[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0670932B2 - Permanent magnet manufacturing method - Google Patents

Permanent magnet manufacturing method

Info

Publication number
JPH0670932B2
JPH0670932B2 JP62023564A JP2356487A JPH0670932B2 JP H0670932 B2 JPH0670932 B2 JP H0670932B2 JP 62023564 A JP62023564 A JP 62023564A JP 2356487 A JP2356487 A JP 2356487A JP H0670932 B2 JPH0670932 B2 JP H0670932B2
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
alkyl
group
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62023564A
Other languages
Japanese (ja)
Other versions
JPS63192216A (en
Inventor
忠夫 片平
Original Assignee
東北金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北金属工業株式会社 filed Critical 東北金属工業株式会社
Priority to JP62023564A priority Critical patent/JPH0670932B2/en
Publication of JPS63192216A publication Critical patent/JPS63192216A/en
Publication of JPH0670932B2 publication Critical patent/JPH0670932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNd2Fe14B系合金で代表される希土類元素:Rと遷
移金属TとからなるR2T14B系金属間化合物磁石の中で特
にR,Fe,Bを主成分とする永久磁石に係わり,耐酸化性を
改善したR,Fe,B系磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an R 2 T 14 B-based intermetallic compound magnet composed of a rare earth element: R and a transition metal T represented by Nd 2 Fe 14 B-based alloy. In particular, it relates to a permanent magnet mainly composed of R, Fe and B, and relates to a method for producing an R, Fe and B based magnet having improved oxidation resistance.

〔従来技術〕[Prior art]

Nd-Fe-Bで代表されるR-Fe-B系磁石は,従来の希土類永
久磁石であるSm-Co系磁石に比較して高い磁気特性を有
する。しかし,このような磁石合金は組織中極めて酸化
し易いNd-Fe合金相を含み,さらにR2Fe14Bも酸化し易い
ため,Sm-Coに比較して磁石の酸化による磁気特性の劣
化及びばらつきが大きい。さらに磁気回路等の装置に組
み込んだ場合,磁石から発生した酸化物の飛散による周
辺部品への汚染を引き起こす惧がある。
R-Fe-B magnets, represented by Nd-Fe-B, have higher magnetic properties than conventional rare earth permanent magnets, Sm-Co magnets. However, such a magnet alloy contains an Nd-Fe alloy phase that is extremely easy to oxidize in the structure, and R 2 Fe 14 B is also easily oxidizable. The variation is large. Furthermore, when incorporated in a device such as a magnetic circuit, there is a possibility that the oxides generated from the magnet may scatter and pollute peripheral parts.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この問題点を解決する方法として,特開昭60-54406号公
報や特開昭60-63903号公報が提案されている。しかしな
がら、これらの公報に提案されている耐酸化性皮膜は,
皮膜形成工程中で多量の水を使用するため,処理工程中
で磁石材料が酸化したり,処理後であっても微量の水分
の残留が原因となって酸化する場合が多く,耐酸化性が
十分とは言い難い。
As a method for solving this problem, JP-A-60-54406 and JP-A-60-63903 have been proposed. However, the oxidation resistant coatings proposed in these publications are
Since a large amount of water is used in the film formation process, the magnet material often oxidizes during the treatment process, and even after the treatment, it is often oxidized due to the residual of a small amount of water. It's hard to say enough.

また金属の防錆表面処理の一般的方法である塗装法で
は、塗料の基材が有機高分子であるため金属との親和性
が不十分で,磁石の部品化工程や使用時において亀裂や
剥離が生じ易いこと,また特に反応硬化型の塗料の場合
は痕跡程度の未反応の官能基の経時変化が発錆の原因と
なることもあり,殊にこのような合金系では信頼性が不
十分で,用途が限定されているのが現状である。
In addition, the coating method, which is a general method of rust preventive surface treatment of metal, has an insufficient affinity for the metal because the base material of the coating is an organic polymer, and cracks and peeling occur during the magnet part-making process and during use. Is likely to occur, and in the case of reaction-curable coatings, in particular, traces of unreacted functional groups over time may cause rusting. In particular, such an alloy system has insufficient reliability. At present, the application is limited.

さらに,スパッター,イオン蒸着法を用いた金属皮膜形
成による酸化防止法は,磁石全面への均一コーテイング
が困難であること,また被覆層組織が下地面に垂直方向
に方向性を持つため,被覆層に微細な間隙を生じ,十分
な耐食性が期待できない等の問題がある。
In addition, the oxidation prevention method by forming a metal film using sputtering or ion deposition method is difficult to uniformly coat the entire surface of the magnet, and the coating layer structure has a directivity in the direction perpendicular to the base surface. There are problems such as the formation of minute gaps at the bottom and sufficient corrosion resistance cannot be expected.

本発明は耐酸化性皮膜形成処理に水をまったく使用しな
くとも良い永久磁石の製造方法を提供しようとするもの
である。
The present invention is intended to provide a method for producing a permanent magnet that does not require the use of water at all in the oxidation resistant film forming treatment.

〔問題を解決するための手段〕[Means for solving problems]

一般にアルコキシ基を含む有機物とSi,Alとの化合物は
アルコール交換,エステル交換,水及び活性水素との反
応,熱分解の種々の反応性を有している。特に低分子タ
イプのものは水,湿気によって加水分解して縮合,高分
子化するため,表面の改質被覆に使用することができ
る。
In general, organic compounds containing alkoxy groups and compounds of Si and Al have various reactivity such as alcohol exchange, transesterification, reaction with water and active hydrogen, and thermal decomposition. In particular, low molecular weight compounds are hydrolyzed by water and moisture to be condensed and polymerized, so that they can be used for surface modification coating.

一方で,希土類元素は非常に反応性に富み,酸素,水と
反応して酸化物,水酸化物を形成し易いため、R2T14B系
合金の焼結磁石の表面にも痕跡程度の酸化物,水酸化物
が存在することは容易に推定できる。
On the other hand, since rare earth elements are extremely reactive and easily react with oxygen and water to form oxides and hydroxides, there is no trace on the surface of the sintered magnet of R 2 T 14 B alloy. The presence of oxides and hydroxides can be easily estimated.

本発明者らは前記の有機金属化合物が水及び活性水素と
の反応性に富むことと,前記の磁石表面に水酸基が存在
することに着目し,これを利用することを鋭意検討した
結果,本発明をなすに至ったものである。本発明はR2T
14B系合金の焼結磁石を前記有機金属化合物即ちカップ
リング剤で表面に被覆層を形成し,該磁石の耐酸化性を
向上するものである。
The present inventors have paid attention to the fact that the organometallic compound has high reactivity with water and active hydrogen and the presence of a hydroxyl group on the magnet surface, and as a result of diligent studies using it, It was the invention. The present invention is R 2 T
A sintered magnet of 14 B-based alloy is formed with a coating layer on the surface of the organometallic compound, that is, a coupling agent, to improve the oxidation resistance of the magnet.

本発明の成膜工程は,基本的には該磁石を有機金属化合
物もしくはその溶液に浸漬して引き上げるか,塗布した
後に放置して反応させるという簡単なものであるが,必
要によっては加熱して反応を促進しても良い。また膜厚
は有機金属化合物の磁石への付着量に依存するのは当然
であるが,付着量は有機金属化合物の粘度に依存するの
で,粘度が高過ぎて付着量が多過ぎる場合は適当な溶媒
で希釈し,逆の場合は,塗布,反応を繰り返す必要があ
る。膜厚の制御はこのようにして行なわれる。耐酸化性
を向上するためには膜厚は大きい方が良く,磁石の寸法
精度を考慮すると膜厚は小さい方が良い。これらに鑑
み,この場合の膜厚は5μm前後が適当である。このよ
うにして形成される膜は前述のように磁石表面の水酸基
と有機金属化合物のアルコキシ基との反応により磁石表
面と膜が化学的に結合しているため接着性が高いことも
大きな特徴である。
The film-forming step of the present invention is basically a simple step of immersing the magnet in an organometallic compound or a solution thereof and pulling it up, or applying it and then leaving it to react, but if necessary, heating it. The reaction may be accelerated. In addition, the film thickness naturally depends on the amount of the organometallic compound attached to the magnet, but since the amount of the attached film depends on the viscosity of the organometallic compound, it is appropriate when the viscosity is too high and the amount is too large. It is necessary to dilute with a solvent and, in the opposite case, to repeat coating and reaction. The film thickness is controlled in this way. In order to improve the oxidation resistance, it is preferable that the film thickness is large, and considering the dimensional accuracy of the magnet, the film thickness is preferably small. In view of these, the film thickness in this case is appropriately around 5 μm. As described above, the film formed in this way is also characterized by high adhesiveness because the film is chemically bonded to the magnet surface by the reaction between the hydroxyl group on the magnet surface and the alkoxy group of the organometallic compound. is there.

本発明に使用される有機金属化合物としては次の一般式
で示される化合物が挙げられる。
Examples of the organometallic compound used in the present invention include compounds represented by the following general formula.

M:Si RA:アルキル基 AR′:アルキル、アルケニル基または炭素以外の原子団
の置換基を持つアルキル、アルケニル基 n:1〜4の整数 AR1〜AR4:アルキル基 具体的にはケイ素化合物として,ビニルトリエトキシシ
ラン,ビニル−トリス(2−メトキシエトキシ)シラ
ン,γ−メタクリロキシ−プロピルトリメトキシ−シラ
ン,γ−アミノプロピルトリメトキシシラン,N−β−
(アミノエチル)−γ−アミノ−プロピル−トリメトキ
シ−シラン,β−(3,4−エポキシ−シクロヘキシル)
エチル−トリメトキシシラン,テトラエトキシシラン等
が,アルミニウム化合物として,4−アセチル−3−ブテ
ニロキシル−アルミニウム−ジ−i−プロポキシレート
等が挙げられるが,これらに限定されるものでないこと
は勿論である。
M: Si R A : Alkyl group A R ′: Alkyl, alkenyl group or alkyl having a substituent of an atomic group other than carbon, an alkenyl group n: an integer of 1 to 4 A R1 to A R4 : Alkyl group Specifically, as a silicon compound, vinyltriethoxysilane, vinyl-tris (2-methoxyethoxy) silane, γ-methacryloxy-propyltrimethoxy-silane, γ-aminopropyltrimethoxysilane, N-β-
(Aminoethyl) -γ-amino-propyl-trimethoxy-silane, β- (3,4-epoxy-cyclohexyl)
Examples of the aluminum compound such as ethyl-trimethoxysilane and tetraethoxysilane include 4-acetyl-3-butenyloxyl-aluminum-di-i-propoxylate, but they are not limited to these. .

また処理工程で使用される溶媒としては,処理工程中で
の酸化を抑制するため水の使用は避けた方が良いが,そ
れ以外であれば,該有機金属化合物を溶解するものであ
れば何でも使用できる。その中でも水,酸素の溶解性,
反応時の溶媒の除去等を考慮すると,なるべく非極性,
低分子量のものが望ましく,具体的にはn−ヘキサン等
が挙げられる。
Further, as the solvent used in the treatment step, it is preferable to avoid the use of water in order to suppress the oxidation in the treatment step, but otherwise, any solvent can be used as long as it dissolves the organometallic compound. Can be used. Among them, the solubility of water and oxygen,
Considering removal of solvent during reaction, etc.
A low molecular weight one is desirable, and specific examples thereof include n-hexane.

以下に実施例を示し,説明する。Examples will be shown and described below.

〈実施例−1〉 純度95%以上のNd,電解鉄,フエロボロンを所定量秤量
し,アルゴン雰囲気中高周波加熱により溶解して鋳込
み,64.9wt%Fe-34wt%Nd-1.1wt%B合金のインゴットを得
た。次にこのインゴットを粗粉砕し,ボールミルによる
湿式粉砕で平均粒径3μmの微粉末を得た。この粉末を
20kOeの磁界中,1ton/m2の圧力で成形した。得られた成
形体を1050〜1150℃,2時間真空焼結後,炉冷して焼結体
を得,この焼結体を500〜700℃で1時間熱処理した後急
冷した。そして,前記の方法で得た永久磁石から10mm×
10mm×10mmの寸法に試験片を切り出した。
<Example-1> Nd having a purity of 95% or more, electrolytic iron, and ferroboron were weighed in a predetermined amount, melted by high-frequency heating in an argon atmosphere, and cast into a 64.9 wt% Fe-34 wt% Nd-1.1 wt% B alloy ingot. Got Next, this ingot was roughly crushed and wet-milled by a ball mill to obtain fine powder having an average particle size of 3 μm. This powder
It was molded at a pressure of 1 ton / m 2 in a magnetic field of 20 kOe. The obtained molded body was vacuum-sintered at 1050-1150 ° C for 2 hours and then furnace-cooled to obtain a sintered body. The sintered body was heat-treated at 500-700 ° C for 1 hour and then rapidly cooled. And 10mm × from the permanent magnet obtained by the above method
A test piece was cut into a size of 10 mm × 10 mm.

上記試験片をトリクレンで洗浄脱脂後,γ−アミノプロ
ピルトリメトキシシランに浸漬後,アルゴン雰囲気中で
110℃×20分間反応を行い,最大で6μm,最小で4μm
の厚みを有する皮膜を得た。
The test piece was washed and degreased with trichlene, immersed in γ-aminopropyltrimethoxysilane, and then in an argon atmosphere.
React at 110 ℃ for 20 minutes, maximum 6μm, minimum 4μm
A coating having a thickness of

〈実施例−2〉 実施例−1と同様に調整した試験片を4−アセチル−3
−ブテニロキシル−アルミニウム−ジ−i−プロポキシ
レートに浸漬し,室温で2時間放置し,最大で10μm,最
小で7μmの厚みを有する皮膜を得た。
<Example-2> A test piece prepared in the same manner as in Example-1 was treated with 4-acetyl-3.
It was immersed in butenyloxyl-aluminum-di-i-propoxylate and left at room temperature for 2 hours to obtain a film having a maximum thickness of 10 μm and a minimum thickness of 7 μm.

以上のようにして得られた試験片,および比較のための
無処理試験片の72時間5%食塩水噴霧試験結果およびゴ
バン目テストの結果を第1表に示す。
Table 1 shows the results of the 72-hour 5% saline spray test and the goose eye test of the test pieces thus obtained and the untreated test pieces for comparison.

〔発明の効果〕 本発明について,以上詳細に説明した。これによれば,
R2T14B系永久磁石の表面に優れた耐酸化性を有する皮膜
が得られる。しかも本発明は工程が簡単なため低コスト
で被覆処理できるという二重の効果があり耐酸化性磁石
を廉価に製造することができる。
[Effects of the Invention] The present invention has been described in detail above. According to this,
A film having excellent oxidation resistance can be obtained on the surface of the R 2 T 14 B-based permanent magnet. In addition, the present invention has a dual effect that the coating process can be performed at low cost because the process is simple, and the oxidation resistant magnet can be manufactured at a low price.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R-Fe-Bを主成分とするR2T14B系合金(R:イ
ットリウムを含む希土類元素、T:遷移金属、B:ホウ素)
の焼結型永久磁石を次に示す一般式で表わされる有機金
属化合物の溶液に、浸漬して表面処理することにより、
前記磁石表面に対酸化性皮膜を形成することを特徴とす
る永久磁石の製造方法。 M:Si AR:アルキル基 AR′:アルキル、アルケニル基または炭素以外の原子団
の置換基を持つアルキル、アルケニル基 n:1〜4の整数 AR1〜AR4:アルキル基
1. An R 2 T 14 B-based alloy containing R-Fe-B as a main component (R: rare earth element including yttrium, T: transition metal, B: boron).
By immersing the sintered type permanent magnet of in a solution of an organometallic compound represented by the following general formula to perform surface treatment,
A method for producing a permanent magnet, which comprises forming an antioxidative film on the surface of the magnet. M: Si A R : Alkyl group A R ′: Alkyl, alkenyl group, or alkyl having a substituent of an atomic group other than carbon, an alkenyl group, an integer of 1 to 4 A R1 to A R4 : alkyl group
JP62023564A 1987-02-05 1987-02-05 Permanent magnet manufacturing method Expired - Lifetime JPH0670932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62023564A JPH0670932B2 (en) 1987-02-05 1987-02-05 Permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62023564A JPH0670932B2 (en) 1987-02-05 1987-02-05 Permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPS63192216A JPS63192216A (en) 1988-08-09
JPH0670932B2 true JPH0670932B2 (en) 1994-09-07

Family

ID=12114020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023564A Expired - Lifetime JPH0670932B2 (en) 1987-02-05 1987-02-05 Permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JPH0670932B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528000B1 (en) 2002-08-09 2010-01-27 Yoshino Kogyosho Co., Ltd. Neck of synthetic resin bottle
JP2006049863A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168009A (en) * 1986-12-30 1988-07-12 Taiyo Yuden Co Ltd Permanent magnet and manufacture thereof

Also Published As

Publication number Publication date
JPS63192216A (en) 1988-08-09

Similar Documents

Publication Publication Date Title
US20150187494A1 (en) Process for preparing rare earth magnets
JP2008263208A (en) Corrosion-resistant rare earth magnet
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
EP1734539B1 (en) Corrosion-resistant rare earth magnets and process for production thereof
JPH08111306A (en) Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder
JPH0670932B2 (en) Permanent magnet manufacturing method
JPH09223617A (en) Rare earth-b-fe sintered magnet superior in corrosion resistance and magnetic characteristic and manufacturing method thereof
JPH01251704A (en) Rare earth permanent magnet with excellent oxidation resistance
JP4161169B2 (en) Method for producing corrosion-resistant rare earth magnet
JPS62149108A (en) Manufacture of permanent magnet
JP2001196215A (en) Rare earth permanent magnet having good corrosion resistance and method of manufacturing the same
JP4495287B2 (en) Method for producing rare earth-based permanent magnet having polyimide resin coating
JP3877552B2 (en) Method for manufacturing metal member
JP3383338B2 (en) Corrosion-resistant permanent magnet and its manufacturing method
JP3423299B2 (en) Fe-BR type permanent magnet having corrosion-resistant film
JP2553843B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JP3208057B2 (en) Corrosion resistant permanent magnet
JPS63232304A (en) Permanent magnet excellent in oxidation resistance and manufacture thereof
JPS63187603A (en) Permanent magnet having improved resistance to oxidation and manufacture thereof
JPH0644526B2 (en) Rare earth magnet manufacturing method
JP2006049865A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JP4600627B2 (en) Rare earth permanent magnet manufacturing method
JPH069169B2 (en) Fe-BR resin-bonded magnet with excellent corrosion resistance
JPH08330121A (en) Permanent magnet body
JPS63252405A (en) Permanent magnet and manufacture thereof