ドツプラー効果
を生じさせるために流体の流速測定点を通過させた参照
光ビームと、その参照光ビームと交差させた測定光ビー
ムの散乱光との双方を離隔して配置した光電変換素子に
より受光する必要があり、そのためには、受光用光フア
イバのコア領域開口端を参照光ビームの光軸に精密に精
密に一致させる必要があつた。しかしながら、光ファイ
バーの受光端面が極めて小さいために、(1)項におけ
ると同様に、特に散乱光の受光光量が少なく、また、受
光用光ファイバーの位置ずれの問題があつた。
(2) On the other hand, in order to receive a laser beam having a Doppler frequency component corresponding to the flow velocity of the fluid, the reference light beam that has passed through the fluid flow velocity measurement point to generate the Doppler effect, and the reference light beam It is necessary to receive light by the photoelectric conversion element that is placed apart from the scattered light of the intersecting measurement light beam, and for that purpose, the open end of the core area of the receiving optical fiber must be precisely aligned with the optical axis of the reference light beam. It was necessary to match exactly. However, since the light-receiving end face of the optical fiber is extremely small, as in the case of (1), there is a problem that the amount of received scattered light is particularly small and the light-receiving optical fiber is displaced.

(3) 上述したように流速測定用プローブに必要な光
を光ファイバーに正確に入射させるための可視領域のレ
ーザ光源としては、従来、ガスレーザ素子を用いていた
が、ガスレーザ素子は、振動や衝撃に弱くて野外等にお
ける使用には適さず、また、高圧電源を必要とする点に
おいても野外の使用には適していなかつた。
(3) As described above, a gas laser element has been conventionally used as a laser light source in the visible region for accurately injecting the light required for the flow velocity measuring probe into the optical fiber. However, the gas laser element is resistant to vibration and shock. It was weak and not suitable for outdoor use, nor was it suitable for outdoor use because it required a high-voltage power supply.

(4) また、上述のように、光フアイバーの取付位置
のわずかなずれによつても測定不能の状態が生ずるの
で、精密な取付位置の設定を必要とするとともに、振動
や衝撃などが生じやすい野外の使用に際しては、測定用
機器の取扱いに細心の注意を要した。
(4) Further, as described above, even a slight displacement of the mounting position of the optical fiber causes a state in which measurement is not possible, so that it is necessary to set the mounting position precisely, and vibration and shock are likely to occur. When using it outdoors, extreme care was required in handling the measuring instruments.

(本発明の目的) 本発明の目的は、上述した従来の問題点の根源をなす光
導入のための光ファイバーの使用を排して半導体レーザ
光源素子を組込んだ、低損失の単純な構成による、野外
の使用に適した流速測定用プローブを提供することにあ
る。
(Object of the present invention) An object of the present invention is to provide a semiconductor laser light source element incorporated without using an optical fiber for introducing light, which is the root of the above-mentioned conventional problems, and has a simple structure with low loss. , Providing a probe for flow velocity measurement suitable for outdoor use.

(課題を解決するための手段) 本発明流速測定用プローブは、上述した諸問題を解決す
るために、半導体レーザ素子と、球形レンズおよびその
球形レンズの前後に近接してそれぞれ囲繞する球面凸レ
ンズにより構成し、前期半導体レーザ素子から発散する
レーザを集束してレーザ光ビームを形成する集束光学系
と、前記レーザ光ビームの光軸に対して傾斜配置した透
明体平板の両面がなす互いに平行なハーフミラーおよび
ミラーにより構成し、前記レーザ光ビームを分割すると
ともにそれぞれほぼ直角に屈折させて互いに強度の異な
る一対の平行レーザ光ビームを形成する分割屈折光学系
と、前記一対の平行レーザ光ビームを流速測定点に集光
して互いに交叉させる集光光学系と、前記平行レーザ光
ビームのうち強度の弱い方のレーザ光ビームの軸上に位
置して前記流速測定点を通過した当該レーザ光ビームを
受光する光電変換素子とを備え、前記流速測定点を通過
したレーザ光ビームのドップラ効果により前記流速測定
点における流体の流速を測定し得るように構成したこと
を特徴とするものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the probe for measuring the flow velocity of the present invention includes a semiconductor laser element, a spherical lens, and a spherical convex lens surrounding the spherical lens close to the front and rear of the spherical lens. A focusing optical system for focusing a laser diverging from the semiconductor laser device to form a laser light beam, and a half parallel to each other formed by both surfaces of a transparent flat plate inclined with respect to the optical axis of the laser light beam. A split refracting optical system configured by a mirror and a mirror for splitting the laser light beams and refracting the laser light beams at substantially right angles to form a pair of parallel laser light beams having mutually different intensities, and a flow velocity of the pair of parallel laser light beams. A condensing optical system for converging light at a measurement point and intersecting each other, and a laser light beam of the one of the parallel laser light beams having the weaker intensity. A photoelectric conversion element that receives the laser light beam that has passed through the flow velocity measurement point and is located on the axis of the beam, and the fluid at the flow velocity measurement point due to the Doppler effect of the laser light beam that has passed through the flow velocity measurement point. It is characterized by being configured so that the flow velocity can be measured.

すなわち、まず、半導体レーザ素子は、前述した従来の
プローブにおけるガスレーザ素子とは異なり、流速測定
用プローブ自体の中に配置して、送光用光フアイバーを
不要とし、レーザ光を光フアイバーに注入することによ
り生じた諸問題を一挙に解決している。つぎに、集束光
学系は、半導体レーザ素子から放射した拡散光を有効に
利用するために集束してレーザ光ビームを形成するもの
であり、例えば、凸レンズ、球レンズおよび凸レンズを
もつて構成して、それぞれ、拡散光を平行光にし、その
平行光を近い位置で集束し、さらに、集束した光を細い
光ビームに成形し、さらに、要すれば、レンズ系の光軸
上にピンホールを有する光学マスクを設けて、レンズ系
を通過した光ビームをピンホール部分のみに制限する。
つぎに、分割屈折光学系は、例えば、平滑表面および完
全反射底面を有して集束光学系の光軸に対45゜の角度に
配置した光学ガラス板よりなり、平滑表面がなすハーフ
ミラーと完全反射底面がなすミラーとにより、ピンホー
ルを通過した1本のレーザ光ビームを2本のレージ光ビ
ームに分割するとともに、2本のレーザ光ビームをほぼ
直角に屈折させて平行レーザ光ビームとし、さらに、か
かる2本の平光レーザ光ビームのうち、平滑表面がなす
ハーフミラーにより反射屈折したレーザ光ビームを完全
反射底面がなすミラーにより反射空折したレーザ光ビー
ムより弱くして、例えばその強度比を約3:7にしてお
き、ハーフミラーからのレーザ光ビームを参照光とする
とともに、ミラーからのレーザ光ビームを後に散乱光と
して用いる。つぎに、集光光学系は、例えば凸レンズよ
りなり、分割屈折光学系からの2本の平行レーザ光ビー
ムを流速測定点に集光させて互いに交差させる。つぎ
に、光電変換素子は、例えばピンホールを有する光学マ
スクを前置したフオトダイオードよりなり、参照光およ
び参照光と同一の立体角内の散乱光のみをピンホールを
介してフオトダイオードにより受光して受光光量に応じ
た電気信号に変換し、流速測定出力として取出す。
That is, first, unlike the gas laser element in the above-described conventional probe, the semiconductor laser element is arranged in the flow velocity measuring probe itself so that the optical fiber for light transmission is unnecessary and the laser beam is injected into the optical fiber. It solves all the problems caused by this. Next, the focusing optical system focuses the diffused light emitted from the semiconductor laser element to form a laser light beam for effective use, and for example, has a convex lens, a spherical lens and a convex lens. , Diffuse light into parallel light, focus the parallel light at a close position, shape the focused light into a thin light beam, and, if necessary, have a pinhole on the optical axis of the lens system. An optical mask is provided to limit the light beam that has passed through the lens system to only the pinhole portion.
Next, the split-refractive optical system is, for example, an optical glass plate having a smooth surface and a perfectly reflective bottom surface and arranged at an angle of 45 ° to the optical axis of the focusing optical system. With the mirror formed by the reflection bottom surface, one laser light beam that has passed through the pinhole is split into two laser light beams, and the two laser light beams are refracted at a substantially right angle to form a parallel laser light beam. Further, of the two flat light laser light beams, the laser light beam reflected and refracted by the half mirror having the smooth surface is made weaker than the laser light beam reflected and broken by the mirror having the perfect reflection bottom surface, for example, the intensity ratio thereof. Is set to about 3: 7, the laser light beam from the half mirror is used as reference light, and the laser light beam from the mirror is used later as scattered light. Next, the condensing optical system is composed of, for example, a convex lens, and condenses the two parallel laser light beams from the split refracting optical system at the flow velocity measuring point to intersect with each other. Next, the photoelectric conversion element is composed of, for example, a photodiode in front of which an optical mask having a pinhole is provided, and only the reference light and the scattered light within the same solid angle as the reference light are received by the photodiode through the pinhole. Then, it is converted into an electric signal according to the amount of received light and taken out as a flow velocity measurement output.

(本発明の作用) 以上のように構成する本発明流速測定用プローブは、つ
ぎに列記するような作用をなす。
(Operation of the Present Invention) The flow velocity measuring probe of the present invention configured as described above has the following operations.

(1) 測定用光源となる半導体レーザ素子をLDVプロ
ーブに内蔵したことにより、従来外部との接続に用いて
いた光フアイバーを不要したので、光フアイバーに光を
注入するときに生じていた光の損失がなくなり、また、
光フアイバーの位置設定に要していた精密調整が不要と
なつた。
(1) By incorporating a semiconductor laser device that serves as a light source for measurement into the LDV probe, the optical fiber that was conventionally used to connect to the outside is no longer needed, so the light generated when injecting light into the optical fiber is eliminated. There is no loss,
The precision adjustment required for setting the position of the optical fiber is no longer necessary.

(2) 従来は流速の2次元測定を目的としていたの
で、参照光ビームに対し、直角方向に偏心した2本のレ
ーザ光ビームを形成するために3個のピンホールを有す
る光学マスクを使用していた。したがつて、ピンホール
を外れた光は利用されなかつたが、本発明LDVプローブ
では1次元測定に徹し、フーフミラーによりレーザ光ビ
ームを2分割しているので、光量の損失が格段に軽減さ
れた。
(2) Since the conventional purpose was to measure the flow velocity two-dimensionally, an optical mask having three pinholes was used to form two laser light beams eccentric to the reference light beam at right angles. Was there. Therefore, the light out of the pinhole was not used, but the LDV probe of the present invention was able to perform the one-dimensional measurement, and the laser light beam was divided into two by the Hoof mirror, so that the loss of the light quantity was remarkably reduced. .

(3) 光電変換素子をLDVプローブの受光部に内蔵し
たことにより、プローブ自体の外径は約12mm程度にも大
きくなり、流体の超微細構造の測定にはやや不適切とは
なるものの、従来も、プローブの流体中挿入に耐える機
械的強度を確保するために外径13mm程度の外筺に収容し
ていたのであるから、形状寸法上の性能低下は生ぜず、
受光用光フアイバーを使用せずに受光用光学マスクを使
用可能としたので、受光におけるプローブの配置が容易
となり、受光量を増大させることが可能となつた。
(3) Since the photoelectric conversion element is built into the light receiving part of the LDV probe, the outer diameter of the probe itself is increased to about 12 mm, which is a little unsuitable for measuring the ultrafine structure of a fluid, but Also, because it was housed in an outer casing with an outer diameter of about 13 mm in order to secure the mechanical strength to withstand insertion of the probe in the fluid, there is no deterioration in performance in terms of shape and dimension,
Since the light-receiving optical mask can be used without using the light-receiving optical fiber, it is possible to easily dispose the probe for light reception and increase the amount of light received.

(4) 以上のように、光フアイバーの不使用により光
学系の配置に対する精密さが緩和され、多少の振動や衝
撃による光学系の位置ずれが生じても正確な信号検出が
可能となり、野外における流体流速の測定が容易となつ
た。
(4) As described above, the precision of the arrangement of the optical system is relaxed by not using the optical fiber, and even if the optical system is displaced due to some vibration or shock, accurate signal detection can be performed, and it can be used outdoors. Measurement of the fluid flow velocity was easy.

(5) 従来各部に生じていた光量の損失をかなり軽減
することができたので、測定に直接使用し得る光量が大
幅に増大し、測定結果の信号検出が容易になり、さら
に、かかる光強度の増大により、清水等の散乱粒子含有
の少ない流体についても明確にトツプラ効果による光強
度の変化の検出測定が可能になるとともに、濁水の流速
測定における信号処理も、信号増幅度が小さくてすむの
で、容易となつた。
(5) Since the loss of light quantity that has conventionally occurred in each part can be significantly reduced, the quantity of light that can be directly used for measurement is greatly increased, which facilitates signal detection of measurement results. With the increase of, it becomes possible to clearly detect and measure the change in light intensity due to the Toppler effect even for fluids containing few scattering particles, such as fresh water, and the signal processing in turbid water flow velocity measurement can be performed with small signal amplification. , Easy and natsu.

(6) 使用するレーザ光源を従来のガスレーザ素子か
ら半導体レーザ素子に変更したので、ガスレーザ素子の
駆動に従来使用した高電圧電源が不要となり、それだけ
消費電力を低減し得るとともに、衝撃等に弱いガスレー
ザ素子の不使用により野外等の測定に適した流速測定用
プローブとすることができる。
(6) Since the laser light source used has been changed from a conventional gas laser element to a semiconductor laser element, the high voltage power source conventionally used for driving the gas laser element is not required, and the power consumption can be reduced accordingly, and the gas laser is weak against shocks and the like. By not using the element, a flow velocity measuring probe suitable for measurement in the field can be obtained.

特に、つぎの諸点において、本発明流速測定用プローブ
は、野外測定用として従来に比し格段に優れている。
In particular, the flow velocity measuring probe of the present invention is remarkably superior to the conventional one for the field measurement in the following points.

(7) 本発明によるLDVプローブは、流体中の流速測
定点には非接触であるから、流体の流れの状態をほぼ乱
すことなく所望の流速を、野外においても精密に行なう
ことができる。
(7) Since the LDV probe according to the present invention is not in contact with the flow velocity measurement point in the fluid, the desired flow velocity can be precisely performed in the field without substantially disturbing the state of the fluid flow.

(8) 本発明プローブも、レーザドツプラ−ペロシメ
ータ(LDV)の原理的特長である瞬時流速の測定が可能
であり、したがつて、河川等に生ずる乱流についても流
速測定が可能である。
(8) The probe of the present invention is also capable of measuring the instantaneous flow velocity, which is the principle feature of the laser Doppler-perosimeter (LDV), and therefore can also measure the flow velocity of turbulent flow generated in a river or the like.

(9) 本発明プローブは、原理的には流速の絶対測定
を行なうのであるから、流れの状態や測定機器の摩耗な
どによる測定精度劣化のおそれがない。
(9) Since the probe of the present invention performs absolute measurement of the flow velocity in principle, there is no fear of deterioration of measurement accuracy due to flow conditions or wear of measuring equipment.

(実施例) 以下に図面を参照して実施例につき本発明を詳細に説明
する。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

まず、本発明流速測定用プローブを用いた流体流速測定
系全体の構成配置を第6図に示して説明する。
First, the configuration of the entire fluid flow velocity measuring system using the flow velocity measuring probe of the present invention will be described with reference to FIG.

図示の全体構成においては、本発明流速測定用プローブ
のうち、光送出用プローブ23を、流速を測定すべき流体
20を介して対向させた受光用プローブ24と一体構成にし
て、外部の測定系各構成要素に接続してある。すなわ
ち、レーザ光源用電源21から電源電圧22を供給した測定
用プローブに内蔵したレーザ光源から放射した2本のレ
ーザ光ビームを、流体20内の測定点Pに集光させた後
に、2本のレーザ光ビームB1,B2のうち参照光ビームB1
の直進方向に位置させてある受光用ブローブ24内の光電
変換素子8に入射した光成分は、参照光と散乱光との相
互干渉に流体の流速が及ぼすドツプラー効果に基づいて
生じたビート周波数成分を含んでおり、かかる入射光成
分の光電変換出力の電気信号25を増幅器26により増幅し
たうえで帯域フイルタ27によりドツプラー効果によるビ
ート周波数成分のみを抽出し、さらに、周波数−電圧変
換器28によりビート周波数成分が有するビート周波数に
比例した電圧信号を取出して演算器29により所要の流速
測定データを算出するように構成してある。
In the overall configuration shown in the figure, among the probes for flow velocity measurement of the present invention, the probe 23 for light transmission is a
It is integrally formed with the light-receiving probe 24 that is opposed via 20 and is connected to each component of the external measurement system. That is, after the two laser light beams emitted from the laser light source built in the measurement probe supplied with the power supply voltage 22 from the laser light source 21 are focused on the measurement point P in the fluid 20, Of the laser light beams B 1 and B 2 , the reference light beam B 1
The light component incident on the photoelectric conversion element 8 in the light receiving probe 24 located in the straight traveling direction is a beat frequency component generated based on the Doppler effect of the flow velocity of the fluid on the mutual interference between the reference light and the scattered light. The electric signal 25 of the photoelectric conversion output of the incident light component is amplified by the amplifier 26, only the beat frequency component due to the Doppler effect is extracted by the band filter 27, and the beat-frequency converter 28 beats the beat frequency component. A voltage signal proportional to the beat frequency of the frequency component is taken out and the required flow velocity measurement data is calculated by the calculator 29.

つぎに、上述した流体流速測定系の要部をなす本発明流
速測定用プローブの詳細な構成および作用を第1図につ
き詳細に説明する。第1図に要部を模式的に示す本発明
流速測定用プローブのうち、光送出用プローブ23におい
ては、外部電源から電源電圧1を供給して駆動する半導
体レーザ素子2から放出する拡散光を、後述するように
構成したレンズ系3により平行に集束して細い光ビーム
を形成する。かかる1本の細い光ビームを、例えば透明
ガラス板の底面を鏡面にして構成した互いに平行な表面
のハーフミラー4と底面のミラー5とを入射光ビームに
ほぼ45゜傾斜させて光路中に配置することにより、互い
に平行な2本の平行光ビームに変換し、さらに、集光用
レンズ系6により集光して流体20中の流速測定点Pで互
いに交差させ、ドツプラー効果による流体20の流速測定
に備える。
Next, the detailed configuration and operation of the probe for flow velocity measurement of the present invention, which is a main part of the fluid flow velocity measurement system described above, will be described in detail with reference to FIG. Of the probe for measuring the flow velocity of the present invention whose main part is schematically shown in FIG. 1, in the light-transmitting probe 23, the diffused light emitted from the semiconductor laser element 2 which is driven by supplying the power source voltage 1 from the external power source is used. The lens system 3 configured as described later focuses in parallel to form a thin light beam. Such a thin light beam is arranged in the optical path by inclining a half mirror 4 and a mirror 5 on the bottom surface, which are parallel to each other and have a bottom surface of a transparent glass plate as a mirror surface, to the incident light beam by about 45 °. By doing so, the light beams are converted into two parallel light beams that are parallel to each other, and are further condensed by the condensing lens system 6 so as to intersect each other at the flow velocity measurement point P in the fluid 20, and the flow velocity of the fluid 20 due to the Doppler effect. Prepare for measurement.

上述のような基本的構成を有する光送出用プローブのう
ち、半導体レーザ素子2からの拡散光を集束してレーザ
光ビームにするレンズ系3は、例えば第2図に示すよう
に、凸レンズ9、球レンズ10および凸レンズ11を組合わ
せて構成することができ、凸レンズ9は光源からの拡散
光の拡散角を小さくし、球レンズ10はその拡散光を直近
の距離に集束し、凸レンズ11はその集束光を平行光にす
る。かかる構成のレンズ系3により、光源とする半導体
レーザ素子2からの拡散光の光量が細い光ビームに集中
して取出される。
Among the light-transmitting probes having the above-described basic structure, the lens system 3 that converges the diffused light from the semiconductor laser element 2 into a laser light beam includes, for example, as shown in FIG. It can be configured by combining the spherical lens 10 and the convex lens 11, the convex lens 9 reduces the diffusion angle of the diffused light from the light source, the spherical lens 10 focuses the diffused light to the nearest distance, and the convex lens 11 Make focused light parallel light. With the lens system 3 having such a configuration, the light amount of diffused light from the semiconductor laser element 2 serving as a light source is concentrated and extracted in a thin light beam.

つぎに、ハーフミラー4とミラー5とは、上述した1本
のレーザ光ビームを、互いに光量の異なる互いに平行な
2本の平行光ビームに変換するとともに、その進行方向
をほぼ直角に屈折させている。かかる作用をなすハーフ
ミラー4とミラー5とは、例えば適切な透過度の平滑表
面を有する厚さ3.5mmのガラス板の底面を鏡面にし、表
面の反射率および透過度と底面の全反射との組合わせに
より、表面がなすハーフミラー4と底面がなすミラー5
とによつてそれぞれ形成する2本のレーザ光ビームの光
量比を適切に設定することができるが、通常は、ハーフ
ミラー4からの反射ビームの方が弱い。
Next, the half mirror 4 and the mirror 5 convert the above-mentioned one laser light beam into two parallel light beams having mutually different amounts of light and refracting the traveling directions thereof at substantially right angles. There is. The half mirror 4 and the mirror 5 which perform such an action, for example, have a bottom surface of a glass plate having a thickness of 3.5 mm having a smooth surface having an appropriate transmittance as a mirror surface, and reflect the reflectance and the transmittance of the surface and the total reflection of the bottom surface. Depending on the combination, the half mirror 4 formed by the surface and the mirror 5 formed by the bottom surface
Although the light quantity ratio of the two laser light beams formed respectively can be appropriately set by, the reflection beam from the half mirror 4 is usually weaker.

上述のようにして互いに平行に構成したハーフミラー4
とミラー5とは、第3図に示すように、入射光ビームに
対して45゜の角度をなして配置し、入射光ビームを、ほ
ぼ直角に屈折したハーフミラー4からの弱い参照光ビー
ムB1とミラー5からの格段に強い光ビームB2とに変換す
る。なお、後者の光ビームB2は、流体20を照射して散乱
させ、その散乱した測定光ビームB2の一部を参照光ビー
ムB1とともに取出してドツプラー効果により流速を測定
するのに用いる。
Half mirrors 4 configured in parallel with each other as described above
As shown in FIG. 3, the mirror 5 and the mirror 5 are arranged at an angle of 45 ° with respect to the incident light beam, and the incident light beam is weakly refracted at a right angle. 1 and a remarkably strong light beam B 2 from the mirror 5. The latter light beam B 2 is used to irradiate and scatter the fluid 20 and to take out a part of the scattered measurement light beam B 2 together with the reference light beam B 1 to measure the flow velocity by the Doppler effect.

すなわち、第4図に示すように、周波数f1の光ビーム
が、流速uの流体の流れの方向に対しほぼ直角に入射す
ると、その流体の流速uが光ビームに対してドツプラー
効果を及ぼし、入射方向に直進する光成分の周波数は、
入射光と同じ周波数f1のままであるが、流体により散乱
して他の方向に向う散乱光の周波数は、入射方向となす
進行方向の角度に応じて変化した他の周波数f2となる。
That is, as shown in FIG. 4, when a light beam having a frequency f 1 is incident almost at right angles to the flow direction of a fluid having a flow velocity u, the flow velocity u of the fluid exerts a Doppler effect on the light beam, The frequency of the light component that travels straight in the incident direction is
The frequency of the scattered light that remains the same frequency f 1 as the incident light but goes to another direction after being scattered by the fluid becomes another frequency f 2 that changes according to the angle between the incident direction and the traveling direction.

したがって、第5図に示すように、ともに周波数f1を有
する参照光ビームB1と測定光ビームB2とを互いに交差し
て流体中の測定点Pに入射させると、参照光ビームB1
入射方向に進む光成分は、入射方向に直進した周波数f1
の参照光B1の成分と、入射方向から角度θだけ外れて参
照光ビームの入射方向に進む測定光ビームB2中、交差角
θおよび流速uに応じた周波数f2を有する散乱光成分と
の合成光成分となる。かかる周波数f1,f2に比して周波
数差f1〜f2が十分に小さいと、この合成光成分中には、
周波数差の絶対値|f1−f2|に相当するビート周波数成分
が含まれ、このビード周波数から流体の流速uを算出し
得るようになる。
Therefore, as shown in FIG. 5, when the reference light beam B 1 and the measurement light beam B 2 both having the frequency f 1 cross each other and are incident on the measurement point P in the fluid, the reference light beam B 1 The light component that travels in the incident direction has a frequency f 1 that travels straight in the incident direction.
Of the reference light B 1 and a scattered light component having a frequency f 2 according to the crossing angle θ and the flow velocity u in the measurement light beam B 2 that advances from the incident direction by an angle θ and proceeds in the incident direction of the reference light beam. Is the combined light component of. When such frequency f 1, f 2 frequency difference f 1 ~f 2 is sufficiently smaller than the, during the combined beam components,
The beat frequency component corresponding to the absolute value of the frequency difference | f 1 −f 2 | is included, and the flow velocity u of the fluid can be calculated from this bead frequency.

なお、ドップラ効果について説明すると、動いている粒
子が照射されると第13図に示すように測定光ビームB2
進行方向に散乱される光と測定光ビームB2の進行方向か
らずれて散乱される光が現われる(この散乱をミー散乱
という)。このうち測定光ビームB2の進行方向に散乱さ
れる光ビームは測定光ビームB2と同じ周波数を有してお
り、粒子Pの速度にはよらない。ところがその他の光ビ
ームは、測定光ビームB2の進行方向とのなす角θとPの
速度(はやさと方向を含む)に依存した周波数の変化を
受ける。この現象がドップラ効果である。
Explaining the Doppler effect, when a moving particle is irradiated, the light scattered in the traveling direction of the measurement light beam B 2 and the scattering scattered from the traveling direction of the measurement light beam B 2 as shown in FIG. The emitted light appears (this scattering is called Mie scattering). The light beam is scattered in the traveling direction of these measuring light beam B 2 has the same frequency as the measuring light beam B 2, does not depend on the velocity of the particle P. However, the other light beams undergo a change in frequency depending on the angle θ formed by the traveling direction of the measurement light beam B 2 and the speed (including the speed and direction) of P. This phenomenon is the Doppler effect.

従って、光学マスク7に向かう参照光ビームB1は何ら周
波数変化も生じないが、測定光ビームB2の散乱光で光学
マスク7に向かう光ビームは周波数がもとの測定光ビー
ムB2の周波数(従って、B1の周波数)とは異なる。この
結果、光電変化素子8からの出力は参照光ビームB1の周
波数f1と測定光ビームB2の散乱光のうち光学マスクに向
かう光ビームの周波数f2の差の絶対値、|f1−f2|に相当
する周波数の光強度変化(これをビート周波数とかドッ
プラシフトという)に対応するものとなる。さらに|f1
−f2|はP点での流速に完全に比例するので、結局流速
が測定できることになる。ただし、先にも述べたように
参照光ビームB1と測定光ビームB2の散乱光のうち光学マ
スク7に向かう光ビームの強度はほぼ等しくなければ|f
1−f2|の検出は困難になる。参照光ビームB1と測定光ビ
ームB2とは一方の測定光ビームB2が常に大きい方がよ
い。本発明では参照光ビームB1と測定光ビームB2との比
を例えばB1:B2=3:7とするのが好ましい。
Accordingly, the reference light beams B 1 toward the optical mask 7 is not caused any frequency change, the measuring light beam B 2 of the scattered light toward the optical mask 7 light beam frequency frequency of the original measurement beam B 2 (Hence the frequency of B 1 ). As a result, the absolute value of the difference between the frequency f 2 of the light beam output from the photoelectric change element 8 toward the optical mask of the frequency f 1 of the reference light beams B 1 measuring light beam B 2 of the scattered light, | f 1 It corresponds to a change in light intensity at a frequency corresponding to −f 2 | (this is called the beat frequency or Doppler shift). And | f 1
Since −f 2 | is completely proportional to the flow velocity at point P, the flow velocity can be measured after all. However, as described above, if the intensities of the light beams directed to the optical mask 7 among the scattered lights of the reference light beam B 1 and the measurement light beam B 2 are not substantially equal to | f
It becomes difficult to detect 1 −f 2 |. Reference light beams B 1 and the measuring light beam B 2 and is better one measurement light beam B 2 is always larger. In the present invention, it is preferable that the ratio of the reference light beam B 1 and the measurement light beam B 2 is, for example, B 1 : B 2 = 3: 7.

つぎに、上述のようにして、流速測定点Pから参照光ビ
ームB1の直進方向に向う合成光成分のみを、第1図に示
したように、適切な開孔を設けた光学マスク7により抽
出して、例えばフオトダイオードよりなる光電変換素子
8により補足し、電気信号に変換する。
Next, as described above, only the combined light component directed from the flow velocity measuring point P in the straight traveling direction of the reference light beam B 1 is passed through the optical mask 7 having appropriate apertures as shown in FIG. It is extracted and supplemented by the photoelectric conversion element 8 composed of a photodiode, for example, and converted into an electric signal.

従来の流速測定用プローブにおける受光用プローブで
は、上述の合成光成分を光フアイバーの開口端面により
受光して外部の光電子増倍器に導いていたが、光フアイ
バーの開口口径は50〜200μm程度で極めて小さく、参
照光ビームを正確に補捉し得るように位置決めをするの
に極めて精密な位置調整を要し、また、振動や衝撃によ
つて受光用光フアイバーの位置がわずかでもずれると測
定不能を来たしていた。さらに、光フアイバーの開口端
面では、光の入射角によつては入射光の反射が生じて補
捉し得なくなるので、受光用光フアイバーと参照光ビー
ムとの光軸を正確に一致させる必要があり、光フアイバ
ーの位置調整に一層の精密度を要する。かかる従来の受
光用プローブの構成に対し、上述のように光電変換素
子、例えば、フオトダイオードを直接に組込んでピンホ
ールを有する光学マスクにより所要の受光成分を抽出す
るように構成すると、光学マスク7の直後にフオトダイ
オード8を配置すれば、光学マスク7のピンホールの口
径を所要の流速測定精度内で十分に大きく設定すること
ができ、構成が簡単になるのみならず、構成要素の位置
調整が格段に容易となり、振動や熱膨張などに基づくわ
ずかな位置ずれや変形によつて流速測定不能の事態を生
ずるおそれが全くなくなる。
In the light receiving probe of the conventional flow velocity measuring probe, the above-mentioned combined light component is received by the opening end face of the optical fiber and guided to the external photomultiplier, but the opening diameter of the optical fiber is about 50 to 200 μm. It is extremely small and requires extremely precise position adjustment to position it so that it can accurately capture the reference light beam, and measurement is not possible if the position of the receiving optical fiber deviates even slightly due to vibration or shock. Was coming. Further, at the opening end face of the optical fiber, incident light is reflected depending on the incident angle of light and cannot be captured.Therefore, the optical axes of the receiving optical fiber and the reference optical beam must be accurately aligned. Yes, higher precision is required to adjust the position of the optical fiber. In contrast to the configuration of such a conventional light-receiving probe, when a photoelectric conversion element, for example, a photodiode is directly incorporated as described above and a required light-receiving component is extracted by an optical mask having a pinhole, an optical mask By arranging the photodiode 8 immediately after 7, it is possible to set the diameter of the pinhole of the optical mask 7 to be sufficiently large within the required flow velocity measurement accuracy, which not only simplifies the configuration but also the position of the component. The adjustment becomes much easier, and there is no possibility that the flow velocity cannot be measured due to a slight displacement or deformation due to vibration or thermal expansion.

つぎに、本発明流速測定用プローブの性能を、室内水路
における従来慣用の流速計との比較および実河川におけ
る実測の結果について検討する。
Next, the performance of the probe for flow velocity measurement of the present invention will be examined with comparison with the conventional flow velocity meter in the indoor water channel and the result of actual measurement in an actual river.

本発明流速測定用プローブがその動作原理とする流体流
速が入射光の周波数に及ぼすドツプラ効果によつて流体
透過光に生ずるピート周波数はドツプラシフト量νoに
等しいので、流速Uは、入射光の波長λ、媒質の屈折率
n、入射光ビームの交差角θについて、 なる式で表わされる。
Since the Pete frequency generated in the fluid-transmitted light by the Doppler effect exerted by the fluid flow velocity on the frequency of the incident light, which is the operating principle of the probe for measuring the velocity of the present invention, is equal to the Doppler shift amount νo, the flow velocity U is the wavelength λ of the incident light. , With respect to the refractive index n of the medium and the crossing angle θ of the incident light beams, It is expressed by

一方、従来流体流速の測定に慣用されている熱膜流速計
(HFV)、すなわち、流体中に展張した金属細線に電流
を通して加熱したときの電流による発熱量と流れによる
放熱量と平衡温度となる金属細線の流れの冷却作用によ
る抵抗の変化に基づいて流速を求める流速測定計は、低
流速から高流速に到る広い測定範囲で点測定が可能であ
り、周波数応答が優れているので、従来流体の計測に多
用されているが、汚れに弱く、加熱電流用コードを長く
し得ず、発熱により気泡が発生し易い等の理由から実河
川の測定には適さないとされていた。室内水路におい
て、本発明流速測定用プローブとかかる熱膜流速計とを
用い、同一流体について同時に、流速変動を測定した結
果を第7図(a)と(b)とにそれぞれ示し、パワース
ペクトルを測定した結果を第8図(a)と(b)とにそ
れぞれ示す。第7図から明らかなとなり、双方の流速変
動測定結果はよく一致しているが、パワースペクトルに
ついては、低中周波数領域ではよく一致しているが、本
発明プローブにより2.0Hz近傍に現われている高周波数
領域のピークが熱膜流速計によつては顕著に現われては
おらず、本発明プローブでは充分なレベルの電気出力が
得られるのに反し、熱膜流速計では、電気出力が微弱で
あるため、信号対ノイズ比が劣化し、高周波数領域の測
定に誤差が生じた結果の相違と認められる。以上の比較
結果からすれば、本発明流速測定用プローブは室内水路
における流速測定に要求される所要の周波数応答特性を
有していることは明らかである。
On the other hand, a hot film anemometer (HFV) conventionally used to measure the fluid flow velocity, that is, the amount of heat generated by the current and the amount of heat released by the flow and the equilibrium temperature when heating is performed by passing an electric current through a thin metal wire spread in the fluid Velocity meters, which determine the flow velocity based on the resistance change due to the cooling action of the flow of thin metal wires, are capable of point measurement in a wide measurement range from low flow velocity to high flow velocity and have excellent frequency response. It is widely used for measuring fluids, but it is said that it is not suitable for measuring actual rivers because it is vulnerable to dirt, the heating current cord cannot be lengthened, and bubbles easily occur due to heat generation. In the indoor water channel, the flow velocity fluctuation was measured at the same time for the same fluid using the probe for flow velocity measurement of the present invention and the hot film anemometer, and the results are shown in FIGS. 7 (a) and 7 (b), respectively. The measured results are shown in FIGS. 8 (a) and 8 (b), respectively. As is clear from FIG. 7, both flow velocity fluctuation measurement results are in good agreement, but the power spectra are in good agreement in the low and middle frequency regions, but appear in the vicinity of 2.0 Hz by the probe of the present invention. The peaks in the high frequency region are not significantly shown by the hot film velocimeter, and while the probe of the present invention provides a sufficient level of electric output, the hot film velocimeter has a weak electric output. Therefore, the signal-to-noise ratio deteriorates, and it is considered that the difference is the result of the error in the measurement in the high frequency region. From the above comparison results, it is apparent that the probe for flow velocity measurement of the present invention has the required frequency response characteristic required for flow velocity measurement in the indoor water channel.

一方、従来、同様に慣用されているCM−2型電気流速
計、すなわち、流体中に位置するプロペラの流れによる
回転に基づく発電出力を流速値として指示する流速計と
の比較を実河川における測定結果について行なつたが、
本発明プローブとCM−2型電気流速計とを用い、同一流
体について同時に、低流速域の流速変動を測定した結果
を第9図(a)と(b)とにそれぞれ示し、同じく低流
速域のパワースペクトルを測定した結果を第10図(a)
と(b)とにそれぞれ示し、また、高流速域の流速変動
を測定した結果を第11図(a)と(b)とにそれぞれ示
し、同じく高流速域のパワースペクトルを測定した結果
を第12図(a)と(b)とにそれぞれ示す。
On the other hand, a comparison with a CM-2 type electric anemometer, which has been commonly used in the past, that is, an anemometer that indicates the power generation output based on the rotation by the flow of a propeller located in the fluid as the velocity value is measured in a real river. As for the result,
Using the probe of the present invention and the CM-2 type electric velocimeter, the results of measuring the flow velocity fluctuation in the low flow velocity region at the same time for the same fluid are shown in FIGS. 9 (a) and 9 (b), respectively. Fig. 10 (a) shows the result of measuring the power spectrum of
And (b) respectively, and the results of measurement of flow velocity fluctuations in the high flow velocity region are shown in Fig. 11 (a) and (b), respectively, and the result of measurement of the power spectrum in the high flow velocity region is also shown in Fig. 11 (a) and (b). It is shown in FIGS. 12 (a) and 12 (b), respectively.

なお、第8図,第10図,第12図の作成条件について述べ
ると、第8図,第10図,第12図は、それぞれ第7図,第
9図,第11図のスペクトル図である。
In addition, describing the preparation conditions of FIGS. 8, 10, and 12, FIGS. 8, 10, and 12 are spectrum diagrams of FIG. 7, FIG. 9, and FIG. 11, respectively. .

第7図は、水路を流れる一様な流れに不規則な振幅の小
さい表面波を与えて乱れも含んだ流れ(ただし逆流は生
じない流れとした)を作り熱膜流速計と本発明とを1cm
離して流れの中に設置して測定した結果である。たまた
ま波の成分の中に2秒強度の周期のものも含まれていた
ためスペクトル図にそのピークが現われたものである。
FIG. 7 shows a hot film anemometer and the present invention in which a uniform flow flowing through a water channel is given a surface wave with an irregular small amplitude to create a flow including turbulence (however, no backflow occurs). 1 cm
These are the results of measurements that were placed separately in the flow and measured. It happens that the peak of the wave appeared in the spectrum because the wave component also included a wave with a period of 2 seconds.

第9図は流れのゆるやかな実際の河川で測定したもので
(a)は本発明による測定結果、(b)はプロペラ流速
計(CM−2)による測定結果である。それらのスペクト
ル図第10図(a)と(b)を比べると、本発明の方がCM
−2流速計に比べてはるかに高い周波数の乱流まで測定
できることが分かる。又、乱流の一般的性質であるスペ
クトルの勾配(−5/3)の傾斜も(a)については見出
せ本発明には、乱流測器としての性能を有していること
が分かる。
9A and 9B are measured in an actual river with a gentle flow, where FIG. 9A shows the measurement result according to the present invention, and FIG. 9B shows the measurement result by the propeller anemometer (CM-2). Comparing those spectrum diagrams (a) and (b) of FIG.
-It can be seen that turbulence with a frequency much higher than that of the -2 anemometer can be measured. Further, the slope (-5) of the spectral gradient (-5/3), which is a general property of turbulence, can also be found for (a), and it can be seen that the present invention has performance as a turbulence measuring instrument.

第11図はやや流れの速い実際の河川で第9図と同様の測
定をした結果である。この場合は流れが速いため、乱れ
の振幅も大きく、又、高い周波数の乱れも含まれてい
る。この場合も本発明による結果(a)の方がCM−2に
よる(b)の結果より高い周波数の測定が可能であるこ
とと乱流のスペクトルに共通の−5/3という勾配が明確
にとられていることが分かる。
Fig. 11 shows the result of the same measurement as Fig. 9 in an actual river with a rather fast flow. In this case, since the flow is fast, the amplitude of turbulence is large, and turbulence of high frequency is also included. Also in this case, the result (a) according to the present invention can measure a higher frequency than the result (b) by the CM-2, and the gradient of -5/3, which is common to the spectrum of turbulence, is clarified. You can see that it is done.

以上の結果から本発明は測定精度上では、熱膜流速計
(現在最高の精度を有するといわれている)と同程度、
野外観測での従来の既述測定器に比べて格段の精度を有
しているといえる。
From the above results, the present invention has the same measurement accuracy as the hot film anemometer (currently said to have the highest accuracy).
It can be said that it has significantly higher accuracy than the conventional measuring instruments described above for field observation.

それぞれの測定結果を比較するに、第9図(a),
(b)に示した低流速域の流速変動については両者はほ
ぼ一致しているが、第10図(a),(b)に示した低流
速域のパワースペクトルについては、両者間にあまり共
通性が見出せず、特に、0.2Hzより高周波数領域におけ
る後者の減衰が著しい。一方、第11図(a),(b)に
示した高流速域の流速変動についても、両者はほぼ一致
しているが、第12図(a),(b)に示した高流速域の
パワースペクトルについては、後者に存在するピークは
すべて前者に存在しているが、前者に存在する0.5Hz以
上の高周波数域におけるピークが後者には現われておら
ず、後者の高周波数域におけるスペクトルの急激な減少
を示している。なお、前者すなわち本発明プローブによ
る測定結果は、1Hz近傍までレベルが減少せず、理論ど
おりの−5/3乗則に近いパワースペクトルを示してい
る。
To compare the respective measurement results, FIG. 9 (a),
The flow velocity fluctuations in the low flow velocity region shown in (b) are almost the same, but the power spectra in the low flow velocity region shown in FIGS. 10 (a) and 10 (b) are not very common between the two. However, the attenuation of the latter is remarkable in the frequency range higher than 0.2 Hz. On the other hand, the flow velocity fluctuations in the high flow velocity region shown in FIGS. 11 (a) and 11 (b) are almost the same, but in the high flow velocity region shown in FIGS. 12 (a) and 12 (b). Regarding the power spectrum, all the peaks present in the latter are present in the former, but the peaks in the high frequency region of 0.5 Hz or higher present in the former do not appear in the latter, and the spectrum of the latter in the high frequency region is It shows a sharp decrease. The former, that is, the measurement result by the probe of the present invention, shows that the level does not decrease up to around 1 Hz, and that the power spectrum is close to the theoretical −5/3 power law.

以上の結果からすれば、CM−2型電気流速計が、プロペ
ラの回転特定その他により、短周期の流速変動には追従
し得ないと認められるのに対し、本発明プローブは広い
周波数領に亘つて正確な流速測定を行ない得ることは明
らかである。
From the above results, it is recognized that the CM-2 type electric velocity meter cannot follow the short period velocity fluctuation due to the rotation of the propeller or the like, whereas the probe of the present invention covers a wide frequency range. It is clear that accurate flow velocity measurements can be made.

なお、実河川において、本発明流速測定用プローブの設
置深度を順次に変化させて流速プロフイルを測定した結
果によれば、実河川における流れの場の特徴を本発明プ
ローブによりほぼ忠実に把握し得るものと認められる。
すなわち、従来型の流速計は、短周期の流速変動を捕え
ることが困難であり、河川乱流の周期特性の解明にかな
りの制限があつたのに対し、本発明流速測定用プローブ
によれば、0.4秒程度の短周期から数十秒の長周期流速
変動まで存在を確認することができた。
According to the result of measuring the flow velocity profile in the actual river by sequentially changing the installation depth of the probe for measuring the current velocity of the present invention, the characteristics of the flow field in the actual river can be grasped almost faithfully by the probe of the present invention. Recognized as something.
That is, the conventional anemometer is difficult to catch the short-term velocity fluctuation, and there is a considerable limit to the elucidation of the periodic characteristics of the river turbulence, whereas the present velocity probe It was possible to confirm the existence from a short cycle of about 0.4 seconds to a long cycle velocity fluctuation of several tens of seconds.

(発明の効果) 以上の説明から明らかなように、本発明によれば、レー
ザ光ビームによりドツプラー効果に基づく流体流速の測
定を行なう流速測定用プローブを従来に比し格段に簡単
な構成により、従来のように各構成要素の取付け位置の
精密調整を要することなく、容易に製作することがで
き、しかも、室内水路および実河川における流体流速の
測定に用いて、従来は測定困難であつた広い周波数域に
亘る流体流速の測定並びに広い周期範囲に亘る流速変動
の測定を極めて忠実に行ない得るという格別の効果が得
られる。
(Effects of the Invention) As is apparent from the above description, according to the present invention, the flow velocity measuring probe for measuring the fluid flow velocity based on the Doppler effect by the laser light beam has a significantly simpler structure than the conventional one. It can be easily manufactured without requiring precise adjustment of the mounting position of each component as in the past, and it is widely used for measuring fluid flow velocity in indoor waterways and actual rivers. A particular effect is obtained in that the measurement of the fluid flow velocity over the frequency range and the measurement of the flow velocity fluctuation over a wide period range can be performed extremely faithfully.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明流速測定用プローブの構成例を模式的に
示す線図、 第2図は同じくその光送出用プローブ内の集束光学系の
構成例を模式的に示す線図、 第3図は同じくその光送出用プローブ内の分割屈折光学
系の構成例を模式的に示す線図、 第4図はドツプラー効果に基づく流体流速測定の原理を
模式的に示す線図、 第5図は本発明プローブによるドツプラー効果に基づく
流体流速測定の態様を模式的に示す線図、 第6図は本発明プローブを用いた流体流速測定系の全体
構成の例を模式的に示す線図、 第7図(a)および(b)は本発明プローブおよび従来
の熱膜流速計による流速変動の測定結果をそれぞれ示す
特性曲線図、 第8図(a)および(b)は同じくそのパワースペクト
ルの測定結果をそれぞれ示す特性曲線図、 第9図(a)および(b)は本発明プローブおよび従来
のCM−2型流速測定器による低周波数域の流速変動の測
定結果をそれぞれ示す特性曲線図、 第10図(a)および(b)は同じくその低周波数域のパ
ワースペクトルの測定結果をそれぞれ示す特性曲線図、 第11図(a)および(b)は同じくその高周波数域の流
速変動の測定結果をそれぞれ示す特性曲線図、 第12図(a)および(b)は同じくその高周波数域のパ
ワースペクトルの測定結果をそれぞれ示す特性曲線であ
り、 第13図は、動作説明図である。 1……電源電圧、2……半導体レーザ素子 3,6……レンズ系、4……ハーフミラー 5……ミラー、7……光学マスク 8……光電変換素子、9,11……凸レンズ 10……球レンズ 20……流体、21……レーザ光源用電源 22……電源電圧、23……光送出用プローブ 24……受光用プローブ、25……電気信号 26……増幅器、27……帯域フイルタ 28……周波数−電圧変換装置 29……演算器
FIG. 1 is a diagram schematically showing a configuration example of a probe for measuring a flow velocity of the present invention, and FIG. 2 is a diagram schematically showing a configuration example of a focusing optical system in the light transmission probe, and FIG. Is also a diagram schematically showing an example of the constitution of the split refracting optical system in the light transmission probe, FIG. 4 is a diagram schematically showing the principle of fluid velocity measurement based on the Doppler effect, and FIG. FIG. 7 is a diagram schematically showing a mode of fluid velocity measurement based on the Doppler effect by the invention probe, FIG. 6 is a diagram schematically showing an example of the overall configuration of a fluid velocity measurement system using the probe of the invention, FIG. (A) and (b) are characteristic curve diagrams showing the measurement results of the flow velocity fluctuation by the probe of the present invention and the conventional hot film anemometer, respectively, and FIGS. 8 (a) and (b) show the measurement results of the power spectrum thereof. Characteristic curves shown in Fig. 9 (a) And (b) are characteristic curve diagrams showing measurement results of flow velocity fluctuations in a low frequency range by the probe of the present invention and a conventional CM-2 type flow velocity measuring device, respectively, and FIGS. 11 (a) and 11 (b) are characteristic curve diagrams showing the measurement results of the power spectrum of the high frequency region, respectively, and FIG. 11 (a) and 11 (b) are the characteristic curve diagrams showing the measurement results of the flow velocity fluctuation in the high frequency region, respectively. Similarly, (b) is a characteristic curve showing the measurement result of the power spectrum in the high frequency region, and FIG. 13 is an operation explanatory diagram. 1 ... Power supply voltage, 2 ... Semiconductor laser element 3,6 ... Lens system, 4 ... Half mirror 5 ... Mirror, 7 ... Optical mask 8 ... Photoelectric conversion element, 9, 11 ... Convex lens 10 ... … Spherical lens 20 …… Fluid, 21 …… Laser light source power supply 22 …… Power supply voltage, 23 …… Optical transmission probe 24 …… Receiving probe, 25 …… Electrical signal 26 …… Amplifier, 27 …… Band filter 28 …… Frequency-voltage converter 29 …… Computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体レーザ素子と、 球形レンズおよびその球形レンズの前後に近接してそれ
ぞれ囲繞する球面凸レンズにより構成し、前記半導体レ
ーザ素子から発散するレーザ光を集束してレーザ光ビー
ムを形成する集束光学系と、 前記レーザ光ビームの光軸に対して傾斜配置した透明体
平板の両面がなす互いに平行なハーフミラーおよびミラ
ーにより構成し、前記レーザ光ビームを分割するととも
にそれぞれほぼ直角に屈折させて互いに強度の異なる一
対の平行レーザ光ビームを形成する分割屈折光学系と、 前記一対の平行レーザ光ビームを流速測定点に集光して
互いに交叉させる集光光学系と、 前記平行レーザ光ビームのうち強度の弱い方のレーザ光
ビームの軸上に位置して前記流速測定点を通過した当該
レーザ光ビームを受光する光電変換素子とを備え、前記
流速測定点を通過したレーザ光ビームのドップラ効果に
より前記流速測定点における流体の流速を測定し得るよ
うに構成したことを特徴とする流速測定用プローブ。
1. A semiconductor laser device, a spherical lens, and a spherical convex lens that surrounds and surrounds the spherical lens in front of and behind the spherical lens, respectively, and focuses laser light emitted from the semiconductor laser device to form a laser light beam. A focusing optical system and a half mirror and a mirror that are parallel to each other and are formed on both sides of a transparent plate that is inclined with respect to the optical axis of the laser light beam, and divide the laser light beam and refract it at substantially right angles. Split refracting optical system for forming a pair of parallel laser light beams having mutually different intensities, a condensing optical system for converging the pair of parallel laser light beams at a flow velocity measurement point and crossing each other, and the parallel laser light beam Light that receives the laser light beam that has passed through the flow velocity measurement point and is located on the axis of the weaker laser light beam A probe for flow velocity measurement, comprising an electric conversion element, and configured so that the flow velocity of the fluid at the flow velocity measurement point can be measured by the Doppler effect of the laser light beam that has passed through the flow velocity measurement point.
JP60122809A 1985-06-07 1985-06-07 Velocity measurement probe Expired - Lifetime JPH0677024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122809A JPH0677024B2 (en) 1985-06-07 1985-06-07 Velocity measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122809A JPH0677024B2 (en) 1985-06-07 1985-06-07 Velocity measurement probe

Publications (2)

Publication Number Publication Date
JPS61281971A JPS61281971A (en) 1986-12-12
JPH0677024B2 true JPH0677024B2 (en) 1994-09-28

Family

ID=14845173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122809A Expired - Lifetime JPH0677024B2 (en) 1985-06-07 1985-06-07 Velocity measurement probe

Country Status (1)

Country Link
JP (1) JPH0677024B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187538A (en) * 1990-10-30 1993-02-16 Kabushiki Kaisha Toshiba Laser doppler velocimeter
EP2042877B1 (en) * 2007-09-28 2012-02-08 Gebrüder Loepfe AG Method and device for measuring the velocity of a thread
CN117516641B (en) * 2024-01-05 2024-03-26 山东中云电科信息技术有限公司 Channel section flow measurement equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127804A (en) * 1981-02-02 1982-08-09 Toyota Central Res & Dev Lab Inc Device for measuring coordinate of hollow shape

Also Published As

Publication number Publication date
JPS61281971A (en) 1986-12-12

Similar Documents

Publication Publication Date Title
US4154529A (en) System for detecting reflected laser beams
US6166806A (en) Fiber optic catheter for accurate flow measurements
US4917496A (en) Particle size measuring instrument with direct scattered light detection
US3680961A (en) Measurement of particle sizes
CA1144390A (en) Apparatus for measuring fluid flow
RU2385461C2 (en) Optical time-of-flight velocimetre
CN107782697A (en) The confocal Infrared Lens element refractive index measurement method of broadband and device
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
JPH0677024B2 (en) Velocity measurement probe
CN108801377A (en) A kind of Optical devices for specialized fluids flow velocity and flow measurement
JP4054178B2 (en) Light scattering measuring device
US4241612A (en) Flowmeter
CN108593027A (en) A kind of new gas flow and concentration measuring apparatus
Ohba et al. Development of fiber optic laser Doppler velocimeter for measurement of local blood velocity
CN208953128U (en) Myriawatt power meter
Tjin et al. Evaluation of the two-fiber laser Doppler anemometer for in vivo blood flow measurements: experimental and flow simulation results
JPS6359930A (en) Blood flow meter
JP3475219B2 (en) Laser anemometer and method of manufacturing probe used therein
CHIGIER Combustion diagnostics by laser velocimetry
Tjin et al. New side-projected fiber optic probe for in vivo flow measurements
JPH0228428Y2 (en)
Chuan et al. A new fibre optic probe for in vivo flow measurements
JPH0156382B2 (en)
RU1347689C (en) Method of remote measuring of initial value of focal distance of refraction channels
JPS62233767A (en) Two-fiber type laser doppler current meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term