JPH067024B2 - Helium refrigeration equipment - Google Patents
Helium refrigeration equipmentInfo
- Publication number
- JPH067024B2 JPH067024B2 JP7582085A JP7582085A JPH067024B2 JP H067024 B2 JPH067024 B2 JP H067024B2 JP 7582085 A JP7582085 A JP 7582085A JP 7582085 A JP7582085 A JP 7582085A JP H067024 B2 JPH067024 B2 JP H067024B2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- stage compressor
- low
- pressure
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、極低温を得るためのヘリウム冷凍装置に関す
るものである。TECHNICAL FIELD The present invention relates to a helium refrigerating apparatus for obtaining a cryogenic temperature.
(従来の技術) 近年、極低温を得るためのヘリウム冷凍装置の開発が進
められており、例えば、特公昭58−21186号公報
記載の如き極低温冷凍装置が提案されている。即ち、ジ
ュールトムソン回路(以下、J−T回路と称す)におい
て、1台の圧縮機から吐出された高圧ヘリウムガスを該
圧縮機へ戻る低圧ヘリウムガスおよび別設の予冷器で冷
却した後、ジュールトムソン弁(以下J−T弁と称す)
で減圧し、極低温のヘリウム気液混合状態)を得るよう
にし、この気液混合状態のヘリウムの蒸発潜熱を極低温
冷却用に利用するようにしている。(Prior Art) In recent years, development of a helium refrigerating device for obtaining a cryogenic temperature has been underway, and for example, a cryogenic refrigerating device described in Japanese Patent Publication No. 58-21186 is proposed. That is, in a Joule-Thomson circuit (hereinafter referred to as a JT circuit), after cooling high-pressure helium gas discharged from one compressor with low-pressure helium gas returning to the compressor and a precooler provided separately, Thomson valve (hereinafter referred to as JT valve)
By decompressing, a cryogenic helium gas-liquid mixed state) is obtained, and the latent heat of vaporization of helium in this gas-liquid mixed state is used for cryogenic cooling.
(発明が解決しようとする問題点) 一般にヘリウム冷凍装置においては、圧縮機へのJ−T
回路のリターン圧力は約1気圧であるが、吐出圧力は約
20気圧が必要とされるため、上記公知例の如く、1台
のガス圧縮機でヘリウムガスの圧縮を行なう場合、圧縮
機の負荷が大きくなりすぎるという難点が存する。(Problems to be Solved by the Invention) Generally, in a helium refrigeration system, a JT to a compressor is used.
The return pressure of the circuit is about 1 atm, but the discharge pressure of about 20 atm is required. Therefore, when the helium gas is compressed by one gas compressor as in the above-mentioned known example, the load of the compressor is reduced. There is a drawback that is too large.
そこで、容量の異なる2台のガス圧縮機を直列に連結し
てヘリウムガスの圧縮を行なうことによって、各圧縮機
の負荷を軽減する試みが行なわれている。Therefore, an attempt has been made to reduce the load on each compressor by connecting two gas compressors having different capacities in series to compress the helium gas.
ところが、起動前のヘリウム冷凍機においては、各圧力
が均圧しており、しかも直列に連結された両圧縮機の容
量が大きく異なっている(例えば、低段圧縮機の容量が
高段圧縮機の容量に比べ、数倍大きい)ため、両圧縮機
を同時に起動すると、起動直後の低段圧縮機の吐出ガス
量が定常運転時より相当に多くなる。そのため、小容量
の高段圧縮機の吸入量が追いつかなくなり、ついには、
高段圧縮機の吸入圧力が吐出圧力より高くなるという異
常な状態になり、正常運転が不可能となる。特に、圧縮
機としてロータリ圧縮機を用いる場合には、ブレードの
背圧が低下して、正常な圧縮運転が不可能になり、異常
な圧力条件の運転を続けることとなる。However, in the helium refrigerator before startup, each pressure is equalized, and the capacities of both compressors connected in series are significantly different (for example, the capacity of the low-stage compressor is different from that of the high-stage compressor). Since it is several times larger than the capacity), when both compressors are started at the same time, the discharge gas amount of the low-stage compressor immediately after start-up is considerably larger than that during steady operation. Therefore, the intake volume of the small capacity high-stage compressor cannot catch up, and finally,
An abnormal state occurs in which the suction pressure of the high-stage compressor becomes higher than the discharge pressure, making normal operation impossible. In particular, when a rotary compressor is used as the compressor, the back pressure of the blades decreases, making normal compression operation impossible, and continuing operation under abnormal pressure conditions.
本発明は、上記問題点に鑑みてなされたもので、ヘリウ
ム冷凍装置において、J−T回路側の2台の圧縮機の起
動を円滑に行ない得るようにすることを目的とするもの
である。The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to smoothly start up two compressors on the JT circuit side in a helium refrigeration system.
(問題点を解決するための手段) 本発明では、上記問題点を解決するための手段として、
第1図図示の如く、予冷用圧縮機3および膨張機6を有
する予冷冷凍回路1と、直列接続された大容量の低段圧
縮機8および小容量の高段圧縮機10を有するJ−T回
路2とを備え、J−T回路2を流れる高圧冷媒ガスを予
冷冷凍回路1により冷却するヘリウム冷凍装置におい
て、前記低段圧縮機8を前記高段圧縮機10の起動後所
定時間遅延して起動させるべく運転制御する制御手段4
3を付設している。(Means for Solving Problems) In the present invention, as means for solving the above problems,
As shown in FIG. 1, a J-T having a pre-cooling refrigeration circuit 1 having a pre-cooling compressor 3 and an expander 6, a large-capacity low-stage compressor 8 and a small-capacity high-stage compressor 10 connected in series. In the helium refrigeration system including the circuit 2 and cooling the high-pressure refrigerant gas flowing in the JT circuit 2 by the pre-cooling refrigeration circuit 1, the low-stage compressor 8 is delayed by a predetermined time after the high-stage compressor 10 is started. Control means 4 for controlling operation to start
3 is attached.
(作用) 本発明では、上記手段によって、起動時には小容量の高
段圧縮機10が先に運転され、低段圧縮機8の均圧レベ
ルが下がり(即ち、ほぼ高段圧縮機10の吸入圧力にな
る)、起動直後の低段圧縮機8の吐出量が押えられる状
態となるのを待って、低段圧縮機8が起動されるという
作用が得られる。(Operation) According to the present invention, the small-capacity high-stage compressor 10 is first operated at the time of start-up by the above means, and the pressure equalizing level of the low-stage compressor 8 is lowered (that is, the suction pressure of the high-stage compressor 10 is substantially reduced. Therefore, it is possible to obtain the effect that the low-stage compressor 8 is started after waiting for the discharge amount of the low-stage compressor 8 to be suppressed immediately after the start.
(実施例) 以下、添付の図面を参照して、本発明の好適な実施例を
説明する。(Examples) Hereinafter, preferred examples of the present invention will be described with reference to the accompanying drawings.
このヘリウム冷凍装置は、予冷冷凍回路1とJ−T回路
2と制御手段43によって構成されている。This helium refrigeration system is composed of a pre-cooling refrigeration circuit 1, a JT circuit 2 and a control means 43.
前記予冷冷凍回路1は、予冷用のヘリウムガスを圧縮す
る予冷用圧縮機3、油分離器4、吸着器5、後に詳述す
る膨張機6およびサージボルト7を順次冷媒ガス管路
(即ち、高圧冷媒ガス管路23および低圧冷媒ガス管路
24)で接続して構成されている。ここで、予冷用圧縮
機3、油分離器4、吸着器5、サージボルト7は予冷用
圧縮機ユニットAを構成している。The pre-cooling refrigeration circuit 1 includes a pre-cooling compressor 3 for compressing pre-cooling helium gas, an oil separator 4, an adsorber 5, an expander 6 and a surge bolt 7, which will be described in detail later, in sequence as a refrigerant gas line (that is, The high pressure refrigerant gas line 23 and the low pressure refrigerant gas line 24) are connected to each other. Here, the pre-cooling compressor 3, the oil separator 4, the adsorber 5, and the surge bolt 7 constitute a pre-cooling compressor unit A.
一方前記J−T回路2は、大容量の低段圧縮機8、油分
離器9、小容量の高段圧縮機10、油分離器11、吸着
器12、第1のジュールトムソン熱交換器(以下、J−
T熱交換器と称す)13、吸着器14、第1予冷器1
5、第2J−T熱交換器16、吸着器17、第2予冷器
18、第3J−T熱交換器19、吸着器20、J−T弁
21、冷却器22、前記第3、第2および第1J−T熱
交換器19,16および13を順次冷媒ガス管(即ち、
高圧冷媒ガス管25および低圧冷媒ガス管26)で接続
して構成されている。ここで、低段および高段圧縮機
8,10、油分離器9,11、吸着器12および後述す
るガスバラストタンク37はJ−T側圧縮機ユニットB
を構成している。On the other hand, the JT circuit 2 includes a large capacity low-stage compressor 8, an oil separator 9, a small capacity high-stage compressor 10, an oil separator 11, an adsorber 12, and a first Joule-Thomson heat exchanger ( Below, J-
(T heat exchanger) 13, adsorber 14, first precooler 1
5, second J-T heat exchanger 16, adsorber 17, second precooler 18, third J-T heat exchanger 19, adsorber 20, J-T valve 21, cooler 22, the third, second And the first J-T heat exchangers 19, 16 and 13 are sequentially connected to the refrigerant gas pipe (that is,
The high pressure refrigerant gas pipe 25 and the low pressure refrigerant gas pipe 26) are connected to each other. Here, the low-stage and high-stage compressors 8 and 10, the oil separators 9 and 11, the adsorber 12, and the gas ballast tank 37 described below are the JT side compressor unit B.
Are configured.
前記予冷用圧縮機3、低段および低段圧縮機8および1
0には、それぞれ冷却水コイル27,28および29が
付設されており、これら冷却水コイル27,28,29
によって、それぞれの吐出ガスコイル30,31,32
およびインゼクション用油コイル33,34,35を冷
却し得るように構成されている。The pre-cooling compressor 3, low-stage and low-stage compressors 8 and 1
0 is provided with cooling water coils 27, 28 and 29, respectively.
According to the respective discharge gas coils 30, 31, 32
And the oil coils 33, 34, 35 for injection can be cooled.
前記各油分離器4,9,11で分離された油はそれぞれ
の圧縮機3,8,10の吸入側にインゼクションされる
ようになっている。The oil separated by the oil separators 4, 9 and 11 is injected into the suction sides of the compressors 3, 8 and 10, respectively.
前記各吸着器5,12,14,17,20は、それぞれ
の状態におけるヘリウムガス中の不純物を除去する作用
を有している。Each of the adsorbers 5, 12, 14, 17, 20 has a function of removing impurities in the helium gas in each state.
前記サージボトル7は、予冷用圧縮機3へ返戻される低
圧ヘリウムガスの脈動を少なくする作用を有している。The surge bottle 7 has the function of reducing the pulsation of the low-pressure helium gas returned to the pre-cooling compressor 3.
又、前記J−T回路2において、吸着器12出口側の高
圧冷媒ガス管25と高段圧縮機10の吸入側との間に
は、高圧制御弁36、ガスバラストタンク37および中
間圧制御弁38を付設したバイパス回路39が介設され
ている。該ガスバラストタンク37は、高圧制御弁36
あるいは中間圧制御弁38を開閉制御することによっ
て、J−T回路2を循環するヘリウムガス量を調整する
作用を有している。In the JT circuit 2, a high pressure control valve 36, a gas ballast tank 37 and an intermediate pressure control valve are provided between the high pressure refrigerant gas pipe 25 on the outlet side of the adsorber 12 and the suction side of the high pressure compressor 10. A bypass circuit 39 provided with 38 is interposed. The gas ballast tank 37 includes a high pressure control valve 36.
Alternatively, it has an action of adjusting the amount of helium gas circulating in the JT circuit 2 by controlling the opening and closing of the intermediate pressure control valve 38.
前記膨張機6、J−T熱交換器13,16,19、予冷
器15,18、J−T弁21および冷却器22は、高真
空度に保持された真空容器40内に収容され、且つ第
2、第3J−T熱交換器16,19、第2予冷器18、
J−T弁21および冷却器22は輻射シールド41に囲
繞されクライオスタットCを構成している。符号42は
冷却器22の温度を検出する温度計である。前記膨張機
6は、高圧側入口61が予冷用圧縮機3の吐出側に低圧
側出口62が予冷用圧縮機3の吸入側に接続され、膨張
機6内部における高圧ヘリウムガスの膨張行程で冷却を
行なう如くなっており、第1および第2ヒートステーシ
ョン70,71の外周に設けられた第1および第2予冷
器15,18においてJ−T回路2を流れるヘリウムガ
スを予冷する如く成っている。The expander 6, the JT heat exchangers 13, 16, 19, the precoolers 15, 18, the JT valve 21, and the cooler 22 are housed in a vacuum container 40 maintained at a high degree of vacuum, and The second and third J-T heat exchangers 16 and 19, the second precooler 18,
The J-T valve 21 and the cooler 22 are surrounded by the radiation shield 41 to form a cryostat C. Reference numeral 42 is a thermometer that detects the temperature of the cooler 22. The expander 6 has a high-pressure side inlet 61 connected to the discharge side of the pre-cooling compressor 3 and a low-pressure side outlet 62 connected to the suction side of the pre-cooling compressor 3, and is cooled in the expansion stroke of the high-pressure helium gas inside the expander 6. And preheating the helium gas flowing through the JT circuit 2 in the first and second precoolers 15 and 18 provided on the outer circumferences of the first and second heat stations 70 and 71. .
而して、本発明の特徴として、このヘリウム冷凍装置に
は、J−T回路2における低段圧縮機8を高段圧力機1
0の起動後所定時間(例えば、約10秒間)遅延して起
動させるべく運転制御する制御手段43(例えば、タイ
マー等)が付設されている。なお、該制御手段43は、
予冷冷凍回路1の圧縮機3の運転制御をも行ない、圧縮
機3は、J−T回路2の高段圧縮機10と同時に起動さ
れるようになっている。Therefore, as a feature of the present invention, in this helium refrigeration system, the low-stage compressor 8 in the JT circuit 2 is connected to the high-stage pressure machine 1.
A control means 43 (for example, a timer or the like) for controlling the operation so as to be started with a delay of a predetermined time (for example, about 10 seconds) after the start of 0 is attached. The control means 43
The operation control of the compressor 3 of the pre-cooling refrigeration circuit 1 is also performed, and the compressor 3 is started simultaneously with the high-stage compressor 10 of the JT circuit 2.
次に図示の実施例のヘリウム冷凍装置の作用を説明す
る。Next, the operation of the helium refrigeration system of the illustrated embodiment will be described.
運転開始時においては、制御手段43からの指令によ
り、まず予冷冷凍回路1の圧縮機3とJ−T回路2の高
段圧縮機10とが同時に起動され、低段圧縮機8は停止
状態とされる。従って、予冷冷凍回路1における膨張機
6の各ヒートステーション70,71が温度降下する。At the start of operation, first, the compressor 3 of the pre-cooling refrigeration circuit 1 and the high-stage compressor 10 of the JT circuit 2 are simultaneously activated by a command from the control means 43, and the low-stage compressor 8 is stopped. To be done. Therefore, the temperature of each heat station 70, 71 of the expander 6 in the pre-cooling refrigeration circuit 1 drops.
一方、J−T回路2においては、高段圧縮機10のみが
運転されることにより、低段圧縮機8の均圧レベルが下
がり、高段圧縮機10の起動後約10秒たつと、ほぼ高
段圧縮機10の吸入圧力になる。そこで、前記制御手段
43からの指令により、低段圧縮機8を起動させると、
起動直後の低段圧縮機8の吐出量がおさえられることと
なり、高段圧縮機10の吸入量と大差なくなる。従っ
て、両圧縮機8,10の同時起動時に生じていた圧力逆
転がおこらず、問題なく起動できるのである。その上、
両圧縮機8,10を時差起動させることにより、起動直
後の低段圧縮機8の吐出量が押さえられ、両圧縮機8,
10の起動が円滑に行なえるとともに、冷凍装置として
の起動電流も大幅に低減するものである。On the other hand, in the JT circuit 2, only the high-stage compressor 10 is operated, so that the pressure equalizing level of the low-stage compressor 8 is lowered, and about 10 seconds after the high-stage compressor 10 is started, it is almost the same. The suction pressure of the high-stage compressor 10 is reached. Therefore, when the low-stage compressor 8 is activated by a command from the control means 43,
The discharge amount of the low-stage compressor 8 immediately after the start-up is suppressed, which is almost the same as the suction amount of the high-stage compressor 10. Therefore, the pressure inversion that occurs when the both compressors 8 and 10 are simultaneously started does not occur, and the compressors can be started without any problem. Moreover,
By starting both compressors 8 and 10 in a staggered manner, the discharge amount of the low-stage compressor 8 immediately after starting is suppressed, and both compressors 8 and 10 are
The start-up of 10 can be performed smoothly, and the start-up current of the refrigerating apparatus can be greatly reduced.
次に、定常運転状態に達すると、クライオスタットCか
らのJ−T回路リターンヘリウムガスを低段圧縮機8が
吸引、圧縮し、冷却水コイル28で冷却水により常温3
00Kまで冷却し、油分離器9で油分離した後、このヘ
リウムガスを高段圧縮機10が吸引・圧縮する。その
後、冷却水コイル29で冷却水により常温300Kまで
冷却し、油分離器11で油分離した後、吸着器12で不
純物を吸着し、クリーンな高圧ヘリウムガスをクライオ
スタットCに供給する。Next, when the steady operation state is reached, the low-stage compressor 8 sucks and compresses the JT circuit return helium gas from the cryostat C, and the cooling water coil 28 cools it to room temperature 3
After cooling to 00K and oil separation in the oil separator 9, the high-stage compressor 10 sucks and compresses this helium gas. Then, the cooling water coil 29 is used to cool the cooling water to a room temperature of 300 K, the oil separator 11 separates the oil, and the adsorber 12 adsorbs impurities to supply clean high-pressure helium gas to the cryostat C.
クライオスタットC側に供給された高圧ヘリウムガスは
第1J−T熱交換器13の一次側に入り、J−T側圧縮
機ユニットBへ戻る二次側の低圧ヘリウムガスと熱交換
し、常温300Kから約70Kまで冷却され、膨張機6
の第1ヒートステーション70(50〜60K)の外周
に設けられた第1予冷器15に入り、第1ヒートステー
ション70により約55Kまで冷却され、第2J−T熱
交換器16の一次側に入り、J−T側圧縮機ユニットB
へ戻る二次側の低圧ヘリウムガスと熱交換して約20K
まで冷却され、膨張機6の第2ヒートステーション71
(15〜20K)の外周に設けられた第2予冷器18に
入り、第2ヒートステーション71により約15Kまで
冷却され、更に、第3J−T熱交換器19の一次側に入
り、J−T側圧縮機ユニットBへ戻る二次側の低圧ヘリ
ウムガスと熱交換して約5Kまで冷却され、J−T弁2
1に至る。なお、上記過程中において、各J−T熱交換
器13,16,19の出口側では、吸着器14,17,
20により窒素、酸素、水素等の不純ガスを低温吸着
し、よりクリーンなヘリウムガスにしてJ−T弁21や
各予冷器15,18のつまりを防止している。The high-pressure helium gas supplied to the cryostat C side enters the primary side of the first J-T heat exchanger 13 and exchanges heat with the low-pressure helium gas on the secondary side returning to the J-T side compressor unit B, from room temperature 300K. Expander 6 cooled to about 70K
Enters the first precooler 15 provided on the outer periphery of the first heat station 70 (50-60K), is cooled to about 55K by the first heat station 70, and enters the primary side of the second JT heat exchanger 16. , JT side compressor unit B
Return to about 20K by exchanging heat with the low pressure helium gas on the secondary side.
The second heat station 71 of the expander 6 is cooled down to
It enters the second precooler 18 provided on the outer periphery of (15 to 20K), is cooled to about 15K by the second heat station 71, and further enters the primary side of the third JT heat exchanger 19, and then the JT Returning to the side compressor unit B, the heat is exchanged with the low pressure helium gas on the secondary side, and the heat is cooled to about 5K.
To 1. In addition, during the above process, the adsorbers 14, 17 and 17 are connected to the outlets of the JT heat exchangers 13, 16 and 19, respectively.
Impurity gases such as nitrogen, oxygen and hydrogen are adsorbed at a low temperature by 20 to make cleaner helium gas to prevent the J-T valve 21 and the precoolers 15 and 18 from being clogged.
而して、高圧ヘリウムガスはJ−T弁21で絞られ、ジ
ュールトムソン膨張をして1気圧、4.2Kの気液混合状
態のヘリウムとなって冷却器22へ供給される。冷却器
22では、このヘリウムの液部分の蒸発潜熱が他のヘリ
ウムガスの液化や再凝縮あるいは被冷却体の冷却に利用
される。Then, the high-pressure helium gas is throttled by the J-T valve 21, expanded by Joule-Thomson, and becomes helium in a gas-liquid mixed state of 1 atm and 4.2 K and is supplied to the cooler 22. In the cooler 22, the latent heat of vaporization of the liquid portion of helium is used for liquefying or recondensing another helium gas or for cooling the cooled object.
その結果、冷却器22から第3J−T熱交換器19の二
次側に戻る低圧ヘリウムガスは、約4.2Kの飽和ガスと
なる。そして、この低圧ヘリウムガスは第2および第1
J−T熱交換器16,13において一次側の高圧ヘリウ
ムガスを冷却し、約300Kに温度上昇して、J−T側
圧縮機ユニットBへ戻って行く。以後、同様なサイクル
が繰返されて冷凍運転が行なわれる。As a result, the low-pressure helium gas returning from the cooler 22 to the secondary side of the third JT heat exchanger 19 becomes a saturated gas of about 4.2K. And this low pressure helium gas is
In the JT heat exchangers 16 and 13, the high-pressure helium gas on the primary side is cooled, the temperature rises to about 300K, and the JT side compressor unit B is returned to. After that, the same cycle is repeated and the refrigerating operation is performed.
(発明の効果) 叙上の如く、本発明によれば、J−T回路2において、
低段圧縮機8を、高段圧縮機10の起動後、所定時間遅
延させて起動するようにしたので、起動直後の低段圧縮
機8の吐出量がおさえられて、高段圧縮機10の吸入量
に見合う量となり、2台の圧縮機を直列接続した場合に
生じる起動時のトラブルが解消されるという優れた効果
がある。(Effects of the Invention) As described above, according to the present invention, in the JT circuit 2,
Since the low-stage compressor 8 is started with a delay of a predetermined time after the high-stage compressor 10 is started, the discharge amount of the low-stage compressor 8 immediately after the start is suppressed and the high-stage compressor 10 is discharged. The amount is commensurate with the suction amount, and there is an excellent effect that troubles at startup that occur when two compressors are connected in series are eliminated.
又、2台の圧縮機8,10を時差起動させることによ
り、冷凍装置としての起動電流を大巾に低減することが
できるという効果もある。Further, there is also an effect that the start-up current of the refrigeration system can be greatly reduced by staggering the two compressors 8 and 10.
第1図は、本発明の実施例にかかるヘリウム冷凍装置の
系統図である。 1……予冷冷凍回路 2……ジュールトムソン回路 3……予冷用圧縮機 8……低段圧縮機 10……高段圧縮機 43……制御手段FIG. 1 is a system diagram of a helium refrigeration system according to an embodiment of the present invention. 1 ... Pre-cooling refrigeration circuit 2 ... Joule Thomson circuit 3 ... Pre-cooling compressor 8 ... Low-stage compressor 10 ... High-stage compressor 43 ... Control means
フロントページの続き (72)発明者 野口 聡 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内Front page continuation (72) Inventor Satoshi Noguchi 1304 Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industries, Ltd. Sakai Plant Kanaoka Factory
Claims (1)
有する予冷冷凍回路(1)と、直列接続された大容量の
低段圧縮機(8)および小容量の高段圧縮機(10)を
有するジュールトムソン回路(2)とを備え、ジュール
トムソン回路(2)を流れる高圧冷媒ガスを予冷冷凍回
路(1)により冷却するヘリウム冷凍装置において、前
記低段圧縮機(8)を前記高段圧縮機(10)の起動後
所定時間遅延して起動させるべく運転制御する制御手段
(43)が付設されていることを特徴とするヘリウム冷
凍装置。1. A pre-cooling refrigeration circuit (1) having a pre-cooling compressor (3) and an expander (6), a large capacity low stage compressor (8) and a small capacity high stage compressor connected in series. A Joule-Thomson circuit (2) having (10), wherein the high-pressure refrigerant gas flowing through the Joule-Thomson circuit (2) is cooled by the pre-cooling refrigeration circuit (1), the low-stage compressor (8) A helium refrigerating apparatus, further comprising a control means (43) for controlling the operation of the high-stage compressor (10) so that the high-stage compressor (10) is started after a predetermined time delay.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7582085A JPH067024B2 (en) | 1985-04-09 | 1985-04-09 | Helium refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7582085A JPH067024B2 (en) | 1985-04-09 | 1985-04-09 | Helium refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61235648A JPS61235648A (en) | 1986-10-20 |
JPH067024B2 true JPH067024B2 (en) | 1994-01-26 |
Family
ID=13587200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7582085A Expired - Fee Related JPH067024B2 (en) | 1985-04-09 | 1985-04-09 | Helium refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH067024B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3390821A4 (en) * | 2015-12-18 | 2020-02-26 | Sumitomo (Shi) Cryogenics of America, Inc. | Dual helium compressors |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5287831B2 (en) | 2010-10-29 | 2013-09-11 | 株式会社デンソー | Two-stage boost refrigeration cycle |
-
1985
- 1985-04-09 JP JP7582085A patent/JPH067024B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3390821A4 (en) * | 2015-12-18 | 2020-02-26 | Sumitomo (Shi) Cryogenics of America, Inc. | Dual helium compressors |
Also Published As
Publication number | Publication date |
---|---|
JPS61235648A (en) | 1986-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005083588A (en) | Helium gas liquefying device, and helium gas recovering, refining and liquefying device | |
CN112368532A (en) | Mixed refrigerant liquefaction system with pre-cooling and method | |
JPH07234027A (en) | Cascade refrigerator | |
JPH067024B2 (en) | Helium refrigeration equipment | |
JP3573384B2 (en) | Cryogenic refrigeration equipment | |
JPH1073333A (en) | Cryogenic cooling apparatus | |
JPH067023B2 (en) | Helium refrigeration equipment | |
JP2001108320A (en) | Cryostatic refrigerator | |
JP2910499B2 (en) | Refrigeration equipment | |
JPH079000Y2 (en) | Cryogenic refrigerator | |
JP3596825B2 (en) | Low pressure control device for cryogenic refrigerator | |
RU2804469C1 (en) | Method for hydrogen liquefaction and plant for its implementation | |
JP3279782B2 (en) | Operation control device for refrigerator | |
JPH11108476A (en) | Cryostatic cooling device | |
JPH0648123B2 (en) | Helium refrigeration equipment | |
RU2748413C2 (en) | Installation for producing liquefied natural gas (versions) | |
JPH068704B2 (en) | Helium refrigerator | |
JP2006125772A (en) | Operation control device for cryogenic refrigerator | |
JP2725631B2 (en) | Equalization control method and equalization control device for cryogenic refrigerator | |
JPS61240061A (en) | Helium refrigerator | |
JPS61240060A (en) | Helium refrigerator | |
JPH0689956B2 (en) | Small He liquefaction refrigeration system | |
JPH0642829A (en) | Freezer for low temperature freezing | |
JPH0788980B2 (en) | Helium refrigerator | |
JPH0668419B2 (en) | Cryogenic refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |