[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0664940A - Electric ray-transmitting and heat ray-shielding glass - Google Patents

Electric ray-transmitting and heat ray-shielding glass

Info

Publication number
JPH0664940A
JPH0664940A JP22047192A JP22047192A JPH0664940A JP H0664940 A JPH0664940 A JP H0664940A JP 22047192 A JP22047192 A JP 22047192A JP 22047192 A JP22047192 A JP 22047192A JP H0664940 A JPH0664940 A JP H0664940A
Authority
JP
Japan
Prior art keywords
film
glass
thin film
layer
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22047192A
Other languages
Japanese (ja)
Inventor
Masaya Takayama
昌也 高山
Nobuyuki Takeuchi
伸行 竹内
Yoshio Asai
祥生 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP22047192A priority Critical patent/JPH0664940A/en
Publication of JPH0664940A publication Critical patent/JPH0664940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the durability of the subject glass by coating a glass substrate with a laminated layer of an Sn oxide film or Sn oxynitride film having a specific thickness, a Cr oxynitride film having a prescribed surface resistivity and an Sn oxide film or Sn oxynitride film. CONSTITUTION:A glass substrate is placed in a vacuum chamber and Sn and Cr targets are placed opposite to the glass substrate. O2 gas or a mixture of N2 and O2 gas is introduced into the vacuum chamber and the Sn target is sputtered to form an Sn oxide (SnOx) thin film or an Sn oxynitride (SnOxNy) thin film having a film thickness of 20-100nm on the substrate as the 1st layer. A fresh N2/O2 mixed gas is introduced into the chamber and the Cr target is sputtered to form a Cr oxynitride (CrNxOy) thin film as the 2nd layer having a film thickness of 1-50nm and a surface resistivity of >=1KOMEGA/square. The chamber is further charged with O2 or a mixture of N2 and O2 gas and the Sn target is sputtered to deposit an SnOx thin film or an SnOxNy thin film having a film thickness of 10-70nm as the 3rd layer. The objective electric ray-transmitting and heat ray-shielding glass produced by this process has a visible light transmittance of >=40% and a visible light reflectance from the glass surface of <=30% and exhibits golden reflection color.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽輻射エネルギーを
遮蔽する主として建築物等の窓ガラスに用いる被膜付き
の熱線遮蔽ガラスであって、とりわけ冷暖房効果を向上
せしめるようにできるとともに比較的高い可視光透過率
を有するものであり、しかも電波の透過性が通常すなわ
ち未加工のフロート板ガラス並であって、ビル周囲の住
宅等においてTV画像でのゴースト現象等の電波の障害
を低減でき、さらにとりわけガラス面側からの反射色調
が淡いゴールド色系色調であり、膜面側からの反射色調
がニュートラル系色調である、特に高層建築用窓ガラス
として有用な電波透過型熱線遮蔽ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-shielding glass with a film for shielding solar radiation energy, which is mainly used for a window glass of a building or the like, and can improve the heating and cooling effect, and has a relatively high visibility. It has a light transmittance, and its radio wave transmission is similar to that of a normal or unprocessed float plate glass, which can reduce radio wave interference such as a ghost phenomenon in a TV image in a house around a building. The present invention relates to a radio wave transmission type heat ray shielding glass which has a light gold color tone from the glass surface side and a neutral color tone from the film surface side, and is particularly useful as a window glass for high-rise buildings.

【0002】[0002]

【従来技術】近年、テレビ電波の受信にあたり、ビルの
反射によるゴースト障害が問題になり、ビルのコンクリ
ート壁などにフェライト電波吸収体を設けることが実用
化されつつあり、一方省エネや冷暖房効率の向上等か
ら、例えば高層ビルなどの窓ガラスにおいても金属、金
属酸化物などの膜をコーティングしたり、このような膜
を有するフイルムを貼付けた断熱性能などの機能を付与
したものが増加しており、ガラスより電波に対して反射
率が高い膜をコーティングしたり、フイルムを貼付ける
と反射率が例えばかなりの高い値となり、ことにゴール
ド色系色調を呈する熱線反射ガラスとしては電波障害は
避けられない面があった。
2. Description of the Related Art In recent years, when receiving TV radio waves, ghost damage due to building reflection has become a problem, and it is becoming practical to install a ferrite radio wave absorber on a concrete wall of a building, etc., while saving energy and improving cooling and heating efficiency. Therefore, for example, even in window glasses of high-rise buildings, metal, coating with a film of a metal oxide, or those having a function such as heat insulating performance by sticking a film having such a film are increasing, When a film that has a higher reflectance for radio waves than glass is coated or a film is attached, the reflectance becomes a very high value, for example, and as a heat ray reflective glass that exhibits a gold color tone, radio wave interference is inevitable. There was a face.

【0003】さらに、近年環境問題がクローズアップさ
れ、環境に優しい商品が求められている。従来の熱線反
射ガラスは断熱性能を重視するために透過率が比較的低
く、例えば特開昭60ー36355 号公報では、可視光透過率
が5〜40%であり、そのため室内からの透視性に優れる
ものとは言い難い。またさらに、従来の熱線反射ガラス
はガラス面側からの反射率が比較的高く、まわりの住居
環境に対して、光公害を発生させる心配があった。
Further, in recent years, environmental problems have been highlighted, and there is a demand for environmentally friendly products. The conventional heat-ray reflective glass has a relatively low transmittance in order to emphasize heat insulation performance. For example, in JP-A-60-36355, the visible light transmittance is 5 to 40%, which makes it difficult to see through the room. It is hard to say that it is excellent. Furthermore, the conventional heat-reflecting glass has a relatively high reflectance from the glass surface side, which may cause light pollution to the surrounding living environment.

【0004】また、さらには従来の熱線反射ガラスは、
夕刻から夜間になると室内灯の光が熱線反射性能膜によ
って反射され、室内側の膜面がギラギラとしたミラー状
に反射してしまい、これが居住性の面で大きな問題とな
っていた。
Further, the conventional heat ray reflecting glass is
From the evening to the night, the light of the indoor light is reflected by the heat ray reflective film, and the film surface on the indoor side is reflected like a glaring mirror, which is a big problem in terms of comfort.

【0005】例えば、特開昭63ー190742号公報には熱線
反射ガラスの製法について記載されており、ガラス基板
からの反射色調がゴールド色系を得るためには、第1層
であるTiO2層の膜厚が8.5 〜12.5nm、第2層であるTiNx
(x>1)層の膜厚が72〜81nm、第3層であるTiO2層の膜
厚が5〜16nmであることが開示されている。
For example, Japanese Patent Application Laid-Open No. 63-190742 describes a method for producing a heat ray reflective glass. In order to obtain a gold color tone of reflection color from a glass substrate, a TiO 2 layer which is a first layer. Film thickness of 8.5-12.5nm, the second layer of TiNx
It is disclosed that the film thickness of the (x> 1) layer is 72 to 81 nm, and the film thickness of the TiO 2 layer as the third layer is 5 to 16 nm.

【0006】また例えば、特開平1ー208344号公報には
金色反射色を有する透明板が記載されており、ガラス板
のような透明板の一方の表面に、例えば膜厚が36〜47nm
程度の窒化チタン膜上に高屈折率の金属酸化物誘電体
膜、特に屈折率が1.9 〜2.6 であり、ことにTiO2、Sn
O2、ZnO 等を付着し、かつ該透明板の他方の表面からの
反射光が金色である透明板が開示されている。
Further, for example, Japanese Patent Application Laid-Open No. 1-208344 describes a transparent plate having a reflection color of gold. For example, a film thickness of 36 to 47 nm is formed on one surface of a transparent plate such as a glass plate.
A high-refractive-index metal oxide dielectric film on titanium nitride film, especially with a refractive index of 1.9-2.6, especially TiO 2 , Sn
There is disclosed a transparent plate to which O 2 , ZnO and the like are attached and whose reflected light from the other surface of the transparent plate is gold.

【0007】また例えば、前述した特開昭60ー36355 号
公報には、可視光スペクトル帯域で5〜40%の透過率お
よび熱線に対する反射能を有する板の製法について記載
されており、第1層として膜厚が20〜280nm の金属酸化
物被膜を形成し、その上に第2層として膜厚が10〜40nm
の窒化クロム膜を、さらには必要に応じて第3層として
酸化物薄膜を順次形成する製造方法が開示されている。
Further, for example, the above-mentioned JP-A-60-36355 describes a method for producing a plate having a transmittance of 5 to 40% in the visible light spectrum band and a reflectivity for heat rays, and the first layer Forming a metal oxide film with a thickness of 20 to 280 nm as a second layer on the metal oxide film with a thickness of 10 to 40 nm
Of the above-mentioned chromium nitride film, and further, an oxide thin film is sequentially formed as a third layer if necessary.

【0008】そこで、電波障害を低減したゴールド色系
色調を呈する熱線反射ガラスとしての提案をなしてい
る。すなわち、本出願人が既に出願した、例えば特開平
3ー252332号公報には電波低反射の熱線反射ガラスを記
載しており、透明なガラス基板の一方の表面に、第1層
ならびに第3層として有色誘電体薄膜を積層し、第2層
として表面抵抗率が200 Ω/口以上の金属薄膜または金
属窒化物薄膜を積層して成り、該被膜面の反対側から見
た反射色調がブルーあるいはゴールド色であるものを開
示している。
Therefore, a proposal has been made as a heat ray reflective glass exhibiting a gold color tone with reduced radio interference. That is, for example, Japanese Patent Application Laid-Open No. 3-252332 has filed a heat ray reflection glass having a low radio wave reflection, and the first layer and the third layer are formed on one surface of a transparent glass substrate. As the second layer, and as the second layer, a metal thin film or a metal nitride thin film having a surface resistivity of 200 Ω / n or more as a second layer, and the reflection color viewed from the opposite side of the coating surface is blue or Those that are gold colored are disclosed.

【0009】さらに例えば、電波障害を低減したゴール
ド色系色調を呈する熱線反射ガラスとして、本出願人が
既に出願した特願平4ー36667 号には電波低反射特性を
有する熱線遮蔽ガラスを記載しており、透明なガラス基
板の一方の表面に、膜厚が1〜25nmのCrの窒化物薄膜で
ある第1層と、該第1層の上に、膜厚が30〜75nmのTaま
たはTiSiあるいはZrの窒化物薄膜を少なくとも1種以上
選択し第2層として被膜したことを特徴とし、熱線遮蔽
性能膜の表面抵抗率が10 kΩ/口以上であり、かつガラ
ス面側からの反射色調がゴールド色系色調であること特
徴とするものを開示している。
Further, for example, as a heat ray reflective glass exhibiting a gold color tone with reduced radio interference, Japanese Patent Application No. 4-36667 already filed by the present applicant describes a heat ray shielding glass having a low radio wave reflection characteristic. The first layer, which is a nitride thin film of Cr having a film thickness of 1 to 25 nm, is formed on one surface of the transparent glass substrate, and Ta or TiSi having a film thickness of 30 to 75 nm is formed on the first layer. Alternatively, at least one kind of Zr nitride thin film is selected and coated as the second layer, and the surface resistivity of the heat ray shielding film is 10 kΩ / mouth or more, and the reflection tone from the glass surface side is It is disclosed that the color tone is gold.

【0010】[0010]

【発明が解決しようとする問題点】前述したような、例
えば特開昭63ー190742号公報ならびに特開平1ー208344
号公報等では、ゴールド色を得るために、TiN 層薄膜の
膜厚が比較的厚く、その結果、低抵抗な膜となり、高層
建築物の窓ガラスとして施工した際に、電波反射体とな
って高層建築物と放送局の間にある一般家庭などで見ら
れているTV画像におけるゴースト現象を発現する場合
がある。また例えば特開平3ー252332号公報等では、金
属薄膜または金属窒化物薄膜の5〜13nm程度の超薄膜
を、酸化物薄膜等でサンドイッチしたものであって、電
波低反射ガラスではあるものの、表面抵抗率が比較的低
く、その電波低反射性能は鉄筋コンクリート以下ではあ
るとは言え、近年のさらなる電波低反射性能に優れるも
のが望まれつつある。
[Problems to be Solved by the Invention] As described above, for example, JP-A-63-190742 and JP-A-1-208344.
In the publication, etc., in order to obtain a gold color, the thickness of the TiN layer thin film is relatively large, resulting in a low resistance film, and when it is installed as a window glass of a high-rise building, it becomes a radio wave reflector. There may be a case where a ghost phenomenon occurs in a TV image seen in a general home located between a high-rise building and a broadcasting station. Further, for example, in Japanese Unexamined Patent Publication No. 3-252332, a metal thin film or a metal nitride thin film of about 5 to 13 nm is sandwiched by an oxide thin film and the like, which is a radio wave low reflection glass, but has a surface. Although it has a relatively low resistivity and its radio wave low reflection performance is equal to or lower than that of reinforced concrete, a material having further excellent radio wave low reflection performance in recent years is desired.

【0011】さらに、金属等の導電性の高い膜について
は、断熱性を高めようとして膜厚を厚くすればするほど
低抵抗となって、電波低反射性能が損なわれることとな
り、逆に膜厚を薄くしたとしても大きな表面抵抗率とは
なりにくく、同様に上述の性能が充分得難い等の問題が
あった。
Further, for a highly conductive film such as a metal, the thicker the film in order to improve the heat insulating property, the lower the resistance becomes, and the low radio wave reflection performance is impaired. Even if the thickness is made thin, it is difficult to obtain a large surface resistivity, and similarly, it is difficult to obtain the above-mentioned performance.

【0012】また例えば、特開昭60ー36355 号公報で
は、可視光スペクトル帯域で5〜40%の透過率であり、
透過率が比較的低く、室内の居住性を考えた場合必ずし
も透視性に優れるとは言い難く、また積層被膜の表面抵
抗率が比較的低く電波透過特性において充分とは言い難
い。さらにまた例えば特願平4ー36667 号では、電波低
反射の熱線反射ガラスであって、ガラス面側からの反対
色調がゴールド色系色調ではあるものの、その反射率が
比較的高く、また膜面側からの反射率が比較的高く、光
公害を防止する観点あるいは夕刻から夜間における室内
の居住性の観点からは必ずしも充分とは言い難い面があ
った。ことにガラス面側の反射色調がゴールド色でかつ
単板で使用できる熱線遮蔽ガラス、特に高層建築物用と
して採用する際、その場所によっては、充分有用なもの
とは未だになり得ていないと言われてもしかたがないも
のであった。
Further, for example, in JP-A-60-36355, the transmittance is 5 to 40% in the visible light spectrum band,
Since the transmittance is relatively low, it is difficult to say that the transparency is necessarily excellent in consideration of the habitability in the room, and the surface resistivity of the laminated coating is relatively low and the radio wave transmission characteristics are not sufficient. Further, for example, in Japanese Patent Application No. 4-36667, the heat ray reflective glass with low radio wave reflection has a relatively high reflectance even though the opposite color tone from the glass surface side is a gold color tone, and the film surface Since the reflectance from the side is relatively high, it was not always sufficient from the viewpoint of preventing light pollution or the habitability of the room from evening to night. Especially when it is adopted for heat ray shielding glass which has a reflection color tone on the glass side of gold and can be used as a single plate, especially for high-rise buildings, it cannot be said to be sufficiently useful depending on the location. It was something I couldn't help but know.

【0013】[0013]

【問題点を解決するための手段】本発明はこのような点
に鑑みてなされたものであり、ガラス基体の一方の表面
に、特定膜厚のSnの酸化物薄膜または酸素窒化物薄膜を
第1層として被覆し、次いで表面抵抗率が例えば少なく
とも1kΩ/口以上である特定したCrの窒素酸化物薄膜
を第2層として被覆し、さらにその上に特定膜厚のSnの
酸化物薄膜または酸素窒化物薄膜を第3層として被覆す
ることによって、ガラス面側からの反射色調が淡いゴー
ルド色系色調を発現せしめることを可能としたため意匠
性に優れ、ガラス面側からの可視光反射率が比較的低い
ので、ビル等の周囲の環境に与える光公害の影響も少な
くなり、膜面側からの反射色調がニュートラル系色調で
あって、かつ膜面側からの可視光反射率も低く、しかも
透過率を40%以上と高くせしめることによって、室内の
居住性を格段に改善することができ、さらに電波反射率
をTV電波帯、ことに周波数150MHz付近において約3%
以下とフロートガラス並に低くすることができ、断熱性
能を保持しつつ、耐摩耗性や耐久性に充分優れ、単板で
充分使用することができる電波透過特性を有する熱線遮
蔽ガラスを提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a Sn oxide thin film or an oxynitride thin film having a specific thickness is formed on one surface of a glass substrate. It is coated as one layer, then a specified nitrogen oxide thin film of Cr having a surface resistivity of, for example, at least 1 kΩ / port or more is coated as a second layer, and a Sn oxide thin film of a specific thickness or oxygen is further coated thereon. By coating a nitride thin film as the third layer, it is possible to develop a light gold color tone that is reflected from the glass surface side, making it excellent in design and comparing the visible light reflectance from the glass surface side. Since it is relatively low, the influence of light pollution on the surrounding environment such as buildings is reduced, the color tone reflected from the film surface side is a neutral color tone, the visible light reflectance from the film surface side is also low, and it is transmitted. High rate of over 40% By squeezing it, the habitability in the room can be greatly improved, and the radio wave reflectance is about 3% in the TV radio wave band, especially around the frequency of 150MHz.
Provided is a heat ray-shielding glass which can be made as low as the following, and which is sufficiently excellent in abrasion resistance and durability while maintaining heat insulation performance, and which has radio wave transmission characteristics that can be sufficiently used in a single plate. Is.

【0014】すなわち、本発明は、透明なガラス基板の
一方の表面上に、膜厚が20〜100nmのSnの酸化物薄膜ま
たは酸素窒化物薄膜を第1層として被覆し、該第1層の
上に、膜厚が1〜50nmでかつその表面抵抗率が1kΩ/
口以上であるCrの窒素酸化物薄膜を第2層として被覆し
た後、該第2層の上に、膜厚が10〜70nmのSnの酸化物薄
膜または酸素窒化物薄膜を第3層として積層被覆したこ
とを特徴とする電波透過型熱線遮蔽ガラス。
That is, according to the present invention, one surface of a transparent glass substrate is coated with a Sn oxide thin film or an oxynitride thin film having a film thickness of 20 to 100 nm as a first layer, and In addition, the film thickness is 1 to 50 nm and the surface resistivity is 1 kΩ /
After coating a nitrogen oxide thin film of Cr having a thickness not less than that of the second layer as a second layer, an oxide thin film of Sn or oxynitride having a film thickness of 10 to 70 nm is laminated as a third layer on the second layer. A radio wave transmission type heat ray shielding glass characterized by being coated.

【0015】ならびに、前記積層被覆した熱線遮蔽性能
膜の表面抵抗率が、1kΩ/口以上であることを特徴と
する上述した電波透過型熱線遮蔽ガラス。さらに、前記
電波透過型熱線遮蔽ガラスにおいて、該ガラスのガラス
面側からの反射色調が淡いゴールド色系色調で、かつガ
ラス面側からの可視光反射率が30%以下であることを特
徴とする上述した電波透過型熱線遮蔽ガラス。
Further, the above-mentioned radio wave transmission type heat ray shielding glass, wherein the surface resistance of the heat ray shielding performance film coated with the laminate is 1 kΩ / mouth or more. Further, in the radio wave transmission type heat ray shielding glass, the reflection color tone from the glass surface side of the glass is a light gold color tone, and the visible light reflectance from the glass surface side is 30% or less. The radio wave transmission type heat ray shielding glass described above.

【0016】さらにまた、前記電波透過型熱線遮蔽ガラ
スにおいて、該ガラスの膜面側からの反射色調がニュー
トラル系色調であって、かつ膜面側からの可視光反射率
が30%以下であることを特徴とする上述した電波透過型
熱線遮蔽ガラス。
Furthermore, in the radio wave transmission type heat ray shielding glass, the reflection color tone from the film surface side of the glass is a neutral color tone, and the visible light reflectance from the film surface side is 30% or less. The radio wave transmission type heat ray shielding glass as described above.

【0017】さらにまた、前記電波透過型熱線遮蔽ガラ
スにおいて、該ガラスの可視光透過率が40%以上である
ことを特徴とする上述した電波透過型熱線遮蔽ガラスを
それぞれ提供するものである。
Furthermore, the above-mentioned radio wave transmission type heat ray shielding glass is provided, in which the visible light transmittance of the glass is 40% or more.

【0018】ここで、前記膜厚が20〜100nm のSnの酸化
物薄膜または窒素酸化物薄膜を第1層として被覆したの
は、耐久性または量産性に優れる膜であり、かつ淡いゴ
ールド色を発現することを可能とするためであって、膜
厚が20nm未満と薄くなると淡いゴールド色を発現するこ
とができず、また膜厚が100nm を超えて厚くなるとガラ
ス面側反射色調が種々の色調を発現することはできるも
のの、ガラス面側の可視光反射率が高くなったり、積層
被膜の膜面側の反射色調がギラギラとした黄金色とな
り、室内の居住性の観点から好ましくないものとなり、
しかも生産性の観点からも好ましくない。好ましくは膜
厚は30〜70nm程度である。
Here, the Sn oxide thin film or the nitrogen oxide thin film having a film thickness of 20 to 100 nm as the first layer is a film excellent in durability or mass productivity and has a light gold color. This is because it is possible to develop, and when the film thickness is less than 20 nm, it is not possible to develop a light gold color, and when the film thickness exceeds 100 nm, the glass surface side reflection color tone has various color tones. Although it is possible to express, the visible light reflectance on the glass surface side becomes high, and the reflection color tone on the film surface side of the laminated coating becomes glaring golden color, which is not preferable from the viewpoint of indoor habitability,
Moreover, it is not preferable from the viewpoint of productivity. The film thickness is preferably about 30 to 70 nm.

【0019】また、前記第1層の上に、第2層として膜
厚が1〜50nmでかつその表面抵抗率が1kΩ/口以上の
Crの窒素酸化物薄膜を被覆することとしたのは、Crの窒
化物薄膜に比べCrの窒素酸化物薄膜はより可視光透過率
が高く、可視光透過率の40%以上を達成するのに可能な
膜であって、且つガラス面側からの反射色調が淡いゴー
ルド色系色調を発現させることが可能な耐久性に優れる
膜であるからであり、しかも安定して電波透過特性を有
することができ、ことにTV電波帯、特に周波数150MHz
付近における電波反射率を3%以下と通常のフロートガ
ラス並の反射率に低くすることができる熱線遮蔽膜だか
らである。膜厚が1nm未満と薄くなると薄膜が島状構造
となってムラになり連続膜となり難く、また膜厚が50nm
を超えると可視光透過率が小さくなって40%以上を達成
することができ難くなる。好ましくは膜厚は10〜30nm程
度である。
A second layer having a thickness of 1 to 50 nm and a surface resistivity of 1 kΩ / port or more is formed on the first layer.
We decided to coat the nitrogen oxide thin film of Cr because the nitrogen oxide thin film of Cr has a higher visible light transmittance than the nitride thin film of Cr and achieves 40% or more of the visible light transmittance. This is because it is a film that is capable of producing a gold-based color tone in which the color tone reflected from the glass surface side is light, and that it has excellent durability, and that it has stable radio wave transmission characteristics. Yes, especially the TV band, especially the frequency 150MHz
This is because the heat ray shielding film can reduce the radio wave reflectance in the vicinity to 3% or less, which is comparable to that of ordinary float glass. If the film thickness is less than 1 nm, the thin film becomes an island structure and becomes uneven, and it is difficult to form a continuous film.
When it exceeds, the visible light transmittance becomes small and it becomes difficult to achieve 40% or more. The film thickness is preferably about 10 to 30 nm.

【0020】さらに、前記第2層の上に、膜厚が10〜70
nmのSnの酸化物薄膜または酸素窒化物薄膜を第3層とし
て被覆したのは、第1層ならびに第2層の各薄膜と巧み
に組み合わせることによって、光学的干渉作用によりガ
ラス面側からの反射色調が淡いゴールド色を発現しやす
くするためであって、さらに積層被覆膜の耐久性を強固
に向上せしめるためであり、膜厚が10nm未満で薄くなる
と淡いゴールド色を発現し得なくなり、膜厚が70nmを超
えて厚くなると膜面側の反射率が高くなり、その色調が
ギラギラとした強い黄金色となるので、膜面側の反射色
調をニュートラル化せしめるためには第3層の膜厚が薄
い方がよい。好ましくは膜厚は15〜40nm程度である。
Further, a film thickness of 10 to 70 is formed on the second layer.
The Sn oxide thin film or the oxynitride thin film of Sn having a thickness of 3 nm is coated as the third layer, because the thin film of the first layer and the second layer is skillfully combined to reflect from the glass surface side by the optical interference effect. This is because the color tone is easy to develop a light gold color, and it is to further strongly improve the durability of the laminated coating film.When the film thickness is less than 10 nm, the light gold color cannot be expressed, and the film When the thickness exceeds 70 nm, the reflectance on the film surface side becomes high and the color tone becomes glaring and strong golden color. Therefore, in order to make the reflection color tone on the film surface side neutral, the film thickness of the third layer Is better to be thin. The film thickness is preferably about 15 to 40 nm.

【0021】なかでも、前記積層被覆した熱線遮蔽性能
膜の表面抵抗率が1kΩ/口以上で、かつ該ガラスのガ
ラス面側からの反射色調が淡いゴールド色系色調を呈
し、そのガラス面側からの可視光反射率が30%以下であ
るとしたのは、充分な電波透過性能を有し、TV映像で
のゴースト現象等の電波障害をより確実に発現しないよ
うにするためであり、またガラス面側からの反射色調が
淡いゴールド色系色調を呈することにより、ビル等が意
匠性に優れ、かつ周囲の環境に光公害を発現しない環境
に優しいものとなるためである。
Above all, the heat-shielding film having the above-mentioned laminated coating has a surface resistivity of 1 kΩ / mouth or more, and a reflection color tone from the glass surface side of the glass exhibits a light gold color tone, and from the glass surface side. The visible light reflectance of the above is 30% or less in order to have sufficient radio wave transmission performance and to prevent the radio wave interference such as a ghost phenomenon in TV images from occurring more reliably. This is because, by exhibiting a light gold color tone reflected from the surface side, a building or the like has an excellent design and becomes environmentally friendly without causing light pollution to the surrounding environment.

【0022】さらに、該ガラスの膜面側からの反射色調
がニュートラル系色調を呈し、その膜面側からの可視光
反射率が30%以下であり、かつガラスの可視光透過率が
40%以上であるとしたのは、特に夕刻から夜間にかけて
の室内の居住性を快適にするためであり、また昼間の室
内側から見た外景が違和感なく適度な透視性を有するた
めであって、室内の人に対して環境に優しいものとなる
ためである。
Further, the reflection color tone from the film surface side of the glass exhibits a neutral color tone, the visible light reflectance from the film surface side is 30% or less, and the visible light transmittance of the glass is
The reason why the ratio is 40% or more is that the habitability inside the room is particularly comfortable from the evening to the night, and that the outside view seen from the daytime indoor side has a proper see-through property without any discomfort. This is because it is environmentally friendly to people in the room.

【0023】つぎに、ガラス基板としては、無機質はも
ちろん有機質でも透明ガラスであればよく、無色あるい
は着色ガラス等でもガラス面側から見た反射色調が淡い
ゴールド色系色調を得やすいものであればより好ましい
ものである。また単板で使用できることはもとより、複
層ガラスあるいは合せガラス、強化ガラス等各種板ガラ
ス製品として使用できることは言うまでもない。
Next, as the glass substrate, an organic material as well as an organic material may be used as long as it is a transparent glass, and a colorless or colored glass or the like can be used as long as it is easy to obtain a gold color tone having a light reflection tone when viewed from the glass surface side. It is more preferable. It goes without saying that it can be used not only as a single plate, but also as various kinds of plate glass products such as multi-layer glass, laminated glass, and tempered glass.

【0024】なお、例えば自動車用窓ガラス、なかでも
衛星放送帯の電波も透過できることは言うまでもなく、
室内での衛星放送受信等も可能である。そのため自動車
用のルーフの熱線遮蔽ガラス等としても有用である。
It goes without saying that, for example, window glass for automobiles, especially radio waves in the satellite broadcasting band can be transmitted.
It is also possible to receive satellite broadcasts indoors. Therefore, it is also useful as a heat ray shielding glass for a roof of an automobile.

【0025】[0025]

【作用】前述したとおり、本発明の電波透過型熱線遮蔽
ガラスは、ガラス基体の一方の表面に、特定膜厚のSnの
酸化物薄膜または酸素窒化物薄膜を第1層として被覆
し、該第1層の上に、特定膜厚でかつ表面抵抗率が少な
くとも1kΩ/口以上である特定したCrの窒素酸化物薄
膜を第2層として被覆し、さらにその上に特定膜厚のSn
の酸化物薄膜または酸素窒化物薄膜を第3層として被覆
積層することによって、ガラス面側からの反射色調が淡
いゴールド色系色調を呈することとなって意匠性に優
れ、かつガラス面側からの可視光反射率が比較的低く、
ビル等の周囲の環境に与える光公害の影響も少なくな
り、建築物外側の居住性ならびに景観性等も格段に優れ
たものとなり、しかも膜面側からの反射色調がニュート
ラル系色調化を可能にせしめ、かつ膜面側からの可視光
反射率も低く、さらに可視光透過率を40%以上と高くせ
しめることによって、室内の居住性を格段に改善するこ
とができ、またさらに電波反射率をTV電波帯、ことに
周波数150MHz付近におけて約3%以下と通常のフロート
ガラス並に低くすることができて電波透過性能が格段に
優れ、熱線遮蔽性能を持たせて断熱機能を有し保持する
ものとなって冷暖房の効果を高め、積層した多層膜全体
の耐摩耗性ならびに耐食性がよく、耐久性に充分優れ、
単板として充分使用することができる、適度に透視性を
有する、居住性ならびに環境により優しい、有用な電波
透過特性を有する熱線遮蔽ガラスを提供するものであ
る。
As described above, in the radio wave transmission type heat ray shielding glass of the present invention, one surface of the glass substrate is coated with the Sn oxide thin film or the oxynitride thin film of the specific thickness as the first layer, A specified layer of Nitrogen Oxide thin film of Cr having a specific film thickness and a surface resistivity of at least 1 kΩ / port is coated as a second layer on the first layer, and Sn of a specific film thickness is further formed thereon.
By coating and laminating the oxide thin film or the oxynitride thin film of No. 3 as the third layer, the reflection color tone from the glass surface side exhibits a light gold color tone, which is excellent in designability and also from the glass surface side. The visible light reflectance is relatively low,
The influence of light pollution on the surrounding environment such as a building is reduced, and the habitability and landscape of the outside of the building are remarkably excellent, and moreover, the color tone reflected from the film surface side can be a neutral color tone. In addition, the visible light reflectance from the film surface side is low, and the visible light transmittance is increased to 40% or more, so that the habitability in the room can be significantly improved, and the radio wave reflectance can be further improved by the TV. It can be lowered to about 3% or less in the radio frequency band, especially around 150MHz, which is as low as that of ordinary float glass, and the radio wave transmission performance is remarkably excellent. As a result, the effect of cooling and heating is enhanced, the wear resistance and corrosion resistance of the entire laminated multilayer film are good, and the durability is sufficiently excellent.
(EN) Provided is a heat ray-shielding glass that can be sufficiently used as a single plate, has appropriate transparency, is comfortable to the environment and is environmentally friendly, and has useful radio wave transmission characteristics.

【0026】[0026]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし本発明は係る実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the embodiment.

【0027】実施例1 大きさ約600mm x600mm 、厚さ約6mmのクリア−ガラス
(FL12)を中性洗剤、水すすぎ、イソプロピルアルコ−ル
で順次洗浄し、乾燥した後、DCマグネトロンスパッタ
リング装置の真空槽内にセットしてあるSnとCrのターゲ
ットに対向して上方を往復できるようセットし、つぎに
前記槽内を真空ポンプで約5x10-6Torr以下までに脱気し
た後、該真空槽内にO2とN2のガス流量比N2/O2+N2=0.
05であるO2とN2の混合ガス(但し、ガス流量比N2/O2
N2の値は0.01〜0.50の範囲にあればよく、また必要に応
じて成膜速度を高くするためにArガスを導入してもよ
く、この時の全ガスに対するArガスの量は常識的な範囲
では、vol %で50%以下である)を導入して真空度を約
2x10-3 Torr に保持し、前記Snのタ−ゲットに約0.4kw
の電力を印加し、前記混合ガスによるDCマグネトロン
反応スパッタにより、前記Snタ−ゲット上方においてス
ピ−ド約65mm/minで前記板ガラスを搬送することによっ
て約55nm厚さのSnOxNy薄膜を第1層として成膜した。成
膜が完了した後、Snタ−ゲットへの印加を停止する。
Example 1 Clear glass having a size of about 600 mm x 600 mm and a thickness of about 6 mm
(FL12) can be sequentially washed with a neutral detergent, water rinse, isopropyl alcohol, dried, and then reciprocated upwards facing the Sn and Cr targets set in the vacuum chamber of the DC magnetron sputtering device. And then the inside of the chamber was degassed by a vacuum pump to about 5 × 10 −6 Torr or less, and then the gas flow ratio of O 2 and N 2 in the vacuum chamber was N 2 / O 2 + N 2 = 0.
05 mixed gas of O 2 and N 2 (however, gas flow rate ratio N 2 / O 2 +
The value of N 2 may be in the range of 0.01 to 0.50, and Ar gas may be introduced in order to increase the film formation rate if necessary, and the amount of Ar gas with respect to the total gas at this time is common sense. Range of 50% or less)
Hold at 2x10 -3 Torr and add about 0.4kw to the Sn target.
Power is applied, and the plate glass is transported at a speed of about 65 mm / min above the Sn target by DC magnetron reactive sputtering with the mixed gas to form a SnOxNy thin film having a thickness of about 55 nm as a first layer. A film was formed. After the film formation is completed, the application to the Sn target is stopped.

【0028】次に、板ガラスを前記真空槽内に置いたま
ま、該真空槽内を真空ポンプで約5x10-6Torr以下までに
脱気した後、該真空槽内にN2とO2のガス流量比がO2/N2
+O2=0.01であるN2とO2の混合ガス(但し、ガス流量比
O2/N2+O2の値は0.003 〜0.05の範囲にあればよく、ま
た必要に応じてCrNxOy膜の表面抵抗率が膜厚50nmでも1
kΩ/口以上であれば成膜速度を高くするためにArガス
を導入してもよい)を導入して真空度を約2x10-3Torrに
保持し、前記Crタ−ゲットに約1.2kw の電力を印加し、
前記混合ガスによるDCマグネトロン反応スパッタによ
り、前記Crタ−ゲット上方においてスピ−ド約219mm/mi
n で前記板ガラスを搬送することによって、前記板ガラ
スのSnOxNy薄膜表面上に約18nm厚さのCrNxOy薄膜を第2
層として積層成膜した。成膜が完了した後、Crターゲッ
トへの印加を停止するさらに次いで、前記板ガラスを前
記真空槽内に置いたまま、該真空槽内を真空ポンプで約
5x10-6Torr以下までに脱気した後、該真空槽内にO2とN2
のガス流量比がN2/O2+N2=0.05であるO2とN2の混合ガ
ス(但し、ガス流量比N2/O2+N2の値は0.01〜0.50の範
囲にあればよく、また必要に応じて成膜速度を高くする
ためにArガスを導入してもよく、この時の全ガスに対す
るArガスの量は常識的な範囲では、vol %で50%以下で
ある)を導入して真空度を約2x10-3Torrに保持し、前記
Snタ−ゲットに約0.4kw の電力を印加し、前記混合ガス
によるDCマグネトロン反応スパッタにより、前記Snタ
−ゲット上方においてスピ−ド約83mm/minで前記板ガラ
スを搬送することによって、前記板ガラスのCrNxOy薄膜
表面上に約43nm厚さのSnOxNy薄膜を第3層として積層成
膜した。成膜が完了した後、Snターゲットへの印加を停
止する。すなわち、表1に示すようにした。
Next, with the plate glass being placed in the vacuum chamber, the inside of the vacuum chamber was degassed by a vacuum pump to about 5 × 10 −6 Torr or less, and then N 2 and O 2 gas was introduced into the vacuum chamber. Flow ratio is O 2 / N 2
+ O 2 = 0.01 mixed gas of N 2 and O 2 (however, gas flow ratio
The value of O 2 / N 2 + O 2 should be in the range of 0.003 to 0.05, and if necessary, the surface resistivity of the CrNxOy film should be 1 even when the film thickness is 50 nm.
Ar gas may be introduced in order to increase the film-forming rate if kΩ / hole or more) and the degree of vacuum is maintained at about 2 × 10 −3 Torr, and the Cr target has about 1.2 kw. Apply power,
By DC magnetron reactive sputtering with the mixed gas, the speed was about 219 mm / mi above the Cr target.
The CrNxOy thin film having a thickness of about 18 nm is secondly deposited on the SnOxNy thin film surface of the flat glass by transporting the flat glass at n 2.
Laminated films were formed as layers. After the film formation is completed, the application to the Cr target is stopped.Next, while the plate glass is placed in the vacuum chamber, the vacuum chamber is operated with a vacuum pump.
After degassing to less than 5x10 -6 Torr, put O 2 and N 2 in the vacuum chamber.
Mixed gas of O 2 and N 2 having a gas flow rate ratio of N 2 / O 2 + N 2 = 0.05 (however, the value of the gas flow rate ratio N 2 / O 2 + N 2 may be in the range of 0.01 to 0.50, If necessary, Ar gas may be introduced to increase the film formation rate. At this time, the amount of Ar gas with respect to the total gas is 50% or less in vol% in a common sense range.) And maintain the vacuum at about 2x10 -3 Torr.
By applying a power of about 0.4 kw to the Sn target and carrying the plate glass at a speed of about 83 mm / min above the Sn target by DC magnetron reactive sputtering with the mixed gas, A SnOxNy thin film having a thickness of about 43 nm was laminated and formed as a third layer on the surface of the CrNxOy thin film. After the film formation is completed, the application to the Sn target is stopped. That is, as shown in Table 1.

【0029】得られた3層膜を有する電波透過型熱線遮
蔽ガラスについて、可視光透過率(380nm〜780nm)、可視
光反射率(380nm〜780nm)ならびに日射透過率(340nm〜18
00nm) については 340型自記分光光度計(日立製作所
製)とJISZ8722、JISR3106によってそれぞれの光学的特
性を求めた。さらにテ−バ−試験によるヘ−ズ(曇り具
合)値の変化量(△H%)については、テ−バ−試験機
(MODEL 503 、TABER 社製)に膜面を上にした約10cm角
試験片をセットし、膜面に荷重500gのかかった摩耗輪(C
S-10F)が2箇所で当たるようになっているもので、300
回回転した後、ヘーズメーター(日本電色工業製、NDH-
20D )によって測定し、試験前の測定値と対比し、その
変化量(△H%)をもって表した数値であって、数値が
小さいほど耐摩耗性に優れるものである。
Regarding the radio wave transmission type heat ray shielding glass having the obtained three-layer film, visible light transmittance (380 nm to 780 nm), visible light reflectance (380 nm to 780 nm) and solar radiation transmittance (340 nm to 18 nm).
For (00 nm), the optical characteristics of each were measured using a 340 type self-recording spectrophotometer (manufactured by Hitachi, Ltd.) and JISZ8722 and JISR3106. Further, regarding the amount of change in the haze value (ΔH%) by the taper test, about 10 cm square with the film surface facing up on a taper tester (MODEL 503, manufactured by TABER). Set a test piece and wear a ring (C
S-10F) is designed to hit in two places, 300
After rotating, the haze meter (made by Nippon Denshoku Industries, NDH-
20D), and compared with the measured value before the test and expressed as the amount of change (ΔH%), the smaller the value, the better the abrasion resistance.

【0030】次に、耐薬品性のうち耐酸試験について
は、常温で1規定の HCl溶液中に前記試験片を約6時間
浸漬した後、膜の劣化状態を見て判断したものであり、
耐アルカリ試験については、常温で1規定のNaOH溶液中
に試験片を約6時間浸漬した後、膜の劣化状態を見てJI
SR3221により判断したものであり、それぞれ○印はほと
んど劣化が見られなかったもの、×印は劣化が明らかに
目立ったものである。
Next, the acid resistance test of the chemical resistance was judged by observing the deterioration state of the film after immersing the test piece in a 1N HCl solution at room temperature for about 6 hours.
Regarding the alkali resistance test, after immersing the test piece in 1N NaOH solution at room temperature for about 6 hours, check the deterioration state of the film and see
It was judged according to SR3221. In each case, the ○ marks show almost no deterioration, and the X marks clearly show the deterioration.

【0031】さらに表面抵抗率については、105 Ω/口
以下のものは四探針抵抗測定装置RT-8(NASON 社製)に
よって、105 Ω/口〜105 MΩ/口のものは三菱油化製
表面高抵抗計(HIRESTA HTー210)によって測定したもの
である。
Further, regarding the surface resistivity, the one having a resistance of 10 5 Ω / port or less is measured by a four-point probe resistance measuring device RT-8 (manufactured by NASON), and the one having a resistivity of 10 5 Ω / port to 10 5 MΩ / port is Mitsubishi. It is measured by a surface high resistance meter (HIRESTA HT-210) made by Yuka.

【0032】またさらに、電波反射率については、大型
導波管法によって測定することで得た。表2より明らか
なように、従来の熱線遮蔽ガラスとほぼ同等の断熱性能
を示し、優れた居住性をもって、耐摩耗性、耐食性、耐
候性、耐久性を有し、電波を充分透過するものであっ
て、電波透過型熱線遮蔽ガラスとして高層建築物等の窓
ガラスに有用なものとなり、ことにガラス面側からの反
射色調が淡いゴールド色系色調であって、ガラス面から
の可視光反射率が約20.7%と低く、かつ膜面の反射色調
もニュートラル系であって、その可視光反射率が約21.4
%と低く、所期のめざすものを得た。なお、例えば日射
反射率についてはガラス面側で約15.9%、膜面側で約2
1.6%であった。
Further, the radio wave reflectance was obtained by measuring it by the large waveguide method. As is clear from Table 2, it has almost the same heat insulation performance as conventional heat-shielding glass, has excellent habitability, wear resistance, corrosion resistance, weather resistance, durability, and is sufficiently transparent to radio waves. Therefore, it becomes useful as a window glass for high-rise buildings, etc. as a radio wave transmission type heat ray shielding glass, and in particular, the reflection color tone from the glass surface side is a pale gold color tone, and the visible light reflectance from the glass surface Is as low as about 20.7%, and the reflection color tone of the film surface is neutral, and its visible light reflectance is about 21.4%.
As low as%, I got what I was aiming for. For example, the solar reflectance is about 15.9% on the glass side and about 2% on the film side.
It was 1.6%.

【0033】実施例2〜5 前記実施例1と同様の方法で、実施例1と以下に示す搬
送スピード等を調節し所望の膜厚となるようにし、表1
に示す3層膜およびその各膜厚を得て、その膜構成にお
いて実施例1で示した測定法等によって同様の評価手段
で行い、その結果を表2に示す。
Examples 2 to 5 In the same manner as in Example 1, the transport speed and the like shown in Example 1 and the following were adjusted to obtain a desired film thickness, and Table 1
The three-layer film shown in and the respective film thicknesses thereof were obtained, and the film constitution was performed by the same evaluation means by the measuring method shown in Example 1 and the like, and the results are shown in Table 2.

【0034】得られた3層膜を有する電波透過型熱線遮
蔽ガラスは、ガラス面側からの反射色調が淡いゴールド
色系色調で実施例1と同様に優れた所期の電波透過性能
および光学特性等各物性を示した。なお、例えば実施例
2における日射反射率についてはガラス面側で約14.3
%、膜面側で約23.0%であった。
The radio wave transmission type heat ray-shielding glass having the obtained three-layer film has a gold color tone in which the reflection color tone from the glass surface side is pale and has the same excellent radio wave transmission performance and optical characteristics as in Example 1. Each physical property is shown. For example, the solar reflectance in Example 2 is about 14.3 on the glass surface side.
% And about 23.0% on the film surface side.

【0035】なお、各薄膜成膜条件については、SnOx薄
膜についてはDCマグネトロン反応スパッタ装置でSnタ
ーゲットを用い、同真空度、O2とArの混合ガス(但し、
その流量比は、Ar/O2+Arの値が0〜0.5 の範囲にあれ
ばよい)、印加電力約0.4kwにおいて、例えば板ガラス
搬送スード約55mm/min で膜厚約60nmのSnOx薄膜を得
た。 また、ことに実施例5に示したCrNxOy薄膜だけに
ついては同装置でCrターゲットを用い、同真空度、N2
O2ガス流量比がO2/N2+O2=0.03であるN2とO2の混合ガ
ス(但し、ガス流量比O2/N2+O2の値は0.003 〜0.05の
範囲にあればよく、また必要に応じてCrNxOy膜の表面抵
抗率が膜厚50nmでも1kΩ/口以上であれば成膜速度を
高くするためにArガスを導入してもよい)、印加電力約
2.3kw において、例えば板ガラス搬送スピード約56mm/
min で膜厚約50nmのCrNxOy薄膜を得た。
Regarding the thin film forming conditions, for SnOx thin films, a Sn target was used in a DC magnetron reaction sputtering apparatus, and the same degree of vacuum and a mixed gas of O 2 and Ar (however,
The flow rate ratio should be such that the value of Ar / O 2 + Ar is in the range of 0 to 0.5), and when the applied power is about 0.4 kw, for example, a SnOx thin film with a thickness of about 60 nm was obtained at a plate glass transporting sud of about 55 mm / min. . Further, especially for only the CrNxOy thin film shown in Example 5, a Cr target was used in the same apparatus and the same vacuum degree and N 2
O 2 gas flow ratio O 2 / N 2 + O 2 = 0.03 mixed gas of N 2 and O 2 (however, the value of gas flow ratio O 2 / N 2 + O 2 should be in the range of 0.003 to 0.05) Also, if necessary, Ar gas may be introduced to increase the film formation rate if the surface resistivity of the CrNxOy film is 1 kΩ / port or more even at a film thickness of 50 nm).
At 2.3kw, for example, plate glass transport speed of about 56mm /
A CrNxOy thin film with a thickness of about 50 nm was obtained at min.

【0036】比較例1 実施例1と同様に処理したガラスを用い、同装置にSUS
ターゲットを2本セットし、真空槽内を約5x10-6torr
以下に脱気した後、該真空槽内にO2ガスを導入し、真空
度を約2x10-3torrに保持し、前記SUS のターゲットに
約1.5kw の電力を印加し、板ガラス搬送スピード約150m
m /min で膜厚約20nmのSUSOx 薄膜を第1層として成膜
した。次いでもう一方のSUS ターゲットを使用し、Arガ
ス圧約2x10-3torrで印加電力約1.0kw において、板ガ
ラス搬送スピード約600mm /minで膜厚約5nmのSUS 薄
膜を得た。さらに第1層と同様にして板ガラス搬送スピ
ード約100mm /min で膜厚約30nmのSUSOx 薄膜を第3層
とし、表1に示すように成膜積層した。
Comparative Example 1 The glass treated in the same manner as in Example 1 was used, and SUS was used in the same apparatus.
Set two targets and move the inside of the vacuum chamber to about 5 x 10 -6 torr
After degassing to the following, O 2 gas was introduced into the vacuum chamber, the degree of vacuum was maintained at about 2 × 10 −3 torr, power of about 1.5 kw was applied to the SUS target, and the plate glass conveyance speed was about 150 m.
A SUSOx thin film having a thickness of about 20 nm was formed as a first layer at m / min. Next, using the other SUS target, an Ar gas pressure of about 2 × 10 -3 torr and an applied power of about 1.0 kw was used to obtain a SUS thin film having a film thickness of about 5 nm at a plate glass transport speed of about 600 mm / min. Further, as in the case of the first layer, a SUSOx thin film having a film thickness of about 30 nm at a plate glass conveying speed of about 100 mm 3 / min was used as a third layer, and a film was laminated as shown in Table 1.

【0037】該膜構成において、実施例1と同様の測定
法、同様の評価手段で行い、その結果は表2に示すよう
に、実施例に比して、例えば表面抵抗率が低く、1kΩ
/口以下であって、電波透過性能としては鉄筋コンクリ
ート並あるいはそれ以下であり、所望の特性に対し充分
とは言い難い。
With respect to the film structure, the same measurement method and the same evaluation means as in Example 1 were used, and the results are shown in Table 2. For example, the surface resistivity is lower than that in Examples and 1 kΩ.
/ Port or less, the radio wave transmission performance is equal to or less than that of reinforced concrete, and it is hard to say that it is sufficient for desired characteristics.

【0038】比較例2〜5 また、CrOx薄膜ならびにTiNx薄膜、CrNx薄膜、TaNx薄
膜、ZrNx薄膜については、前記実施例および比較例1と
同様の方法で以下に示す板ガラス搬送スピードを所望の
膜厚となるように調整して、表1に示す1〜3層膜およ
びその各膜厚を得た。
Comparative Examples 2 to 5 For the CrOx thin film and the TiNx thin film, the CrNx thin film, the TaNx thin film, and the ZrNx thin film, the plate glass conveyance speed shown below was applied to the desired film thickness in the same manner as in the above Examples and Comparative Example 1. Was adjusted to obtain the 1 to 3 layer film and each film thickness thereof shown in Table 1.

【0039】ここで、CrOx薄膜については、同装置で同
真空度、前記O2ガス、印加電力約2.2kw において、例え
ば板ガラス搬送スピード約240mm /min で膜厚約20nmの
CrOx薄膜を得た。またTiNx薄膜については、同装置でTi
ターゲットを用い、同真空度、N2ガス(但し、場合によ
ってはArガスを導入してもよく、その場合ArとN2ガスの
流量比Ar/N2+Arの値は0〜0.5 の範囲にあればよ
い)、印加電力約1.5kw において、例えば板ガラス搬送
スピード約38mm/min で膜厚約80nmのTiNx薄膜を得た。
For the CrOx thin film, the same apparatus, the same degree of vacuum, the O 2 gas, and the applied power of about 2.2 kw, for example, a plate glass transfer speed of about 240 mm / min and a film thickness of about 20 nm were used.
A CrOx thin film was obtained. For the TiNx thin film,
Using a target and the same vacuum degree, N 2 gas (However, Ar gas may be introduced in some cases, in which case the flow ratio of Ar and N 2 gas Ar / N 2 + Ar is in the range of 0-0.5. If the applied power is about 1.5 kw, a TiNx thin film having a film thickness of about 80 nm was obtained at a plate glass transport speed of about 38 mm / min, for example.

【0040】さらにまた、CrNx薄膜については、同装置
でCrターゲットを用い、同真空度、N2ガス、印加電力約
1.2kw において、例えば板ガラス搬送スピード約437mm
/min で膜厚約10nmのCrNx薄膜を得た。さらにTaNx薄膜
については、同装置でTaターゲットを用い、同真空度、
前記N2ガス、印加電力約1.7kw において、例えば板ガラ
ス搬送スピード約37mm/min で膜厚約40nmのTaNx薄膜を
得た。さらにまたZrNx薄膜については、同装置でZrター
ゲットを用い、同真空度、前記N2ガス、印加電力約1.5k
w において、例えば板ガラス搬送スピード約25mm/min
で膜厚約60nmのZrNx薄膜を得た。
Furthermore, for the CrNx thin film, a Cr target was used in the same apparatus, the same vacuum degree, N 2 gas, and applied power of about
At 1.2kw, for example, plate glass transport speed of about 437mm
A CrNx thin film having a film thickness of about 10 nm was obtained at the same time / min. Furthermore, for TaNx thin film, Ta target was used in the same equipment, the same vacuum degree,
A TaNx thin film having a film thickness of about 40 nm was obtained at a plate glass conveying speed of about 37 mm / min with the above N 2 gas and an applied power of about 1.7 kw. Furthermore, for the ZrNx thin film, a Zr target was used in the same apparatus, the same vacuum degree, the N 2 gas, and an applied power of about 1.5 k
At w, for example, plate glass transport speed of about 25 mm / min
A ZrNx thin film with a thickness of about 60 nm was obtained.

【0041】このような方法によって、表1に示すよう
な1〜3層の積層膜を得、その膜構成において、実施例
1と同様の測定法、同様の評価手段で行い、その結果を
表2にそれぞれ示す。
By such a method, a laminated film of 1 to 3 layers as shown in Table 1 was obtained, and the film constitution was performed by the same measuring method and the same evaluation means as in Example 1, and the results are shown in the table. 2 respectively.

【0042】それぞれ、比較例2および3は、各実施例
に比して、従来の熱線遮蔽ガラスであるこれらにおいて
は、例えば表面抵抗率が低く、約280 Ω/口以下であっ
て、電波反射率も9%程度以上となり、建築物の鉄筋コ
ンクリートの電波反射率より悪く、建築物の周辺に電波
障害を発現し易いものまたはするものである。
In Comparative Examples 2 and 3, the conventional heat ray-shielding glass has a surface resistivity lower than that of each Example, for example, a surface resistivity of about 280 Ω / hole or less, and a radio wave reflection. The ratio is about 9% or more, which is lower than the radio wave reflectance of reinforced concrete in a building, and is likely to cause radio wave interference around the building.

【0043】またさらに、比較例4および5は、建築物
の周辺に電波障害を発現しない電波透過型であって、ガ
ラス面側反射色調がゴールド色である熱線遮蔽ガラスで
はあるものの、その可視光透過率が比較的低く、かつガ
ラス面および膜面の可視光反射率が44%以上とかなりの
高い値となり、建築物内外の居住環境に優しいものであ
るとは言い難い。
Further, Comparative Examples 4 and 5 are radio wave transmission type which does not cause radio interference in the vicinity of the building and are heat ray shielding glass having a glass surface side reflection color tone of gold, but the visible light thereof is The transmittance is comparatively low, and the visible light reflectance of the glass and film surfaces is 44% or more, which is a very high value, and it is hard to say that it is friendly to the living environment inside and outside the building.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】以上前述したように、本発明の電波透過
型熱線遮蔽ガラスは、ガラス基体の一方の表面に、特定
膜厚のSnの酸化物薄膜または酸素窒化物薄膜を第1層と
して被覆し、該第1層の上に、特定膜厚でかつ表面抵抗
率が少なくとも1kΩ/口以上である特定したCrの窒素
酸化物薄膜を第2層として被覆し、さらにその上に特定
膜厚のSnの酸化物薄膜または酸素窒化物薄膜を第3層と
して被覆積層することによって、断熱ガラスであって、
耐摩耗性、耐食性ならびに耐久性に優れ、電波透過がよ
く、通常のフロートガラス並の電波低反射率であり、高
層建築物周辺に対し電波障害を発現するようなこともな
く、ガラス面側からの反射色調が淡いゴールド色系色調
を呈する意匠性に優れた、ガラス面側からの可視光反射
率が比較的低く、ビル等の周囲の環境に与える光公害の
影響も少なくなり、建築物外の居住性ならびに景観性等
も格段に優れたものとなり、室内においても居住性のよ
い、単板ガラスはもちろん合せガラスあるいは複層ガラ
ス等として使用し得る、有用な電波透過型熱線遮蔽ガラ
スを効率よく提供するものである。
As described above, according to the radio wave transmission type heat ray shielding glass of the present invention, one surface of the glass substrate is coated with the Sn oxide thin film or the oxynitride thin film having a specific thickness as the first layer. Then, on the first layer, a specified nitrogen oxide thin film of Cr having a specific film thickness and a surface resistivity of at least 1 kΩ / port or more is coated as a second layer, and further a specific film thickness of A heat-insulating glass is obtained by laminating a Sn oxide thin film or an oxynitride thin film as a third layer,
It has excellent wear resistance, corrosion resistance and durability, good radio wave transmission, low radio wave reflectance similar to that of ordinary float glass, and does not cause radio interference to the surroundings of high-rise buildings. It has a light gold color tone and has a good design, and the visible light reflectance from the glass surface side is relatively low, and the effect of light pollution on the surrounding environment such as buildings is reduced, and It has excellent habitability and scenery, and has excellent habitability even indoors. It can be effectively used as a useful radio wave transmission type heat ray shielding glass that can be used as laminated glass or double glazing as well as single glass. It is provided.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透明なガラス基板の一方の表面上に、膜
厚が20〜100nm のSnの酸化物薄膜または酸素窒化物薄膜
を第1層として被覆し、該第1層の上に、膜厚が1〜50
nmでかつその表面抵抗率が1kΩ/口以上であるCrの窒
素酸化物薄膜を第2層として被覆した後、該第2層の上
に、膜厚が10〜70nmのSnの酸化物薄膜または酸素窒化物
薄膜を第3層として積層被覆したことを特徴とする電波
透過型熱線遮蔽ガラス。
1. A transparent glass substrate, one surface of which is coated with a Sn oxide thin film or an oxynitride thin film having a thickness of 20 to 100 nm as a first layer, and the film is formed on the first layer. 1-50 thickness
After coating a nitrogen oxide thin film of Cr having a thickness of 1 nm and a surface resistivity of 1 kΩ / n or more as a second layer, an oxide thin film of Sn having a thickness of 10 to 70 nm is formed on the second layer, or A radio wave transmission type heat ray shielding glass comprising an oxygen oxynitride thin film as a third layer.
【請求項2】 前記積層被覆した熱線遮蔽性能膜の表面
抵抗率が、1kΩ/口以上であることを特徴とする請求
項1記載の電波透過型熱線遮蔽ガラス。
2. The radio wave transmission type heat-shielding glass according to claim 1, wherein the heat-shielding film laminated and coated has a surface resistivity of 1 kΩ / port or more.
【請求項3】 前記電波透過型熱線遮蔽ガラスにおい
て、該ガラスのガラス面側からの反射色調が淡いゴール
ド色系色調で、かつガラス面側からの可視光反射率が30
%以下であることを特徴とする請求項1あるいは2記載
の電波透過型熱線遮蔽ガラス。
3. In the radio wave transmission type heat ray shielding glass, the reflection color tone from the glass surface side of the glass is a light gold color tone and the visible light reflectance from the glass surface side is 30.
% Or less, the radio wave transmission type heat ray shielding glass according to claim 1 or 2.
【請求項4】 前記電波透過型熱線遮蔽ガラスにおい
て、該ガラスの膜面側からの反射色調がニュートラル系
色調であって、かつ膜面側からの可視光反射率が30%以
下であることを特徴とする請求項1乃至3記載の電波透
過型熱線遮蔽ガラス。
4. In the radio wave transmission type heat ray shielding glass, the reflection color tone from the film surface side of the glass is a neutral color tone, and the visible light reflectance from the film surface side is 30% or less. The radio wave transmission type heat ray shielding glass according to claim 1, which is characterized in that.
【請求項5】 前記電波透過型熱線遮蔽ガラスにおい
て、該ガラスの可視光透過率が40%以上であることを特
徴とする請求項1乃至4記載の電波透過型熱線遮蔽ガラ
ス。
5. The radio wave transmission type heat ray shielding glass according to claim 1, wherein the visible light transmittance of the radio wave transmission type heat ray shielding glass is 40% or more.
JP22047192A 1992-08-19 1992-08-19 Electric ray-transmitting and heat ray-shielding glass Pending JPH0664940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22047192A JPH0664940A (en) 1992-08-19 1992-08-19 Electric ray-transmitting and heat ray-shielding glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22047192A JPH0664940A (en) 1992-08-19 1992-08-19 Electric ray-transmitting and heat ray-shielding glass

Publications (1)

Publication Number Publication Date
JPH0664940A true JPH0664940A (en) 1994-03-08

Family

ID=16751629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22047192A Pending JPH0664940A (en) 1992-08-19 1992-08-19 Electric ray-transmitting and heat ray-shielding glass

Country Status (1)

Country Link
JP (1) JPH0664940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097038A (en) * 2000-07-21 2002-04-02 Asahi Glass Co Ltd Substrate having tin oxynitride film and method of manufacturing the same
US6570709B2 (en) * 2000-07-27 2003-05-27 Asahi Glass Company, Limited Substrate provided with antireflection films and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097038A (en) * 2000-07-21 2002-04-02 Asahi Glass Co Ltd Substrate having tin oxynitride film and method of manufacturing the same
US6570709B2 (en) * 2000-07-27 2003-05-27 Asahi Glass Company, Limited Substrate provided with antireflection films and its production method

Similar Documents

Publication Publication Date Title
US5073451A (en) Heat insulating glass with dielectric multilayer coating
JP3392000B2 (en) Insulated glass
JPH10139491A (en) Low reflecting dark gray glass
JPH06263486A (en) Heat ray shield glass
JP3211986B2 (en) Gray radio wave transmission type heat ray shielding glass
JPH0664940A (en) Electric ray-transmitting and heat ray-shielding glass
JP2811885B2 (en) Heat shielding glass
JP2925040B2 (en) Radio wave low reflection colored glass
JPH05294674A (en) Heat ray-sealing glass exhibiting low-electromagnetic wave reflectance
JPH04243935A (en) Low electric wave-reflecting and thermal ray-reflecting glass and production thereof
JPH05238778A (en) Heat ray shielding glass having radio wave low-reflection characteristic
JPH07291668A (en) Electric wave transmission type heat ray-shielding glass
JP2528520B2 (en) Veneer insulated glass
JPH01145351A (en) Infrared shielding glass
JPH0632635A (en) Heat shielding glass having low reflecting characteristic of electrical radiation
JPH07291670A (en) Visual light low reflection type heat ray-shielding glass
JPH1045434A (en) Radio wave transmission type insulating glass for automobile
JPH0624805A (en) Heat ray shielding glass having ratio wave low reflection characteristic
JPH03252332A (en) Heat-ray reflection glass having low reflectance of electric wave
JP2856683B2 (en) Radio wave transmission type heat ray shielding glass
JPH05238779A (en) Heat ray shielding glass having radio wave low-reflection characteristic
JPH07291671A (en) Electric wave transmission type heat ray-shielding glass
JPH0648778A (en) Radio wave transmitting type heat ray reflecting glass
JPH03252333A (en) Heat ray-reflecting glass having low reflection of electric wave
JPH01314163A (en) Heat ray shielded glass