[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0674579A - Refrigerating apparatus - Google Patents

Refrigerating apparatus

Info

Publication number
JPH0674579A
JPH0674579A JP22737492A JP22737492A JPH0674579A JP H0674579 A JPH0674579 A JP H0674579A JP 22737492 A JP22737492 A JP 22737492A JP 22737492 A JP22737492 A JP 22737492A JP H0674579 A JPH0674579 A JP H0674579A
Authority
JP
Japan
Prior art keywords
oil
compressor
temperature
amount
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22737492A
Other languages
Japanese (ja)
Inventor
Yuuji Fujimoto
遊二 藤本
Noriyasu Kawakatsu
紀育 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP22737492A priority Critical patent/JPH0674579A/en
Publication of JPH0674579A publication Critical patent/JPH0674579A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21155Temperatures of a compressor or the drive means therefor of the oil

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To keep within an appropriate ranges the quantity of the oil returned from the oil-separating means to the compressor and the temperature of the oil in the compressor independent of the differential pressure between the high and low pressures of the compressor and prolong the service life of the compressor. CONSTITUTION:An oil-separating means 18 for separating the oil contained in the discharged gas from the compressor 1 is provided in the discharged gas line 9. An oil-returning means 19 for returning the oil separated by the oil-separating means 18 to the compressor 1 in a quantity variable by throttling is provided between the oil-separating means 18 and the suction gas line 17. An oil temperature-detecting means 20 for detecting the temperature of the oil contained in the compressor 1 and a means of quantitatively controlling the oil returned 22 which, when the detected temperature of the oil is high, increases the throttling of the oil-returning means 19 and, when the temperature is low, decreases the throttling thereof are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機への油戻し量を
調節することが可能な冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system capable of adjusting the amount of oil returned to a compressor.

【0002】[0002]

【従来の技術】圧縮機に油を戻す装置が備えられる圧縮
ユニットの典型的な先行技術は、特開平4−12147
9号公報によって公知であり、その要部の系統が図9に
示される。圧縮機1がスクロール圧縮機の場合、圧縮室
内の潤滑と冷却のために相当量の潤滑油が圧縮室内に送
られ、この油は潤滑の用に供された後、大半量が吐出ガ
スと共に吐出ガス管路に送り出される。このときの吐出
ガスと一緒に送り出される油上り量はかなり多いため
に、油分離装置18を吐出ガス管路9に設けて、吐出ガ
スから油を分離させた後、キャピラリチューブなどの抵
抗管路によって形成される油戻し管31を通じて、油を
圧縮機1に戻すようにしている。さらに分離された油の
一部を、インジェクション経路32によってスクロール
圧縮機1の圧縮室内に噴射させることも行われる。
2. Description of the Related Art A typical prior art of a compression unit provided with a device for returning oil to a compressor is disclosed in JP-A-4-12147.
It is publicly known from Japanese Patent No. 9 and its main system is shown in FIG. When the compressor 1 is a scroll compressor, a considerable amount of lubricating oil is sent to the compression chamber for lubrication and cooling in the compression chamber, and after this oil is used for lubrication, most of it is discharged together with the discharge gas. It is sent to the gas pipeline. At this time, since the amount of oil going up together with the discharge gas is quite large, the oil separating device 18 is provided in the discharge gas pipe 9 to separate the oil from the discharge gas, and then the resistance pipe such as a capillary tube is provided. The oil is returned to the compressor 1 through the oil return pipe 31 formed by. Further, a part of the separated oil is injected into the compression chamber of the scroll compressor 1 by the injection path 32.

【0003】[0003]

【発明が解決しようとする課題】上記スクロール圧縮機
を冷凍装置の圧縮機として用いることが最近に至り普及
してきているが、冷凍装置がたとえば低温エアコンであ
る場合に、圧縮機の潤滑面で下記のような問題が生じ
る。すなわち、低温エアコンは、通常のエアコンと比較
して、低圧圧力が低く、かつ圧縮比が高い構造であっ
て、通常油戻し管31は油を減圧しながら戻させる必要
上、キャピラリチューブなどの抵抗管路が使用されるた
めに、高・低圧圧力差が大きいほど、油戻し量が多くな
り、逆に小さくなるほど少なくなるものである。
The use of the scroll compressor as a compressor for a refrigerating apparatus has recently become widespread. However, when the refrigerating apparatus is, for example, a low temperature air conditioner, the lubricating surface of the compressor is as follows. The following problems occur. That is, the low-temperature air conditioner has a structure in which the low-pressure pressure is low and the compression ratio is high as compared with a normal air-conditioner, and the normal oil return pipe 31 needs to return the oil while depressurizing the oil. Since the pipe is used, the larger the high / low pressure difference, the larger the oil return amount, and conversely, the smaller the oil return amount, the smaller the oil return amount.

【0004】従って、キャピラリチューブの抵抗値(油
戻し能力)を選定するに際して、運転条件を高圧圧力が
できるだけ低く、低圧圧力が逆にできるだけ高い状態と
仮定して、たとえば高圧圧力を10kg/cm2、低圧
圧力を4kg/cm2に決めて、前記抵抗値を選定する
ようにしており、これによって運転条件の如何にかかわ
りなく油戻り量が不足することのないようにしている。
Therefore, when selecting the resistance value (oil return capacity) of the capillary tube, it is assumed that the operating conditions are such that the high pressure is as low as possible and the low pressure is as high as possible, and for example, the high pressure is 10 kg / cm 2. The low pressure is set to 4 kg / cm 2 and the resistance value is selected so that the oil return amount will not be insufficient regardless of the operating conditions.

【0005】ところで、圧縮機内の温度については、一
般に高圧圧力が高く、低圧圧力が低い条件の方が温度が
高くなりやすく、このような状態のとき、上述の手順で
選んだ能力の油戻し管31によって油を戻したとする
と、流量が過多となってしまい、運転条件によっては、
たとえば、高圧圧力が24kg/cm2 、低圧圧力が
0.5kg/cm2 と圧力差が大きい運転の場合、油だ
けでなく、吐出ガスも一緒に戻されるため油温が著しく
上昇することがあり、極端な場合は油温が100℃まで
上昇することがある。
Regarding the temperature in the compressor, generally, the temperature tends to be higher under the conditions of high high pressure and low low pressure. In such a state, the oil return pipe having the capacity selected in the above procedure is obtained. If the oil is returned by 31, the flow rate becomes excessive, and depending on the operating conditions,
For example, in an operation with a large pressure difference of high pressure of 24 kg / cm 2 and low pressure of 0.5 kg / cm 2 , not only oil but also discharged gas may be returned together, and the oil temperature may rise significantly. In extreme cases, the oil temperature may rise to 100 ° C.

【0006】油温が高い状態で運転を続けると、油の粘
性が低下し、さらには、油が炭化したりして、圧縮機内
部での潤滑が悪くなり、圧縮機の回転部の摩耗、焼鈍が
生じて寿命を著しく低下させるという問題につながる。
[0006] When the operation is continued in the high oil temperature, the viscosity of the oil is lowered, and further, the oil is carbonized, and the lubrication inside the compressor is deteriorated. This leads to the problem that annealing occurs and the life is significantly reduced.

【0007】本発明の目的は、圧縮機における高・低圧
圧力差の大小の如何にかかわりなく、圧縮機に戻す油の
量および圧縮機内の油の温度を適正な範囲に保たせるこ
とによって圧縮機の長寿命を果たせることにある。
An object of the present invention is to keep the amount of oil returned to the compressor and the temperature of the oil in the compressor within an appropriate range regardless of the magnitude of the high / low pressure difference in the compressor. Is to be able to achieve a long life.

【0008】[0008]

【課題を解決するための手段】本発明は、圧縮機1を有
する冷凍装置において、圧縮機1に接続する吐出ガス管
路9途中に設けられ、吐出ガスに含まれる潤滑油を分離
する油分離手段18と、圧縮機1に接続する吸入ガス管
路17と油分離手段18とに亘らせて設けられ、該油分
離手段18で分離された潤滑油を、吸入ガス管路17を
経て、絞り量調節可能に圧縮機1に戻す油戻し手段19
と、圧縮機1内に涌まる潤滑油の温度を検出する油温検
出手段20と、油温検出手段20で検出した潤滑油温存
が高いときに油戻し手段19における絞り量を多く調節
し、前記潤滑油温度が低いときに前記絞り量を少なく調
節する油戻し量調節手段22とを備えることを特徴とす
る冷凍装置である。
According to the present invention, in a refrigerating apparatus having a compressor 1, an oil separator is provided in the middle of a discharge gas pipe 9 connected to the compressor 1 to separate lubricating oil contained in the discharge gas. The means 18, the suction gas line 17 connected to the compressor 1, and the oil separation means 18 are provided so as to extend over the lubricating oil separated by the oil separation means 18 via the suction gas line 17. Oil return means 19 for returning the compressor 1 so that the throttle amount can be adjusted
And an oil temperature detecting means 20 for detecting the temperature of the lubricating oil that accumulates in the compressor 1, and a large amount of throttle in the oil returning means 19 when the lubricating oil temperature detected by the oil temperature detecting means 20 is high, A refrigerating device comprising: an oil return amount adjusting means 22 for adjusting the throttle amount to be small when the lubricating oil temperature is low.

【0009】本発明はまた、圧縮機1を有する冷凍装置
において、圧縮機1に接続する吐出ガス管路9途中に設
けられ、吐出ガスに含まれる潤滑油を分離する油分離手
段18と、圧縮機1に接続する吸入ガス管路17と油分
離手段18とに亘らせて設けられ、該油分離手段18で
分離された潤滑油を、吸入ガス管路17を経て、絞り量
調節可能に圧縮機1に戻す油戻し手段19と、圧縮機1
における高圧圧力と低圧圧力の差圧を結果する差圧検出
手段21と、差圧検出手段21で検出した差圧が小さい
とき、油戻し手段19における絞り量を少なく調節し、
前記差圧が大きいとき、前記絞り量を多く調節する油戻
し量調節手段22とを備えることを特徴とする冷凍装置
である。
In the refrigerating apparatus having the compressor 1, the present invention also includes an oil separating means 18 provided in the middle of the discharge gas pipe 9 connected to the compressor 1 for separating lubricating oil contained in the discharge gas, and a compression unit. The lubricating oil, which is provided so as to extend over the intake gas pipeline 17 connected to the machine 1 and the oil separating means 18, allows the lubricating oil separated by the oil separating means 18 to be adjusted through the intake gas pipeline 17 and the throttle amount. Oil return means 19 for returning to the compressor 1 and the compressor 1
When the differential pressure detection means 21 that results in the differential pressure between the high pressure pressure and the low pressure pressure and the differential pressure detected by the differential pressure detection means 21 are small, the throttle amount in the oil return means 19 is adjusted to a small amount,
The refrigeration apparatus is provided with an oil return amount adjusting means 22 that adjusts the throttle amount more when the differential pressure is large.

【0010】本発明はまた、油戻し手段19が、複数個
のキャピラリチューブ25を並列に備える抵抗管路と、
一つを除き残余のキャピラリチューブ25に対してそれ
ぞれ直列に接続される電磁弁26とによって形成され、
油戻し量調節手段22が、前記電磁弁26を選択的に駆
動して開閉させるコントローラ27によって形成される
請求項1または2に記載の冷凍装置である。
The present invention also provides that the oil return means 19 includes a resistance conduit provided with a plurality of capillary tubes 25 in parallel,
And a solenoid valve 26 connected in series to each of the remaining capillary tubes 25 except one,
The refrigeration apparatus according to claim 1 or 2, wherein the oil return amount adjusting means 22 is formed by a controller 27 that selectively drives and opens / closes the electromagnetic valve 26.

【0011】本発明はまた、油戻し手段19が、弁開度
を段階的あるいは無段階的に調節できる電動弁28を備
える管路29によって形成され、油戻し量調節手段22
が、前記電動弁28を駆動して弁開度調節させるコント
ローラ30によって形成される請求項1または2に記載
の冷凍装置である。
According to the present invention, the oil return means 19 is formed by a conduit 29 provided with an electric valve 28 capable of adjusting the valve opening degree stepwise or steplessly, and the oil return amount adjusting means 22.
The refrigerating apparatus according to claim 1 or 2, which is formed by a controller 30 that drives the electric valve 28 to adjust the valve opening degree.

【0012】本発明はまた、油戻し手段19が、キャピ
ラリチューブ25と弁開度を段階的あるいは無段階的に
調節できる電動弁28を並列に備える管路によって形成
され、油戻し量調節手段22が、前記電動弁28を駆動
して弁開度調節させるコントローラ30によって形成さ
れる請求項1または2に記載の冷凍装置である。
According to the present invention, the oil return means 19 is formed by a pipeline provided in parallel with a capillary tube 25 and an electric valve 28 capable of adjusting the valve opening stepwise or steplessly, and the oil return amount adjusting means 22. The refrigerating apparatus according to claim 1 or 2, which is formed by a controller 30 that drives the electric valve 28 to adjust the valve opening degree.

【0013】[0013]

【作用】本発明によれば、吐出ガス管路9の途中に設け
られる油分離手段18によって、吐出ガスに含まれる潤
滑油が分離され同時に冷却される。この分離された潤滑
油は、油戻し手段19によって、吸入ガス管路17を経
て、圧縮機1に戻される。その際、油温検出手段20に
よって、圧縮機1内に溜まっている潤滑油の温度が検出
される。検出される油温が高いときは、油戻し量調節手
段22によって油戻し手段19が大きく絞られ、逆に低
いときは、油戻し手段19が小さく絞られる。検出され
る油温が高い場合は、圧縮機1の高低圧圧力差が大き
く、かつ、吐出ガス温度が高い状態のときであり、従っ
て、高低差圧のついた状態で絞り量が多いことから、必
要な量に相当する油を戻すと同時に、温度の高い吐出ガ
スの戻りを抑えることが可能となって、圧縮機1内の油
の温度上昇を抑えながら過不足の生じない油戻しが行わ
れる。
According to the present invention, the lubricating oil contained in the discharge gas is separated and simultaneously cooled by the oil separating means 18 provided in the middle of the discharge gas pipeline 9. The separated lubricating oil is returned to the compressor 1 by the oil returning means 19 via the suction gas pipe line 17. At that time, the oil temperature detecting means 20 detects the temperature of the lubricating oil accumulated in the compressor 1. When the detected oil temperature is high, the oil return amount adjusting means 22 greatly narrows the oil returning means 19, and when it is low, the oil returning means 19 is narrowed down. When the detected oil temperature is high, it means that the high / low pressure difference of the compressor 1 is large and the discharge gas temperature is high. Therefore, the throttle amount is large under the condition of the high / low differential pressure. At the same time as returning the oil equivalent to the required amount, it is possible to suppress the return of the discharge gas having a high temperature, so that the oil can be returned without excess or deficiency while suppressing the temperature rise of the oil in the compressor 1. Be seen.

【0014】一方、油温検出手段20で検出される油温
が低い状態のときは、前記高低圧圧力差が小さく、か
つ、吐出ガス温度が低い状態のときであるから、高低差
圧が小さくて絞り量が少ないことによって、必要な量の
油を戻すと同時に、低温域の吐出ガスが少量戻され、圧
縮機1内の油の温度上昇を抑えながら過不足の生じない
油戻しが可能となる。
On the other hand, when the oil temperature detected by the oil temperature detecting means 20 is low, the high / low pressure difference is small and the discharge gas temperature is low, so the high / low pressure difference is small. With a small amount of throttle, the required amount of oil is returned and at the same time a small amount of the discharge gas in the low temperature range is returned, and it is possible to return the oil without excess or deficiency while suppressing the temperature rise of the oil in the compressor 1. Become.

【0015】また、本発明によれば、前記油温検出手段
20に代えて、差圧検出手段21が設けられ、圧縮機1
の前記高低圧圧力差が検出される。検出される圧力差が
高いときは、前述する油温が高いときと同様の状態であ
り、また圧力差が低いときは油温が低いときと同様の状
態である。従って、油戻し手段19の絞り量を油戻し量
調節手段22によって同要領で調節することで、圧縮機
1内の油温上昇を抑えながら過不足の生じない油戻しが
行われる。
Further, according to the present invention, a differential pressure detecting means 21 is provided instead of the oil temperature detecting means 20, and the compressor 1
The high-low pressure difference of is detected. When the detected pressure difference is high, it is the same state as when the oil temperature is high, and when the pressure difference is low, it is the same state as when the oil temperature is low. Therefore, by adjusting the throttle amount of the oil returning means 19 by the oil returning amount adjusting means 22 in the same manner, the oil returning without excess or deficiency is performed while suppressing the oil temperature rise in the compressor 1.

【0016】[0016]

【実施例】図1は本発明の第1実施例の冷凍回路図であ
る。図1に示される実施例は、室外ユニットAと室内ユ
ニットBとによって構成される。室外ユニットAは、圧
縮機1、四路切換弁2、凝縮機3、デフロスト時に作動
するキャピラリチューブ4、このキャピラリチューブ4
に並列接続される逆止弁13、アキュムレータ7、圧縮
機用アキュムレータ8、圧力容器からなる油分離器で実
現される油分離手段18、油戻し手段19を備える。
1 is a refrigeration circuit diagram of a first embodiment of the present invention. The embodiment shown in FIG. 1 is composed of an outdoor unit A and an indoor unit B. The outdoor unit A includes a compressor 1, a four-way switching valve 2, a condenser 3, a capillary tube 4 that operates during defrosting, and this capillary tube 4.
A check valve 13, an accumulator 7, a compressor accumulator 8, and an oil separating means 18 and an oil returning means 19 which are realized by an oil separator including a pressure vessel.

【0017】圧縮機1としては、たとえばスクロール圧
縮機が使用される。このスクロール圧縮機(以下圧縮機
と略称する)1は、吐出口に吐出ガス管路9の入側端部
が接続され、吸入口に吸入ガス管路17の出側端部が接
続される。吐出ガス管路9は、出側端部が四路切換弁2
の入側ポートに接続され、また管路途中に油分離器18
が介設される。前記四路切換弁2は、前記入側ポート
と、出側ポートと、2つの出入切換側ポートを備え、出
側ポートに吸入ガス管路17の入側端部が接続され、一
方の切換側ポートにガス管としての管路16の端部が接
続され、他方の切換側ポートに高圧ガス管としての管路
10の端部が接続される。前記吸入ガス管路17には、
アキュムレータ7および圧縮機用アキュムレータ8が、
流入側から直列関係で介設される。
As the compressor 1, for example, a scroll compressor is used. In this scroll compressor (hereinafter abbreviated as a compressor) 1, an inlet side end portion of a discharge gas pipeline 9 is connected to a discharge port, and an outlet side end portion of an intake gas pipeline 17 is connected to an intake port. The discharge gas line 9 has a four-way switching valve 2 at the outlet end.
Oil separator 18 connected to the inlet port of
Is installed. The four-way switching valve 2 includes the inlet port, the outlet port, and two inlet / outlet switching side ports, the inlet side end of the intake gas pipeline 17 is connected to the outlet side port, and one of the switching sides is connected. The end of the pipe 16 as a gas pipe is connected to the port, and the end of the pipe 10 as a high-pressure gas pipe is connected to the other switching port. In the suction gas line 17,
Accumulator 7 and compressor accumulator 8
It is installed in series relation from the inflow side.

【0018】一方、前記凝縮器3は、室外ファン23が
付設されていて、熱交換コイルの一端部を、高圧ガス管
10の他端部に接続し、同じく他端部を、管路11を介
してキャピラリチューブ4の出側端部に接続している。
このキャピラリチューブ4は、逆止弁13が並列に接続
されていて、入側端部に液管としての管路12の一端部
が接続される。
On the other hand, the condenser 3 is provided with an outdoor fan 23, one end of the heat exchange coil is connected to the other end of the high pressure gas pipe 10, and the other end is also connected to the pipe line 11. It is connected to the exit side end portion of the capillary tube 4 through.
In this capillary tube 4, a check valve 13 is connected in parallel, and one end of a conduit 12 as a liquid pipe is connected to the inlet end.

【0019】前記油分離器18は、圧力容器の底部に近
い側壁部分に、器内の油を取り出すための油取り出し口
が設けられ、この油取り出し口と吸入ガス管路17の途
中との間に亘らせて、油戻し手段19が配設される。こ
の油戻し手段19は、2つのキャピラリチューブ25
A,25Bが並列に接続され、かつ、一方のキャピラリ
チューブ25Bに対して電磁弁26が直接に接続される
抵抗管路によって形成される。一方のキャピラリチュー
ブ25Aは、圧縮機1が高低差圧のついている条件下
で、必要最少限度量の油を戻すのに十分な絞りを有する
種類の細管であって、たとえば、内径0.9mmで長さ
1000mmの銅管が使用される。電磁弁26を直列に
有する他方のキャピラリチューブ25Bは、圧縮機1が
高低差圧のあまりつかない条件下で必要とされる量の油
を戻すのに十分な絞りを有する種類の細管であって、た
とえば、内径1.4mmで長さ1000mmの銅管が使
用される。
The oil separator 18 is provided with an oil outlet for taking out oil from the inside of the side wall portion near the bottom of the pressure vessel, and between the oil outlet and the middle of the intake gas pipe line 17. The oil return means 19 is provided so as to extend over the entire length. This oil return means 19 includes two capillary tubes 25.
A and 25B are connected in parallel, and a solenoid valve 26 is directly connected to one capillary tube 25B. One of the capillary tubes 25A is a thin tube of a type having a throttle sufficient to return the minimum necessary amount of oil under the condition that the compressor 1 has a high and low differential pressure, and has an inner diameter of 0.9 mm, for example. A copper tube with a length of 1000 mm is used. The other capillary tube 25B having the solenoid valve 26 in series is a thin tube of a kind having a sufficient throttle to return the required amount of oil under conditions where the compressor 1 does not have a high and low differential pressure. For example, a copper tube with an inner diameter of 1.4 mm and a length of 1000 mm is used.

【0020】上述の構造を有する室外ユニットAに接続
される室内ユニットBにおいては、逆止弁15を並列接
続して有する感温膨張弁で実現される膨張弁5と蒸発器
6とが、管路14を介して直列に接続されて、感温膨張
弁5の入側ポートが液管12の他端部に接続され、蒸発
器6の熱交換コイルの端部がガス管16の他端部に接続
される。
In the indoor unit B connected to the outdoor unit A having the above-mentioned structure, the expansion valve 5 and the evaporator 6 which are realized by the temperature-sensitive expansion valve having the check valve 15 connected in parallel, The inlet port of the temperature-sensing expansion valve 5 is connected to the other end of the liquid pipe 12, and the end of the heat exchange coil of the evaporator 6 is connected to the other end of the gas pipe 16 by being connected in series via the passage 14. Connected to.

【0021】このように室外ユニットAと室内ユニット
Bとは、冷媒系統が閉回路となって、冷凍サイクルとデ
フロストサイクルとが切換わって行われる可逆冷凍サイ
クルが形成される。冷凍運転の場合は、図1に示される
実線矢符の方向に冷媒が流れることによって、室内ユニ
ットBでは、蒸発器6において低圧冷媒と室内ファン2
4の駆動によって流動する室内空気との間で蒸発潜熱の
熱交換が行われ、室内が低温に冷却される。デフロスト
運転の場合は、四路切換弁2を切換え操作することによ
って、図1に示される破線矢符の方向に冷媒が流れて、
高圧冷媒の凝縮潜熱によって蒸発器6のデフロストが行
われる。
In this way, the outdoor unit A and the indoor unit B form a reversible refrigeration cycle in which the refrigerant system is a closed circuit and the refrigeration cycle and the defrost cycle are switched. In the case of the refrigerating operation, the refrigerant flows in the direction of the solid arrow shown in FIG. 1, so that in the indoor unit B, the low-pressure refrigerant and the indoor fan 2 in the evaporator 6 are discharged.
The latent heat of vaporization is exchanged with the indoor air flowing by driving No. 4, and the room is cooled to a low temperature. In the case of the defrost operation, by switching the four-way switching valve 2, the refrigerant flows in the direction of the broken line arrow shown in FIG.
The evaporator 6 is defrosted by the latent heat of condensation of the high-pressure refrigerant.

【0022】圧縮機1の運転中を通じて、油分離器18
には吐出ガス中に含まれる油が分離して溜められる。こ
の溜まっている油は、油戻し手段19によって吸入ガス
管路17を経て圧縮機1のたとえば油溜まり部に戻され
る。油戻し手段19における前記電磁弁26は、油温検
出手段20およびコントローラ27で実現される油戻し
量調節手段22を備える制御回路によって開閉駆動され
る。油温検出手段20は、圧縮機1の底壁部分に直接添
着されて前記油溜め部の油の温度を検出する感温部20
Aを有し、検出温度がたとえば65℃まで温度上昇した
かまたは50℃まで温度低下したかによって異なる信号
を出力する。
During the operation of the compressor 1, the oil separator 18
The oil contained in the discharge gas is separated and stored in the. The accumulated oil is returned to the oil sump of the compressor 1 by the oil returning means 19 through the suction gas line 17. The solenoid valve 26 in the oil return means 19 is opened and closed by a control circuit including an oil temperature detection means 20 and an oil return amount adjustment means 22 realized by a controller 27. The oil temperature detection means 20 is directly attached to the bottom wall portion of the compressor 1 and detects the temperature of the oil in the oil sump portion.
It has A and outputs a different signal depending on whether the detected temperature has risen to 65 ° C. or has dropped to 50 ° C., for example.

【0023】一方、油戻し量調節手段22は、たとえば
開閉スイッチによって形成されていて、油温検出手段2
0が65℃の温度上昇を検出して出力する信号に応じて
電磁弁26への通電を解き、50℃の温度低下を検出し
て出力する信号に応じて電磁弁26に通電するようスイ
ッチを開閉作動する。
On the other hand, the oil return amount adjusting means 22 is formed by, for example, an opening / closing switch, and the oil temperature detecting means 2 is provided.
0 turns off the energization to the solenoid valve 26 according to the signal output by detecting the temperature rise of 65 ° C, and turns on the switch to energize the solenoid valve 26 according to the signal output upon detecting the temperature drop of 50 ° C. It opens and closes.

【0024】図2には前記電磁弁26の弁開度と油溜め
部の油温との関係が示され、また図3には図1図示冷凍
装置に係る電気回路が示される。圧縮機1および室外フ
ァン23は、圧縮機保護リレー35が正常運転状態を示
す閉成作動のときに、電磁コイル33Cが励磁して室外
用電磁開閉器33がオンすることによって駆動され、こ
の電磁開閉器33のオンに連動してオン作動する室内用
電磁開閉器34によって室内ファン34も駆動される。
FIG. 2 shows the relationship between the valve opening of the solenoid valve 26 and the oil temperature of the oil sump, and FIG. 3 shows the electric circuit of the refrigerating apparatus shown in FIG. The compressor 1 and the outdoor fan 23 are driven by the electromagnetic coil 33C being excited and the outdoor electromagnetic switch 33 being turned on when the compressor protection relay 35 is in the closing operation indicating the normal operation state. The indoor fan 34 is also driven by the indoor electromagnetic switch 34 that is turned on in conjunction with turning on the switch 33.

【0025】一方、電磁弁26のソレノイド26Sは、
油温検出手段20の出力接点が検出油温の低下でオン状
態であることと、前記電磁開閉器33がオンしていて、
該補助接点33Aがオンであることとによって、油戻し
量調節手段22から電圧が供給されて励磁され、弁を全
開させる。
On the other hand, the solenoid 26S of the solenoid valve 26 is
The output contact of the oil temperature detecting means 20 is in the ON state due to the decrease in the detected oil temperature, and the electromagnetic switch 33 is ON,
When the auxiliary contact 33A is turned on, a voltage is supplied from the oil return amount adjusting means 22 to be excited and the valve is fully opened.

【0026】またその反対に、検出油温が上昇して、油
温検出手段20の出力接点がオフになるか、あるいは電
磁開閉器33がオフで、補助接点33Aがオフであるか
のいずれかによって、油戻し量調節手段22からの電圧
供給が断たれ、弁を全閉にさせる。
On the contrary, either the detected oil temperature rises and the output contact of the oil temperature detection means 20 turns off, or the electromagnetic switch 33 turns off and the auxiliary contact 33A turns off. As a result, the voltage supply from the oil return amount adjusting means 22 is cut off and the valve is fully closed.

【0027】したがって、油温が高いときは、電磁弁2
6が全閉であるため、油分離器18から導かれる油はキ
ャピラリチューブ25Aだけを流通することになり、油
戻し手段19における絞り量が多くなって、高低差圧が
ついた条件で油を戻すのに最低限必要な量、すなわち適
正量の油が戻される。一方、油温が低いときは、電磁弁
26が全開であるため、圧縮機1に戻す油は両キャピラ
リチューブ25A,25Bを流通することになり、絞り
量が少なくなって、高低差圧のあまりつかない条件で油
を戻すのに十分な量、すなわち最適量の油が戻される。
Therefore, when the oil temperature is high, the solenoid valve 2
Since 6 is fully closed, the oil introduced from the oil separator 18 flows only through the capillary tube 25A, and the amount of throttle in the oil return means 19 increases, so that the oil is removed under the condition of high and low differential pressure. The minimum amount of oil needed to be returned, that is, the proper amount of oil, is returned. On the other hand, when the oil temperature is low, the solenoid valve 26 is fully opened, so that the oil returned to the compressor 1 flows through both capillary tubes 25A and 25B, the throttle amount is reduced, and the high and low differential pressure is too high. A sufficient amount of oil is returned, i.e., the optimum amount of oil, to return the oil under unsatisfactory conditions.

【0028】図4は、本発明の第2実施例の冷凍回路図
である。図4に示される第2実施例は、図1に図示の第
1実施例に類似し、対応する各部分には同一の参照符を
付している。この第2実施例において注目すべきは、油
戻し量調節手段22を調節作動するための制御要素が、
第1実施例における油温検出手段20に替えて差圧検出
手段21によって形成されている点である。この差圧検
出手段21は、吐出ガス管路9内の高圧圧力を検出する
高圧圧力検出器21Aおよび吸入ガス管路17内の低圧
圧力を検出する低圧圧力検出器21Bを圧力検出部に備
える。差圧検出手段21は、前記両圧力検出器21A,
21Bで検出される高圧圧力と低圧圧力との差圧を計算
して、この値が大きいか小さいかで前記電磁弁26に対
して全開させるか全閉させるかの出力を油戻し量調節手
段22を介して与えるよう形成される。
FIG. 4 is a refrigeration circuit diagram of the second embodiment of the present invention. The second embodiment shown in FIG. 4 is similar to the first embodiment shown in FIG. 1, and corresponding parts are designated by the same reference numerals. It should be noted in this second embodiment that the control element for adjusting and operating the oil return amount adjusting means 22 is
This is a point formed by a differential pressure detecting means 21 instead of the oil temperature detecting means 20 in the first embodiment. The differential pressure detecting means 21 includes a high pressure detector 21A for detecting a high pressure in the discharge gas pipeline 9 and a low pressure detector 21B for detecting a low pressure in the suction gas pipeline 17 in a pressure detecting section. The differential pressure detection means 21 includes both pressure detectors 21A,
21B, the differential pressure between the high pressure and the low pressure is calculated, and the output indicating whether the solenoid valve 26 is fully opened or fully closed is calculated depending on whether this value is large or small. Formed to give through.

【0029】図5には、高低圧圧力の差圧ΔPと電磁弁
26の弁開度との関係が示される。すなわち、前記差圧
ΔPが大きくなってきて、たとえば15kg/cm2
なると、電磁弁26を全閉作動させて、差圧がついてい
る条件で適正な量の油が圧縮機1に戻されるように、油
戻し手段19の絞り量が増加する。一方、差圧ΔPが小
さくなってきて13kg/cm2 に低下してくると電磁
弁26を全開作動させて、差圧がついていない条件で適
正な量の油が圧縮機1に戻されるように絞り量が減少す
る。
FIG. 5 shows the relationship between the high / low pressure differential pressure ΔP and the valve opening of the solenoid valve 26. That is, when the differential pressure ΔP increases and reaches, for example, 15 kg / cm 2 , the solenoid valve 26 is fully closed to return an appropriate amount of oil to the compressor 1 under the condition that the differential pressure is applied. In addition, the throttle amount of the oil return means 19 increases. On the other hand, when the differential pressure ΔP decreases and decreases to 13 kg / cm 2 , the solenoid valve 26 is fully opened to return an appropriate amount of oil to the compressor 1 under the condition that the differential pressure is not applied. The amount of aperture is reduced.

【0030】図6は本発明の第3実施例の冷凍回路部分
図、図7は図6に示される電動弁28の弁開度−油温関
係線図である。図6に要部示される第3実施例は、図1
に示される第1実施例に類似し、対応する各部分には同
一の参照符を付し、また図示が省略される部分は図1に
おける対応する部分と同じである。図6図示の第3実施
例において注目すべきは、油戻し手段19が、弁開度を
無段階に調節できる電動弁28とキャピラリチューブ2
5とを並列に備える管路によって形成されていることで
ある。電動弁28は、駆動モータとしてたとえばパルス
モータが使用され、500パルスで弁開度が100%に
なり、100パルスで弁開度20%になるように設定さ
れる。油温検出手段20が低温域、たとえば50℃を検
出した場合、コントローラ30で実現される油戻し量調
節手段22が作動して電動弁28は全開されて、油戻し
手段19は絞り量が少なくなって、高低差圧のあまりつ
かない条件で油を戻すのに十分な量、すなわち適正量の
油が圧縮機に戻される。また、油温の上昇に伴って電動
弁28は徐々に弁開度が絞られて65℃になった時点で
20%まで絞られる結果、油戻し手段19は絞り量が多
くなって高低差圧のついている条件で適正量の油が圧縮
機1に戻される。
FIG. 6 is a partial view of the refrigerating circuit of the third embodiment of the present invention, and FIG. 7 is a valve opening-oil temperature relationship diagram of the electric valve 28 shown in FIG. The third embodiment shown in FIG.
Similar to the first embodiment shown in FIG. 1, corresponding parts are designated by the same reference numerals, and parts not shown are the same as corresponding parts in FIG. It should be noted in the third embodiment shown in FIG. 6 that the oil return means 19 is capable of continuously adjusting the valve opening degree by the motor-operated valve 28 and the capillary tube 2.
5 is formed by a pipeline provided in parallel. The motor-operated valve 28 uses, for example, a pulse motor as a drive motor, and is set so that the valve opening degree becomes 100% at 500 pulses and the valve opening degree becomes 20% at 100 pulses. When the oil temperature detecting means 20 detects a low temperature range, for example, 50 ° C., the oil return amount adjusting means 22 realized by the controller 30 is operated, the motor-operated valve 28 is fully opened, and the oil returning means 19 has a small throttle amount. Then, a sufficient amount of oil, that is, an appropriate amount of oil, is returned to the compressor under conditions where the high and low differential pressure is not applied. Further, as the oil temperature rises, the motor-operated valve 28 is gradually throttled to 20% at the time when the valve opening reaches 65 ° C. As a result, the oil return means 19 has a large throttle amount and a high / low differential pressure. An appropriate amount of oil is returned to the compressor 1 under the condition of being marked.

【0031】次いで図8は本発明の第4実施例の冷凍回
路部分図である。図8に要部示される第4実施例は、図
6の第3実施例に類似し、対応する各部分には同一の参
照符を付し、また図示が省略される部分は図1における
対応する部分と同じ構造である。この第4実施例におい
て注目すべきは、油戻し手段19が前記電動弁28を備
える管路によって形成されていることである。この電動
弁28は、図7に示される弁開度−油温関係線図と同様
の弁開度調節がなされるパルスモータ駆動形電動弁であ
って、口径の適当なものを用いることによって、高低差
圧がついている条件の下で20%弁開度に絞らせ、高低
差圧があまりついていない条件下では100%全開させ
て、それぞれの条件で適正な量の油を圧縮機1に戻すこ
とが可能である。
Next, FIG. 8 is a partial view of a refrigeration circuit according to a fourth embodiment of the present invention. The fourth embodiment shown in FIG. 8 is similar to the third embodiment of FIG. 6, corresponding parts are designated by the same reference numerals, and parts not shown are corresponding to those in FIG. It has the same structure as the part that does. What should be noted in this fourth embodiment is that the oil return means 19 is formed by a pipeline provided with the electric valve 28. The motor-operated valve 28 is a pulse motor-driven motor-operated valve in which the valve opening is adjusted in the same manner as the valve opening-oil temperature relationship diagram shown in FIG. 7, and by using a valve having an appropriate diameter, The valve opening is reduced to 20% under conditions of high and low differential pressure, and fully opened to 100% under conditions of low and low differential pressure, and an appropriate amount of oil is returned to the compressor 1 under each condition. It is possible.

【0032】以上説明した各実施例において、圧縮機1
内の油温が高く、または高低圧力差が大きいときは油戻
し手段19の絞り量を多くして実質的に配管抵抗を大き
くし、逆に油温が低く、または高低圧力差が小さいとき
は絞り量を少なくして配管抵抗を小さくすることが可能
となり、油温の異常上昇を防止することができる。
In each of the embodiments described above, the compressor 1
When the oil temperature inside is high or the pressure difference between high and low is large, the throttle amount of the oil return means 19 is increased to substantially increase the pipe resistance, and conversely when the oil temperature is low or the pressure difference between high and low is small. It becomes possible to reduce the piping resistance by reducing the throttle amount, and it is possible to prevent an abnormal rise in the oil temperature.

【0033】[0033]

【発明の効果】以上のように本発明によれば、圧縮機内
の油温の高低に応じて、また高低圧圧力差の大小に応じ
て、油戻し手段19の絞り量を多少調節するようにした
ので、殊に油温が高い条件の下で吐出ガスの戻りによる
油温異常上昇を回避することが可能となり、その結果、
油温を適正な範囲に保つことによる圧縮機の寿命の確保
が実現されて、装置に対する信頼性は向上する。
As described above, according to the present invention, the throttle amount of the oil return means 19 is adjusted to some extent according to the level of the oil temperature in the compressor and the magnitude of the high / low pressure difference. Therefore, it is possible to avoid an abnormal increase in oil temperature due to the return of the discharge gas, especially under conditions where the oil temperature is high.
The life of the compressor is secured by keeping the oil temperature within an appropriate range, and the reliability of the device is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の冷凍回路図である。FIG. 1 is a refrigeration circuit diagram of a first embodiment of the present invention.

【図2】図1に図示される電磁弁26の弁開度−油温関
係線図である。
2 is a valve opening-oil temperature relationship diagram of the solenoid valve 26 shown in FIG. 1. FIG.

【図3】図1図示の第1実施例の電気回路図である。FIG. 3 is an electric circuit diagram of the first embodiment shown in FIG.

【図4】本発明の第2実施例の冷凍回路図である。FIG. 4 is a refrigeration circuit diagram of a second embodiment of the present invention.

【図5】図4に図示される電磁弁26の弁開度−高低圧
圧力差関係線図である。
5 is a valve opening-high / low pressure differential pressure relationship diagram of the solenoid valve 26 shown in FIG. 4;

【図6】本発明の第3実施例の冷凍回路部分図である。FIG. 6 is a partial view of a refrigerating circuit according to a third embodiment of the present invention.

【図7】図6に示される電動弁28の弁開度−油温関係
線図である。
7 is a valve opening-oil temperature relationship diagram of the motor-operated valve shown in FIG.

【図8】本発明の第4実施例の冷凍回路部分図である。FIG. 8 is a partial view of a refrigeration circuit according to a fourth embodiment of the present invention.

【図9】先行技術の圧縮ユニットにおける要部系統図で
ある。
FIG. 9 is a main part systematic diagram in a compression unit of a prior art.

【符号の説明】[Explanation of symbols]

1 圧縮機 9 吐出ガス管路 17 吸入ガス管路 18 油分離手段 19 油戻し手段 20 油温検出手段 20A 感温部 21 差圧検出手段 21A 高圧圧力検出器 21B 低圧圧力検出器 22 油戻し量調節手段 25A,25B キャピラリチューブ 26 電磁弁 27 コントローラ 28 電動弁 30 コントローラ 1 Compressor 9 Discharge Gas Pipeline 17 Intake Gas Pipeline 18 Oil Separation Means 19 Oil Return Means 20 Oil Temperature Detection Means 20A Temperature Sensing Part 21 Differential Pressure Detection Means 21A High Pressure Pressure Detectors 21B Low Pressure Pressure Detectors 22 Oil Return Amount Adjustment Means 25A, 25B Capillary tube 26 Solenoid valve 27 Controller 28 Motorized valve 30 Controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機1を有する冷凍装置において、圧
縮機1に接続する吐出ガス管路9途中に設けられ、吐出
ガスに含まれる潤滑油を分離する油分離手段18と、 圧縮機1に接続する吸入ガス管路17と油分離手段18
とに亘らせて設けられ、該油分離手段18で分離された
潤滑油を、吸入ガス管路17を経て、絞り量調節可能に
圧縮機1に戻す油戻し手段19と、 圧縮機1内に溜まる潤滑油の温度を検出する油温検出手
段20と、 油温検出手段20で検出した潤滑油温度が高いときに油
戻し手段19における絞り量を多く調節し、前記潤滑油
温度が低いときに前記絞り量を少なく調節する油戻し量
調節手段22とを備えることを特徴とする冷凍装置。
1. A refrigerating apparatus having a compressor (1), wherein an oil separation means (18) provided in the middle of a discharge gas pipe (9) connected to the compressor (1) for separating lubricating oil contained in the discharge gas, and a compressor (1) Intake gas line 17 and oil separating means 18 to be connected
And an oil returning means 19 for returning the lubricating oil separated by the oil separating means 18 to the compressor 1 via the suction gas pipe line 17 so that the throttle amount can be adjusted, and the inside of the compressor 1. The oil temperature detecting means 20 for detecting the temperature of the lubricating oil accumulated in the oil, and when the lubricating oil temperature detected by the oil temperature detecting means 20 is high, the throttling amount in the oil returning means 19 is adjusted to be large, and when the lubricating oil temperature is low, A refrigerating apparatus, further comprising: an oil return amount adjusting means 22 for adjusting the throttling amount to be small.
【請求項2】 圧縮機1を有する冷凍装置において、圧
縮機1に接続する吐出ガス管路9途中に設けられ、吐出
ガスに含まれる潤滑油を分離する油分離手段18と、 圧縮機1に接続する吸入ガス管路17と油分離手段18
とに亘らせて設けられ、該油分離手段18で分離された
潤滑油を、吸入ガス管路17を経て、絞り量調節可能に
圧縮機1に戻す油戻し手段19と、 圧縮機1における高圧圧力と低圧圧力の差圧を検出する
差圧検出手段21と、 差圧検出手段21で検出した差圧が小さいとき、油戻し
手段19における絞り量を少なく調節し、前記差圧が大
きいとき、前記絞り量を多く調節する油戻し量調節手段
22とを備えることを特徴とする冷凍装置。
2. In a refrigeration system having a compressor 1, an oil separation means 18 provided in the middle of a discharge gas pipe 9 connected to the compressor 1 for separating lubricating oil contained in the discharge gas, and a compressor 1 Intake gas line 17 and oil separating means 18 to be connected
And an oil return means 19 for returning the lubricating oil separated by the oil separation means 18 to the compressor 1 via the suction gas pipe line 17 so that the throttle amount can be adjusted, and When the differential pressure detecting means 21 for detecting the differential pressure between the high pressure and the low pressure and the differential pressure detected by the differential pressure detecting means 21 is small, the throttle amount in the oil returning means 19 is adjusted to be small, and the differential pressure is large. A refrigeration system comprising: an oil return amount adjusting means 22 for adjusting the throttle amount to a large extent.
【請求項3】 油戻し手段19が、複数個のキャピラリ
チューブ25を並列に備える抵抗管路と、一つを除き残
余のキャピラリチューブ25に対してそれぞれ直列に接
続される電磁弁26とによって形成され、油戻し量調節
手段22が、前記電磁弁26を選択的に駆動して開閉さ
せるコントローラ27によって形成される請求項1また
は2に記載の冷凍装置。
3. The oil return means 19 is formed by a resistance conduit having a plurality of capillary tubes 25 in parallel, and a solenoid valve 26 connected in series to each of the remaining capillary tubes 25 except one. The refrigeration system according to claim 1 or 2, wherein the oil return amount adjusting means 22 is formed by a controller 27 that selectively drives and opens / closes the electromagnetic valve 26.
【請求項4】 油戻し手段19が、弁開度を段階的ある
いは無段階的に調節できる電動弁28を備える管路29
によって形成され、油戻し量調節手段22が、前記電動
弁28を駆動して弁開度調節させるコントローラ30に
よって形成される請求項1または2に記載の冷凍装置。
4. A pipeline 29 in which the oil return means 19 includes an electric valve 28 capable of adjusting the valve opening stepwise or steplessly.
The refrigerating apparatus according to claim 1 or 2, wherein the oil return amount adjusting means 22 is formed by a controller 30 that drives the electric valve 28 to adjust the valve opening degree.
【請求項5】 油戻し手段19が、キャピラリチューブ
25と弁開度を段階的あるいは無段階的に調節できる電
動弁28を並列に備える管路によって形成され、油戻し
量調節手段22が、前記電動弁28を駆動して弁開度調
節させるコントローラ30によって形成される請求項1
または2に記載の冷凍装置。
5. The oil return means 19 is formed by a pipeline provided in parallel with a capillary tube 25 and an electric valve 28 capable of adjusting the valve opening stepwise or steplessly, and the oil return amount adjusting means 22 is the above-mentioned. A controller 30 for driving the motor-operated valve 28 to adjust the valve opening.
Alternatively, the refrigerating apparatus according to 2.
JP22737492A 1992-08-26 1992-08-26 Refrigerating apparatus Pending JPH0674579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22737492A JPH0674579A (en) 1992-08-26 1992-08-26 Refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22737492A JPH0674579A (en) 1992-08-26 1992-08-26 Refrigerating apparatus

Publications (1)

Publication Number Publication Date
JPH0674579A true JPH0674579A (en) 1994-03-15

Family

ID=16859809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22737492A Pending JPH0674579A (en) 1992-08-26 1992-08-26 Refrigerating apparatus

Country Status (1)

Country Link
JP (1) JPH0674579A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228976A (en) * 2008-03-24 2009-10-08 Hitachi Appliances Inc Refrigerating cycle device
WO2010097537A1 (en) * 2009-02-27 2010-09-02 Danfoss Commercial Compressors Device for separating a lubricant from a refrigerant lubricant/gas mixture discharged from at least one refrigerating compressor
JP2011208860A (en) * 2010-03-29 2011-10-20 Hitachi Appliances Inc Air conditioner
JP2013024538A (en) * 2011-07-26 2013-02-04 Hitachi Appliances Inc Refrigeration unit
JP2015163823A (en) * 2014-02-28 2015-09-10 ダイキン工業株式会社 Freezer unit
JP2016176664A (en) * 2015-03-20 2016-10-06 ダイキン工業株式会社 Refrigeration device
JP2018084375A (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Freezing device
JPWO2022097201A1 (en) * 2020-11-04 2022-05-12
WO2022130637A1 (en) * 2020-12-18 2022-06-23 三菱電機株式会社 Cold heat source unit and refrigeration cycle device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228976A (en) * 2008-03-24 2009-10-08 Hitachi Appliances Inc Refrigerating cycle device
WO2010097537A1 (en) * 2009-02-27 2010-09-02 Danfoss Commercial Compressors Device for separating a lubricant from a refrigerant lubricant/gas mixture discharged from at least one refrigerating compressor
FR2942656A1 (en) * 2009-02-27 2010-09-03 Danfoss Commercial Compressors DEVICE FOR SEPARATING LUBRICANT FROM A LUBRICANT-REFRIGERATING GAS MIXTURE
CN102326041A (en) * 2009-02-27 2012-01-18 丹佛斯商业压缩机公司 Device for separating lubricant from refrigerant lubricant/gas mixture discharged from at least one refrigerating compressor
US9207005B2 (en) 2009-02-27 2015-12-08 Danfoss Commercial Compressors Device for separating lubricant from a lubricant-refrigerating gas mixture discharged from at least one refrigerant compressor
JP2011208860A (en) * 2010-03-29 2011-10-20 Hitachi Appliances Inc Air conditioner
JP2013024538A (en) * 2011-07-26 2013-02-04 Hitachi Appliances Inc Refrigeration unit
JP2015163823A (en) * 2014-02-28 2015-09-10 ダイキン工業株式会社 Freezer unit
JP2016176664A (en) * 2015-03-20 2016-10-06 ダイキン工業株式会社 Refrigeration device
JP2018084375A (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Freezing device
WO2018097154A1 (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Refrigeration device
CN110023692A (en) * 2016-11-24 2019-07-16 大金工业株式会社 Refrigerating plant
EP3546850A4 (en) * 2016-11-24 2020-08-19 Daikin Industries, Ltd. Refrigeration device
CN110023692B (en) * 2016-11-24 2021-08-06 大金工业株式会社 Refrigerating device
JPWO2022097201A1 (en) * 2020-11-04 2022-05-12
WO2022097201A1 (en) * 2020-11-04 2022-05-12 三菱電機株式会社 Refrigeration cycle apparatus
WO2022130637A1 (en) * 2020-12-18 2022-06-23 三菱電機株式会社 Cold heat source unit and refrigeration cycle device

Similar Documents

Publication Publication Date Title
KR100511698B1 (en) Scroll compressor and air conditioner
US9494356B2 (en) Condensing unit having fluid injection
US6519958B1 (en) Control system for starting of air conditioner and control method thereof
JP5402027B2 (en) Air conditioner
US20030074910A1 (en) System for controlling starting of air conditioner and control method thereof
WO2007139010A1 (en) Freezing device
JP2010175190A (en) Air conditioner
GB2603246A (en) Air conditioning device
US7475557B2 (en) Refrigerator
JPH0674579A (en) Refrigerating apparatus
US4017286A (en) Heat pump suction line vent
JP2002106980A (en) Refrigerating device
JP5223873B2 (en) Air conditioner
KR100557760B1 (en) Air conditioner
KR20100064835A (en) Air conditioner
JP4499863B2 (en) Multi-type air conditioner
JP2009264612A (en) Refrigerating device
JP2003240365A (en) Refrigeration unit
JP2006177598A (en) Refrigerating cycle device
KR102494571B1 (en) Heat pump
JP2009186035A (en) Refrigerating device
JP3642078B2 (en) Refrigeration equipment
JPH08128747A (en) Controller for air conditioner
JPH0828982A (en) Air conditioner
JPH07294041A (en) Refrigerator