[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0668984A - Tandem type electrostatic accelerator - Google Patents

Tandem type electrostatic accelerator

Info

Publication number
JPH0668984A
JPH0668984A JP24556292A JP24556292A JPH0668984A JP H0668984 A JPH0668984 A JP H0668984A JP 24556292 A JP24556292 A JP 24556292A JP 24556292 A JP24556292 A JP 24556292A JP H0668984 A JPH0668984 A JP H0668984A
Authority
JP
Japan
Prior art keywords
charged particles
voltage terminal
high voltage
accelerator
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24556292A
Other languages
Japanese (ja)
Inventor
Yasutsugu Iwata
康嗣 岩田
Naoaki Saito
直昭 斎藤
Mitsushi Tanimoto
充司 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24556292A priority Critical patent/JPH0668984A/en
Publication of JPH0668984A publication Critical patent/JPH0668984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To accelerate various molecular ions consisting of a plurality of atoms by utilizing ionization by means of light to convert polarities of charged particles at a high voltage terminal part. CONSTITUTION:A negative ion acceleration tube 3 and a positive ion acceleration tube 4 are provided on a tandem type electrostatic accelerator 1, and the acceleration tubes 3, 4 are connected together at a high voltage terminal part 5. A high voltage generation part 6 is provided in a high voltage gas tank 2 for insulation, and the generation part 6 is connected to the terminal part 5, an inlet 3a of the acceleration tube 3, and to an outlet 4a of the acceleration tube 4. The charged particles from a particle generator 7 provided on the extended part of the inlet 3a of the acceleration tube 3, outside of the tank 2, are brought into the acceleration tube 3 along a beam axis 8, and are accelerated. After the laser beam from a laser generator is utilized and the polarities are converted at the terminal part 5, the laser beam is accelerated at the acceleration tube 4, and is emitted from the outlet 4a. The wavelength of the laser beam started by the generator 9 matches with a resonance transition of the charged particles, and the polarities are converted, and molecular ions consisting of a plurality of atoms can thus be accelerated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、複数の原子で構成さ
れる多様な分子イオンやクライスターイオン或は高エネ
ルギー中性粒子を発生することができるタンデム型静電
加速器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tandem electrostatic accelerator capable of generating various molecular ions composed of a plurality of atoms, crystallite ions or high-energy neutral particles.

【0002】[0002]

【従来の技術】タンデム型静電加速器は加速器の入口と
出口が共に接地され、加速中心部に数100kV から20MV程
度までの直流高電圧ターミナル部を持つ荷電粒子加速装
置であって、加速器入口から上記高電圧ターミナル部ま
でと高電圧ターミナル部から出口迄の2段に加速するこ
とから「タンデム型」と称されている。
2. Description of the Related Art A tandem electrostatic accelerator is a charged particle accelerator that has a DC high voltage terminal unit of several 100 kV to 20 MV in the center of acceleration, with the entrance and exit of the accelerator both grounded. It is called a "tandem type" because it accelerates in two stages from the high voltage terminal section to the high voltage terminal section and to the exit.

【0003】1段加速(シングル型)の場合には高電圧
部に荷電粒子の発生源(イオン源)を搭載するのに対
し、タンデム型ではイオン源を接地できるため、軽イオ
ンや重イオンを始め複数個の原子から構成される分子イ
オンやクラスターイオンに至るまでの、バリエーション
豊かな荷電粒子の加速を可能とするなどの特徴がある。
In the case of the one-step acceleration (single type), the source of the charged particles (ion source) is mounted in the high voltage portion, whereas in the tandem type the ion source can be grounded, so that light ions and heavy ions are It has features such as acceleration of charged particles with a wide variety of variations, starting from molecular ions composed of multiple atoms to cluster ions.

【0004】従来原子核物理学の分野で、核構造解析の
手段として高エネルギー荷電粒子を得るために、より高
電圧の静電加速器開発が進められ、大型加速器の建設が
行なわれてきたが、近年では半導体材料におけるイオン
注入、鋼材改質のためのイオンビーム加工、通常検出が
困難とされる材料中の水素のイオンビーム分析、材料組
成と構造解析のためのイオンビーム分析、構造材や生体
細胞の照射損傷を調べるためのイオンビーム照射、生体
内のトレーサー分析、年代測定のための同位体分離等の
材料科学や生物、医療科学或は考古学等の幅広い分野に
おいては、むしろ数100kV から3MV 程度の比較的小型の
タンデム型静電加速器が盛んに利用されている。
Conventionally, in the field of nuclear physics, in order to obtain high-energy charged particles as a means for nuclear structure analysis, development of a higher voltage electrostatic accelerator has been promoted, and a large accelerator has been constructed. Then, ion implantation in semiconductor materials, ion beam processing for steel modification, ion beam analysis of hydrogen in materials that is usually difficult to detect, ion beam analysis for material composition and structural analysis, structural materials and biological cells In a wide range of materials science such as ion beam irradiation for investigating radiation damage, tracer analysis in vivo, isotope separation for dating, biology, medical science or archeology, it is rather several 100 kV to 3 MV. A relatively small tandem type electrostatic accelerator is widely used.

【0005】タンデム型加速器においては高電圧ターミ
ナル部において荷電粒子の電荷極性を反転させる必要が
あるが、従来極性変換の容易性から通常イオン源から高
電圧ターミナル部迄は負電荷を、高電圧ターミナル部以
降は正電荷をそれぞれ帯びた荷電粒子の加速を行なうよ
うにしてきた。
In the tandem type accelerator, it is necessary to invert the charge polarity of the charged particles at the high voltage terminal portion, but conventionally, from the easiness of polarity conversion, a negative charge is usually provided from the ion source to the high voltage terminal portion, and a high voltage terminal portion. Since then, we have been accelerating the charged particles that are respectively charged with positive charges.

【0006】そして、従来のタンデム型静電加速器にお
いては高電圧ターミナル部における荷電粒子の電荷の極
性反転を、高速荷電粒子が物質を通過する際に生ずる電
子損失を利用して、負電荷を正電荷に変換することが行
なわれてきた。
In the conventional tandem-type electrostatic accelerator, the polarity of the charge of the charged particles in the high voltage terminal is reversed, and the negative charge is made positive by utilizing the electron loss generated when the fast charged particles pass through the substance. Converting into charge has been done.

【0007】例えば、大型のタンデム型静電加速器で
は、図3に示すように負イオン加速管3と正イオン加速
管4を接続する高電圧ターミナル部5に複数の炭素薄膜
14を搭載した無端ベルト15を設け、この無端ベルト15を
回動させて炭素薄膜14の一枚を荷電粒子発生器7より入
射される荷電粒子のビーム軸8を遮るように位置させ、
負イオン加速管3で高エネルギーにまで加速された負電
荷を持つ荷電粒子をこの炭素薄膜14を通過することによ
り多価の正電荷粒子に変換され、正イオン加速器ではこ
の変換された正荷電粒子を更に高エネルギーにまで加速
して、効率よく高エネルギーの荷電粒子を発生させるも
のである。
For example, in a large tandem type electrostatic accelerator, as shown in FIG. 3, a plurality of carbon thin films are formed in a high voltage terminal section 5 connecting a negative ion accelerator tube 3 and a positive ion accelerator tube 4.
An endless belt 15 carrying 14 is provided, and the endless belt 15 is rotated to position one of the carbon thin films 14 so as to block the beam axis 8 of the charged particles incident from the charged particle generator 7.
The charged particles having a negative charge accelerated to a high energy by the negative ion accelerator tube 3 are converted into polyvalent positively charged particles by passing through the carbon thin film 14. In the positive ion accelerator, the converted positively charged particles are converted. Is further accelerated to high energy to efficiently generate high-energy charged particles.

【0008】一方、3MV 以下の比較的小型のタンデム型
静電加速器では、負イオン加速管部で加速された荷電粒
子の物質透過能が低いため、図4に示すように加速器を
収容する絶縁用高圧ガスタンク2内に流量調整弁16を有
する荷電変換用ガス供給部17を設け、流量調整弁16を開
いて高電圧ターミナル部5にガスを供給し、ここで負電
荷を持つ荷電粒子と衝突させることにより荷電変換を行
なうものである。
On the other hand, in a relatively small tandem type electrostatic accelerator of 3 MV or less, the mass permeability of the charged particles accelerated in the negative ion accelerating tube portion is low, and therefore, as shown in FIG. A charge conversion gas supply unit 17 having a flow rate adjusting valve 16 is provided in the high-pressure gas tank 2, and the flow rate adjusting valve 16 is opened to supply gas to the high-voltage terminal unit 5 where it collides with charged particles having a negative charge. By doing so, charge conversion is performed.

【0009】このガスと荷電粒子の衝突により荷電粒子
の荷電変換を行なう方法においては、荷電粒子の種類と
速度に応じてガスの圧力を調整することにより、必要な
正電荷の価数が得られる利点を有している。
In this method of performing charge conversion of charged particles by collision between the gas and charged particles, the required positive charge valence can be obtained by adjusting the gas pressure according to the type and speed of the charged particles. Have advantages.

【0010】[0010]

【発明が解決しようとする課題】しかし、上述の薄膜透
過或はガス衝突何れの方法においても、荷電変換のため
に薄膜透過やガスと衝突させる際、荷電粒子が分子イオ
ンやクラスター等の複数の原子から構成されている場
合、構成原子が個々に電子損失を起こしてイオン化し、
互いの静電斥力によって分子やクラスターが解離してし
まう。
However, in any of the above-described thin film permeation or gas collision methods, when the thin film permeation or gas collision is performed for charge conversion, charged particles are not separated into a plurality of molecules such as molecular ions or clusters. In the case of being composed of atoms, the constituent atoms individually cause electron loss and ionize,
Molecules and clusters are dissociated by mutual electrostatic repulsion.

【0011】即ち、分子やクラスターを解離させずにイ
オン化するためには、複数個の原子で構成される荷電粒
子1個から剥ぎ取る電子の個数を正確に制御する必要が
あるが、荷電粒子が透過する膜厚やガス圧の調整では、
こうした荷電粒子から剥ぎ取る電子の個数制御まで出来
ず、このため分子イオンやクラスターイオン等の複数の
原子から構成される荷電粒子は、炭素薄膜透過やガス衝
突による荷電変換を行う従来のタンデム型静電加速器で
は加速できないという大きな欠点がある。
That is, in order to ionize molecules or clusters without dissociating them, it is necessary to accurately control the number of electrons stripped from one charged particle composed of a plurality of atoms. When adjusting the film thickness and gas pressure to be transmitted,
Since it is not possible to control the number of electrons stripped from such charged particles, therefore, charged particles composed of multiple atoms such as molecular ions and cluster ions cannot be controlled by the conventional tandem-type static charge conversion that involves carbon thin film permeation or gas collision. There is a major drawback in that it cannot be accelerated by an electric accelerator.

【0012】また従来、ガス衝突による荷電変換を行う
比較的小型のタンデム型静電加速器では、高電圧ターミ
ナル部5におけるガス導入によって、加速管内の真空度
低下を招き、更に加速管内の残留ガスは荷電粒子ビーム
との衝突によって電子を放出し、この電子が加速管壁と
の衝突を繰り返し雪崩式に増倍して高電圧の不安定な状
態を引き起こし、引いては加速管の寿命を短縮すること
になるため、加速管内の真空度の低下は重大な問題であ
る。
Conventionally, in a relatively small tandem type electrostatic accelerator which performs charge conversion by gas collision, the introduction of gas into the high-voltage terminal portion 5 causes a decrease in the degree of vacuum in the accelerating tube, and the residual gas in the accelerating tube is further reduced. Electrons are emitted by collision with a charged particle beam, and the electrons repeatedly collide with the accelerating tube wall to multiply in an avalanche manner, causing an unstable state of high voltage, which in turn shortens the life of the accelerating tube. Therefore, lowering the degree of vacuum in the acceleration tube is a serious problem.

【0013】なお、加速管内の真空度の低下を軽減する
ために、高電圧ターミナル部に真空排気装置を取り付け
たタンデム型静電加速器も従来より存在するが、これは
高電圧ターミナル部の構造を複雑にする結果となる。
A tandem type electrostatic accelerator having a high-voltage terminal unit equipped with a vacuum exhaust device has been conventionally used in order to reduce the decrease in the degree of vacuum in the acceleration tube, but this has a structure of the high-voltage terminal unit. This results in complications.

【0014】更に、ガス導入による荷電変換では、絶縁
用高圧ガスタンクの外部から直接ガス流量調整操作をす
ることは絶縁破損を生ずるために不可能であり、したが
って絶縁用高圧ガスタンク2内に設けられたガス流量調
整弁16を遠隔制御しなければならないという不便さがあ
った。
Further, in the charge conversion by introducing gas, it is impossible to directly adjust the gas flow rate from the outside of the insulating high-pressure gas tank because the insulation is damaged, and therefore the insulating high-pressure gas tank 2 is provided. There is an inconvenience that the gas flow rate adjusting valve 16 has to be remotely controlled.

【0015】一方、炭素薄膜による荷電変換では炭素薄
膜が長時間使用すると破損し、通常1枚の寿命が数時間
から数日程度であり、したがってタンデム型静電加速器
には上述のように無端ベルト15に複数枚の炭素薄膜14が
搭載されているが、それでも数カ月毎に炭素薄膜の補給
が必要となり、その都度大型の絶縁用高圧ガスタンクを
開閉しなければならないという不便さがある。
On the other hand, in the charge conversion by the carbon thin film, the carbon thin film is damaged when it is used for a long time, and the life of one sheet is usually several hours to several days. Therefore, the endless belt is used in the tandem electrostatic accelerator as described above. Although a plurality of carbon thin films 14 are mounted on the 15, the carbon thin film still needs to be replenished every few months, and there is the inconvenience that a large insulating high-pressure gas tank must be opened and closed each time.

【0016】[0016]

【課題を解決するための手段】以上の課題を解決するた
め、この発明ではタンデム型静電加速器の高電圧ターミ
ナル部における荷電粒子の極性を中性化乃至反転させる
手段として光によるイオン化作用を利用するタンデム型
静電加速器を提案するものである。
In order to solve the above problems, the present invention utilizes the ionization effect by light as a means for neutralizing or reversing the polarity of charged particles in the high voltage terminal of a tandem electrostatic accelerator. We propose a tandem type electrostatic accelerator.

【0017】この発明で使用できる上記イオン化作用を
呈する光としては、エキシマーレーザーや色素レーザー
及び連続波長可変発振器に接続したNd:YAGレーザ
ーから発生する波長可変で強度調整ができ、かつ指向性
が強いレーザー光を使用することができる。
As the light exhibiting the above-mentioned ionizing action which can be used in the present invention, the intensity can be adjusted by the wavelength variable generated from the excimer laser, the dye laser and the Nd: YAG laser connected to the continuous wavelength variable oscillator, and the directivity is strong. Laser light can be used.

【0018】これらのレーザー光は、例えば加速器が収
容された絶縁用高圧ガスタンク外に設けられたレーザー
より照射され、絶縁用高圧ガスタンク及び高電圧ターミ
ナル部にそれぞれ設けられた光学窓を通って高電圧ター
ミナル部に入射し、ここで負電荷を持つ荷電粒子から光
イオン化作用を以て電子を剥ぎ取り、中性或は正電荷状
態にする。
These laser beams are emitted from a laser provided outside the insulating high-pressure gas tank in which the accelerator is housed, and pass through a high voltage through an optical window provided in each of the insulating high-pressure gas tank and the high-voltage terminal section. The light enters the terminal portion, where the electrons are stripped from the charged particles having a negative charge by the photoionization action to be in a neutral or positive charge state.

【0019】荷電粒子が複数個の原子で構成される場合
は、荷電粒子を解離させないように光の波長と照射強度
を調整することにより剥ぎ取る電子数を制御する。
When the charged particles are composed of a plurality of atoms, the number of electrons to be stripped is controlled by adjusting the wavelength of light and the irradiation intensity so as not to dissociate the charged particles.

【0020】一方、負電荷を持つ荷電粒子が光学的に強
い共鳴遷移を持つ場合には、ドップラー効果を利用して
波長調整されたレーザー光を荷電粒子のビーム軸に沿っ
て入射させることにより、高電圧ターミナル部で荷電粒
子の電荷極性変換ができる。
On the other hand, when a charged particle having a negative charge has an optically strong resonance transition, a laser beam whose wavelength is adjusted by utilizing the Doppler effect is incident along the beam axis of the charged particle. The charge polarity of charged particles can be changed at the high voltage terminal.

【0021】即ち、移動している荷電粒子から見た光の
波長はドップラー効果によって荷電粒子の速度に依存し
て変化するため、高電圧ターミナル部を通過する荷電粒
子から見た光の波長が、丁度その荷電粒子の持つ共鳴遷
移に一致するように入射光の波長を調整し、高電圧ター
ミナル部でのみ荷電粒子の電荷極性変換ができる。
That is, since the wavelength of the light seen by the moving charged particles changes depending on the velocity of the charged particles due to the Doppler effect, the wavelength of the light seen by the charged particles passing through the high voltage terminal is The wavelength of the incident light is adjusted so as to exactly match the resonance transition of the charged particle, and the charge polarity of the charged particle can be converted only at the high voltage terminal section.

【0022】[0022]

【作用】この発明によればレーザー光のような光を波長
及び強度調整してタンデム型静電加速器の高電圧ターミ
ナル部に入射させることにより、負イオン加速管で加速
された負電荷の荷電粒子より所定の個数の電子を剥取る
ことができ、更にこの電子の剥取られた荷電粒子を正イ
オン加速管で加速することができる。
According to the present invention, negatively charged particles accelerated by a negative ion accelerating tube are obtained by adjusting the wavelength and intensity of light such as laser light and making it incident on the high voltage terminal of a tandem electrostatic accelerator. A more predetermined number of electrons can be stripped, and the charged particles from which the electrons have been stripped can be accelerated by the positive ion accelerator tube.

【0023】したがって、この発明によれば波長可変で
強度調整ができる光を利用することにより、1個の荷電
粒子から剥ぎ取る電子の個数を正確に制御できるため、
分子イオンやクラスターイオン等の複数原子で構成され
る荷電粒子を解離させることなく、高エネルギーにまで
加速することができる。
Therefore, according to the present invention, the number of electrons to be stripped from one charged particle can be accurately controlled by utilizing the light whose wavelength is variable and whose intensity can be adjusted.
It is possible to accelerate to high energy without dissociating charged particles composed of a plurality of atoms such as molecular ions and cluster ions.

【0024】またこの発明によれば荷電粒子から剥ぎ取
る電子の個数を粒子全体の電荷零の中性状態に制御でき
るため、高エネルギーの中性粒子を発生させることがで
きる。
Further, according to the present invention, since the number of electrons stripped from the charged particles can be controlled to a neutral state in which the charge of the entire particles is zero, high-energy neutral particles can be generated.

【0025】更にこの発明によれば荷電粒子の電荷極性
変換の際に加速管内部へ光のみを導入するため、加速管
内の真空度の低下を招くことなく、したがって高電圧の
不安定状態を起こして加速管の寿命を縮めることなく、
荷電粒子を安定に高エネルギーにまで加速することがで
きる。
Further, according to the present invention, since only light is introduced into the accelerating tube at the time of charge polarity conversion of the charged particles, the degree of vacuum in the accelerating tube is not lowered, and thus an unstable state of high voltage is caused. Without shortening the life of the accelerator
The charged particles can be stably accelerated to high energy.

【0026】またこの発明によれば荷電変換に指向性の
強い光を使用するため、絶縁用高圧ガスタンクの外部か
ら直接操作により、絶縁破損を生じさせずに荷電粒子の
電荷極性を変えることができる。
Further, according to the present invention, since light having a strong directivity is used for charge conversion, it is possible to change the charge polarity of the charged particles by directly operating from the outside of the insulating high-pressure gas tank without causing insulation damage. .

【0027】[0027]

【実施例】以下、この発明を図示の実施例を用いて詳細
に説明する。1は、この発明の一実施例を示す絶縁用高
圧ガスタンク2内に収容されたタンデム型静電加速器
で、タンデム型静電加速器1は負イオン加速管3と正イ
オン加速管4を設け、負イオン加速管3と正イオン加速
管4とは高電圧ターミナル部5で接続する。
The present invention will be described in detail below with reference to the illustrated embodiments. 1 is a tandem electrostatic accelerator housed in an insulating high-pressure gas tank 2 showing an embodiment of the present invention. The tandem electrostatic accelerator 1 is provided with a negative ion accelerator tube 3 and a positive ion accelerator tube 4, The ion accelerator tube 3 and the positive ion accelerator tube 4 are connected by a high voltage terminal unit 5.

【0028】また、絶縁用高圧ガスタンク2内には高電
圧発生部6が設け、高電圧発生部6は高圧ターミナル部
5及び負イオン加速管3の入口3aと正イオン加速管4の
出口4aに接続され、絶縁用高圧ガスタンク2の入口と出
口は共に接地される。
A high-voltage generator 6 is provided in the insulating high-pressure gas tank 2, and the high-voltage generator 6 is provided at the high-voltage terminal 5 and the inlet 3a of the negative ion accelerator tube 3 and the outlet 4a of the positive ion accelerator tube 4. They are connected, and the inlet and outlet of the insulating high-pressure gas tank 2 are both grounded.

【0029】一方、絶縁用高圧ガスタンク2の外部には
負イオン加速管3の入口3aの延長上に荷電粒子発生器7
を設け、荷電粒子発生器7からの荷電粒子はビーム軸8
に沿って負イオン加速管3に入り、ここで加速され、更
に高電圧ターミナル部5で極性変換された後、正イオン
加速管4で加速され、高エネルギー粒子として正イオン
加速管4の出口4aより放出されるように構成されてい
る。
On the other hand, outside the insulating high-pressure gas tank 2, a charged particle generator 7 is provided on the extension of the inlet 3a of the negative ion accelerator tube 3.
The charged particle from the charged particle generator 7 is provided with a beam axis 8
Along with the negative ion acceleration tube 3, and is accelerated here, after the polarity is changed in the high-voltage terminal unit 5, is accelerated by the positive ion acceleration tube 4, the exit 4a of the positive ion acceleration tube 4 as high-energy particles It is configured to be released more.

【0030】また、絶縁用高圧ガスタンク2の外部には
エキシマーレーザや光パラメトリック発振器に接続され
たNd:YAGレーザー等のレーザー発生器9が設けら
れ、更に絶縁用高圧ガスタンク2には光学窓10及び高電
圧ターミナル部5には光学窓11が設けられ、レーザー発
生器9からのレーザーは光学窓10,11 を通って高電圧タ
ーミナル部5のビーム軸8に対して直交状に照射され
る。
A laser generator 9 such as an Nd: YAG laser connected to an excimer laser or an optical parametric oscillator is provided outside the insulating high-pressure gas tank 2, and the insulating high-pressure gas tank 2 further includes an optical window 10 and an optical window 10. The high voltage terminal section 5 is provided with an optical window 11, and the laser from the laser generator 9 is irradiated through the optical windows 10 and 11 orthogonally to the beam axis 8 of the high voltage terminal section 5.

【0031】以上の構成において、荷電粒子発生器7で
生成したNan -,Mgn -,(SF6n -,(n=2〜1
0)等の複数の原子からなる負電荷を持つ荷電粒子は負
イオン加速管3内で加速されて高電圧ターミナル部5を
通過させる。
In the above structure, Na n , Mg n , (SF 6 ) n , (n = 2-1) generated by the charged particle generator 7.
Charged particles having a negative charge composed of a plurality of atoms such as 0) are accelerated in the negative ion accelerating tube 3 and pass through the high voltage terminal section 5.

【0032】一方、レーザー発生器9からは200nm から
2 μm 程度の波長の光(光強度は10〜100 μJ/cm2 パル
ス)を発生し、この光は光学窓10,11 を通って高電圧タ
ーミナル部5のイオンビーム軸8に直交状に入射され
る。
On the other hand, from the laser generator 9 from 200 nm
Light with a wavelength of about 2 μm (light intensity of 10 to 100 μJ / cm 2 pulse) is generated, and this light is orthogonally incident on the ion beam axis 8 of the high voltage terminal unit 5 through the optical windows 10 and 11. To be done.

【0033】これにより、上述の複数の原子からなる負
電荷を持つ荷電粒子は適当数の電子価数が剥ぎ取られ、
複数の原子からなる正電荷を持つ荷電粒子として正イオ
ン加速器4で加速され、加速管4の出口4aより出射され
る。この実施例では10% 以上の効率で複数の原子からな
る荷電粒子を加速することができた。
As a result, an appropriate number of electron valences are stripped off from the above-mentioned charged particles having a negative charge composed of a plurality of atoms,
The charged particles having a positive charge composed of a plurality of atoms are accelerated by the positive ion accelerator 4 and emitted from the outlet 4a of the acceleration tube 4. In this example, a charged particle composed of a plurality of atoms could be accelerated with an efficiency of 10% or more.

【0034】図2は、負電荷を持つ荷電粒子が光学的に
強い共鳴遷移を持つ場合、短波長のレーザー光をビーム
軸8に沿って入射させる実施例を示すものである。この
実施例では負イオン加速管3の入口3aにはビーム軸8に
沿って湾曲した導入管12が設け、導入管12の入口に荷電
粒子発生器7を設け、一方正イオン加速管4の出口4aに
はビーム軸8に沿って湾曲した導出管13を設けるととも
に、ビーム軸8の延長上にレーザー発生器9を設ける。
FIG. 2 shows an embodiment in which a short wavelength laser beam is incident along the beam axis 8 when charged particles having a negative charge have an optically strong resonance transition. In this embodiment, an inlet tube 12 curved along the beam axis 8 is provided at the inlet 3a of the negative ion accelerator tube 3, a charged particle generator 7 is provided at the inlet of the inlet tube 12, and an outlet of the positive ion accelerator tube 4 is provided. A guide tube 13 curved along the beam axis 8 is provided at 4a, and a laser generator 9 is provided on the extension of the beam axis 8.

【0035】この場合、レーザー発生器9からは高電圧
ターミナル部5を通過する荷電粒子から見た光の波長
が、丁度その荷電粒子の持つ共鳴遷移に一致するように
波長調整された短波長のレーザーをビーム軸8に沿って
入射させる。
In this case, the wavelength of the light seen from the charged particle passing through the high-voltage terminal section 5 from the laser generator 9 is a short wavelength whose wavelength is adjusted so that it coincides with the resonance transition of the charged particle. The laser is incident along the beam axis 8.

【0036】これにより、高電圧ターミナル部5ではレ
ーザー発生器9より発振したレーザー光の波長が荷電粒
子の持つ共鳴遷移に一致し、電子のイオン化が生ずるの
で、荷電粒子の極性変換が行なわれ、極性変換された荷
電粒子は正イオン加速管4で加速され、導出管13を通っ
て放出される。
As a result, in the high voltage terminal section 5, the wavelength of the laser beam oscillated from the laser generator 9 coincides with the resonance transition of the charged particles, and the ionization of electrons occurs, so that the polarity of the charged particles is changed. The polarity-converted charged particles are accelerated by the positive ion accelerating tube 4 and are discharged through the outlet tube 13.

【0037】[0037]

【発明の効果】以上要するに、この発明によれば従来の
タンデム型静電加速器では不可能であった複数の原子で
構成される多様な分子イオンやクラスターイオンを加速
することができる。
In summary, according to the present invention, it is possible to accelerate various molecular ions and cluster ions composed of a plurality of atoms, which are not possible with the conventional tandem electrostatic accelerator.

【0038】また、この発明に係るタンデム型静電加速
器によれば従来困難とされた高エネルギー中性粒子ビー
ムを発生させることができる。
Further, according to the tandem type electrostatic accelerator of the present invention, it is possible to generate a high-energy neutral particle beam which has been difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すタンデム型静電加速
器の概略図。
FIG. 1 is a schematic diagram of a tandem electrostatic accelerator showing an embodiment of the present invention.

【図2】この発明の他の実施例を示すタンデム型静電加
速器の概略図。
FIG. 2 is a schematic view of a tandem electrostatic accelerator showing another embodiment of the present invention.

【図3】薄膜透過による荷電変換を利用した従来のタン
デム型静電加速器の概略図。
FIG. 3 is a schematic diagram of a conventional tandem electrostatic accelerator that utilizes charge conversion by thin film transmission.

【図4】ガス衝突による荷電変換を利用した従来のタン
デム型静電加速器の概略図。
FIG. 4 is a schematic view of a conventional tandem electrostatic accelerator that utilizes charge conversion by gas collision.

【符号の説明】[Explanation of symbols]

1 タンデム型静電加速器 2 絶縁用高圧ガスタンク 3 負イオン加速管 4 正イオン加速管 5 高電圧ターミナル部 6 高電圧発生部 7 荷電粒子発生器 8 ビーム軸 9 レーザー発生器 10,11 光学窓 12 導入管 13 導出管 14 炭素薄膜 15 無端ベルト 16 流量調整弁 17 荷電変換用ガス供給部 1 Tandem electrostatic accelerator 2 High pressure gas tank for insulation 3 Negative ion accelerator 4 Positive ion accelerator 5 High voltage terminal 6 High voltage generator 7 Charged particle generator 8 Beam axis 9 Laser generator 10,11 Optical window 12 Introduction Pipe 13 Outlet pipe 14 Carbon thin film 15 Endless belt 16 Flow rate control valve 17 Charge conversion gas supply unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 極性の異なる荷電粒子の加速部を高電圧
ターミナル部で接続し、該高電圧ターミナル部で荷電粒
子の極性を中性化乃至反転して加速するタンデム型静電
加速器において、上記高電圧ターミナル部で荷電粒子の
極性を中性化乃至反転させる手段として光によるイオン
化作用を利用することを特徴とするタンデム型静電加速
器。
1. A tandem electrostatic accelerator in which accelerating parts for charged particles having different polarities are connected to each other by a high-voltage terminal part and the polarities of the charged particles are neutralized or inverted at the high-voltage terminal part for acceleration. A tandem electrostatic accelerator characterized by utilizing an ionization effect by light as means for neutralizing or reversing the polarity of charged particles in a high voltage terminal section.
【請求項2】 上記光がエキシマーレーザーや色素レー
ザー及び連続波長可変発振器に接続したNd:YAGレ
ーザーから発生する波長可変で強度調整ができ、かつ指
向性が強いレーザー光で構成され、該レーザー光は加速
器外より照射して高電圧ターミナル部の光学窓を介して
高電圧ターミナル部に入射する特許請求の範囲第1項記
載のタンデム型静電加速器。
2. The laser light is composed of a laser light whose intensity can be adjusted by variable wavelength generated from an excimer laser, a dye laser and an Nd: YAG laser connected to a continuous wavelength tunable oscillator, and which has a strong directivity. The tandem-type electrostatic accelerator according to claim 1, wherein is irradiated from outside the accelerator and is incident on the high-voltage terminal portion through the optical window of the high-voltage terminal portion.
【請求項3】 光学的に強い共鳴遷移を持つ荷電粒子に
対しては、レーザー光を荷電粒子のビーム軸に沿って入
射し、ドップラー効果によって高電圧ターミナル部を通
過する荷電粒子のみを共鳴遷移させることを特徴とする
特許請求の範囲第1項記載のタンデム型静電加速器。
3. For charged particles having an optically strong resonance transition, laser light is incident along the beam axis of the charged particles, and only charged particles passing through the high voltage terminal portion undergo resonance transition due to the Doppler effect. The tandem electrostatic accelerator according to claim 1, wherein
JP24556292A 1992-08-21 1992-08-21 Tandem type electrostatic accelerator Pending JPH0668984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24556292A JPH0668984A (en) 1992-08-21 1992-08-21 Tandem type electrostatic accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24556292A JPH0668984A (en) 1992-08-21 1992-08-21 Tandem type electrostatic accelerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6321981A Division JP2687310B2 (en) 1994-12-26 1994-12-26 Generation method of charged particles in tandem electrostatic accelerator

Publications (1)

Publication Number Publication Date
JPH0668984A true JPH0668984A (en) 1994-03-11

Family

ID=17135558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24556292A Pending JPH0668984A (en) 1992-08-21 1992-08-21 Tandem type electrostatic accelerator

Country Status (1)

Country Link
JP (1) JPH0668984A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169597A (en) * 1994-12-26 1995-07-04 Agency Of Ind Science & Technol Tandem electrostatic accelerator
US6867419B2 (en) 2002-03-29 2005-03-15 The Regents Of The University Of California Laser driven compact ion accelerator
US6906338B2 (en) 2000-08-09 2005-06-14 The Regents Of The University Of California Laser driven ion accelerator
US7317192B2 (en) 2003-06-02 2008-01-08 Fox Chase Cancer Center High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445496A (en) * 1977-08-25 1979-04-10 Siemens Ag Tandeum ion accelerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445496A (en) * 1977-08-25 1979-04-10 Siemens Ag Tandeum ion accelerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169597A (en) * 1994-12-26 1995-07-04 Agency Of Ind Science & Technol Tandem electrostatic accelerator
US6906338B2 (en) 2000-08-09 2005-06-14 The Regents Of The University Of California Laser driven ion accelerator
US7030398B2 (en) 2000-08-09 2006-04-18 The Regents Of The University Of California Laser driven ion accelerator
US6867419B2 (en) 2002-03-29 2005-03-15 The Regents Of The University Of California Laser driven compact ion accelerator
US7317192B2 (en) 2003-06-02 2008-01-08 Fox Chase Cancer Center High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers

Similar Documents

Publication Publication Date Title
Liu et al. Photodetachment and photofragmentation studies of semiconductor cluster anions
US3527977A (en) Moving electrons as an aid to initiating reactions in thermonuclear devices
US5300891A (en) Ion accelerator
EP0240173A2 (en) Method and apparatus for producing neutral atomic and molecular beams
US3676672A (en) Large diameter ion beam apparatus with an apertured plate electrode to maintain uniform flux density across the beam
US4686022A (en) Method and apparatus for producing a monatomic beam of ground-state atoms
JP2687310B2 (en) Generation method of charged particles in tandem electrostatic accelerator
JPH0668984A (en) Tandem type electrostatic accelerator
JPH07169436A (en) Occurrence of high-power electric current beam by low energy to be used for ion implantation system
Van Duppen et al. A laser ion source for on-line mass separation
JP3272441B2 (en) Ion accelerator
US3940615A (en) Wide angle isotope separator
CN115206770A (en) Laser soft ionization ion source for mass spectrometry of solid medicine and control method thereof
Hay et al. Explosion of irradiated with a high-intensity femtosecond laser pulse
Trabold et al. Electron capture and loss to continuum from 200-keV/u H 0 and He 0 projectiles colliding with He and Ar targets
US4201955A (en) Method of producing population inversion and lasing at short wavelengths by charge transfer
US4926436A (en) Accelerator for coherent bosons
US3935451A (en) Method and apparatus for separating laser ionized particles from background ions
Winter et al. Excitation of He by Nez+ (z= 1, 2, 3, 4) between 20 keV and 1 MeV
JP2897506B2 (en) Atomic oxygen beam generator
JPS6150651B2 (en)
Ketsdever et al. A Facility to Produce an Energetic, Ground-State Atomic Oxygen Beam for the Simulation of the Low-Earth Orbit Environment
US4264819A (en) Sputtered particle flow source for isotopically selective ionization
JP3543356B2 (en) Ion beam generator
Ulrich et al. Heavy-ion beam pumping as a model for nuclear-pumped lasers