JPH0661467A - Stacked solid-state image sensing element - Google Patents
Stacked solid-state image sensing elementInfo
- Publication number
- JPH0661467A JPH0661467A JP4212794A JP21279492A JPH0661467A JP H0661467 A JPH0661467 A JP H0661467A JP 4212794 A JP4212794 A JP 4212794A JP 21279492 A JP21279492 A JP 21279492A JP H0661467 A JPH0661467 A JP H0661467A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- semiconductor substrate
- charge storage
- counter electrode
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 239000004065 semiconductor Substances 0.000 claims abstract description 34
- 238000003384 imaging method Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 2
- 229910021332 silicide Inorganic materials 0.000 claims description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 2
- 230000000779 depleting effect Effects 0.000 claims 1
- 206010047571 Visual impairment Diseases 0.000 description 10
- 230000005684 electric field Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は固体撮像素子に係り、
特に、高感度な積層形固体撮像素子の構成に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image sensor,
In particular, the present invention relates to a high-sensitivity laminated solid-state image pickup device.
【0002】[0002]
【従来の技術】従来の固体撮像素子は、半導体基板表面
に走査回路部と光電変換部を二次元的に配置していたた
め、光電変換部の面積が撮像面の一部となり、走査回路
部に入射した光は無駄になっていた。また、これを解決
するために光電変換部を走査回路部及び信号電荷蓄積部
の上部を覆う様に形成する光導電膜積層形固体撮像素子
が提案されているが、光電変換部と電荷蓄積部の接続が
金属、高濃度不純物のポリシリコン、金属シリサイドな
どの電極を介して接続していたため、信号転送路への読
み出しは不完全転送モードとなり残像が生じるだけでな
く、読み出しスイッチの熱雑音によりチャネル内部のポ
テンシャルが揺らぎ、電荷蓄積部に雑音が残留するた
め、読み出した信号電荷にも雑音が重畳するなどの欠点
があった。さらにまた、前述の光導電膜積層形固体撮像
素子では、残像を低減させるため、電荷蓄積部へ電荷を
注入させる注入ダイオードを設けた例がある。この場合
は、残像が低減するものの、前述の熱雑音が発生すると
ともに、注入した電荷のショット雑音が付加される欠点
があった。2. Description of the Related Art In a conventional solid-state image pickup device, a scanning circuit section and a photoelectric conversion section are two-dimensionally arranged on the surface of a semiconductor substrate. The incident light was wasted. In order to solve this problem, a photoconductive film laminated solid-state imaging device in which a photoelectric conversion unit is formed so as to cover the scanning circuit unit and the signal charge storage unit is proposed, but the photoelectric conversion unit and the charge storage unit are proposed. Since the connection of was connected via the electrode of metal, polysilicon of high concentration impurity, metal silicide, etc., the read to the signal transfer path becomes an incomplete transfer mode and not only an afterimage occurs but also the thermal noise of the read switch causes Since the potential inside the channel fluctuates and noise remains in the charge storage portion, there is a drawback that noise is superimposed on the read signal charge. Furthermore, in the above-mentioned photoconductive film laminated type solid-state imaging device, there is an example in which an injection diode for injecting charges into the charge storage portion is provided in order to reduce an afterimage. In this case, although the afterimage is reduced, the above-mentioned thermal noise is generated and shot noise of the injected charges is added.
【0003】[0003]
【発明が解決しようとする課題】前述の(従来の技術)
の項でも述べたように、従来形固体撮像素子では二次元
平面的に光電変換部と走査回路部を配置していたため
に、光の利用効率が悪かった。これを解決するために積
層形が提案されているが、光電変換感度が向上するもの
の、受光部の熱雑音や注入電流のショットノイズが増加
する問題があった。そこで本発明の目的は、光を無駄に
することなく光電変換効率を向上させ、同時に前記熱雑
音の発生も残像の発生も防止し、このため注入動作を不
要とし、注入電流のショットノイズも防止した積層形固
体撮像素子を提供せんとするものである。SUMMARY OF THE INVENTION (Prior Art)
As described above, in the conventional solid-state imaging device, the photoelectric conversion unit and the scanning circuit unit are two-dimensionally arranged, so that the light utilization efficiency is poor. A laminated type has been proposed to solve this problem, but the photoelectric conversion sensitivity is improved, but there is a problem that thermal noise of the light receiving portion and shot noise of the injection current increase. Therefore, an object of the present invention is to improve the photoelectric conversion efficiency without wasting light, and at the same time prevent the generation of the thermal noise and the afterimage, thus eliminating the injection operation and preventing the shot noise of the injection current. Another object of the present invention is to provide a laminated solid-state image sensor.
【0004】[0004]
【課題を解決するための手段】この目的を達成するため
本発明積層形固体撮像素子は、入射光信号を信号電荷に
変換する光電変換部を複数個アレイ状に配置し、変換さ
れた信号電荷を順次に読み出す固体撮像素子において、
半導体基板表面または当該表面近傍の半導体基板内部に
変換された前記信号電荷を所定の期間蓄積する電荷蓄積
部を前記光電変換部ごとに対応してこれを形成し、当該
電荷蓄積部に蓄積された信号電荷を読み出すための信号
転送路または走査回路部を前記半導体基板表面に形成
し、前記光電変換部を前記半導体基板と同種または異種
の半導体材料で形成し、前記光電変換部が第1導電形の
前記半導体基板およびその表面に形成した走査回路部上
部全面を覆い、かつ、第1導電形とは反対の第2導電形
で形成した前記電荷蓄積部の近傍で半導体基板表面と接
合している構成であることを特徴とするものである。In order to achieve this object, the laminated solid-state image pickup device of the present invention has a plurality of photoelectric conversion units for converting an incident optical signal into a signal charge arranged in an array and converting the converted signal charge. In the solid-state image sensor that sequentially reads
A charge accumulating portion for accumulating the converted signal charges on the surface of the semiconductor substrate or inside the semiconductor substrate in the vicinity of the surface is formed corresponding to each photoelectric conversion portion, and is accumulated in the charge accumulating portion. A signal transfer path or a scanning circuit unit for reading out signal charges is formed on the surface of the semiconductor substrate, the photoelectric conversion unit is formed of a semiconductor material that is the same as or different from the semiconductor substrate, and the photoelectric conversion unit is the first conductivity type. Of the semiconductor substrate and the entire upper surface of the scanning circuit portion formed on the surface of the semiconductor substrate, and is joined to the surface of the semiconductor substrate in the vicinity of the charge storage portion formed of the second conductivity type opposite to the first conductivity type. It is characterized by having a configuration.
【0005】(実施例)以下添付図面を参照し実施例に
より本願発明を詳細に説明するが、それに先立ち本願発
明実施例との比較を明らかにするため、従来の積層形固
体撮像素子一実施例の部分断面図を示す図5を参照して
その構成と動作を簡単に説明する。図の参照番号11, 1
2, 13, 14, 15, 16はそれぞれ光電変換部、ITO透明
導電膜(対向電極)、ブロッキング層、Al膜、SiO2など
の絶縁膜、モリブデン層であり、参照番号17, 18はとも
にポリシリコン層で読み出しゲートに使用されるのはポ
リシリコン層18、ポリシリコン層17は他の目的に使用さ
れる電極である。(Embodiment) An embodiment of the present invention will be described in detail below with reference to the accompanying drawings. In order to clarify the comparison with the embodiment of the present invention, an embodiment of a conventional laminated solid-state image pickup device will be described. The configuration and operation will be briefly described with reference to FIG. 5, which is a partial sectional view of FIG. Figure reference numbers 11, 1
2, 13, 14, 15 and 16 are a photoelectric conversion part, an ITO transparent conductive film (counter electrode), a blocking layer, an Al film, an insulating film such as SiO 2 and a molybdenum layer, respectively. The polysilicon layer 18 is used as a read gate in the silicon layer, and the polysilicon layer 17 is an electrode used for another purpose.
【0006】半導体基板19はp形で基板表面のn++, n
+ ,n- およびp+ 層はそれぞれモリブデン層とのオー
ミック接触のための高不純物濃度n層、Al層14とモリブ
デン層16およびn++層を介した電荷(この場合電子)の
電荷蓄積層、紙面と垂直に配列されるCCDn- 層、チ
ャネルストッパ用のp+ 層である。この構成では光電変
換部11と電荷蓄積部n+ との接続は電極16により行われ
るため、電極16内および電荷蓄積部n+ の多数キャリア
は信号読み出しチャネル20を介して排出されなければな
らず、従って光電変換部を一定電圧にリセットするまで
の時間がかかり、結果として残像が生じる。また、この
信号読み出し過程は、信号電流が読み出しチャネル20を
流れている途中で読み出しチャネルを閉じるため、ゲー
ト電極18の下の熱雑音により生じるチャネル電位の揺ら
ぎが電荷蓄積部に保持される。この雑音を通常光電変換
部のリセット雑音とよぶ。さて図1に本願発明による積
層形固体撮像素子構成の第1の実施例の部分断面図を示
す。光電変換部1および電荷蓄積部4の半導体不純物濃
度を通常1016cm-3程度以下にすれば信号読み出し時に空
乏化させることができる。この時半導体基板3と光電変
換部1の材料は同種でも異種でもよい。通常シリコン基
板を用いた場合、光電変換部1はアモルファスシリコン
などのバンドギャップの幅がシリコンより広い材料を用
いることにより光電変換効率が向上する。特に、青色に
対して感度が向上する。この場合、光電変換部1は通
常、対向電極2および半導体基板3との界面にブロッキ
ング層を設けるのが好ましく、これにより対向電極2お
よび半導体基板3からのキャリアの注入を防止し前述の
空乏化が実現できる。光電変換部のバンドギャップが適
度に広い場合は片方もしくは両方のブロッキング層は無
くてもよい。The semiconductor substrate 19 is p-type and has n ++ , n on the substrate surface.
The + , n − and p + layers are high impurity concentration n layers for ohmic contact with the molybdenum layer, and a charge storage layer for charges (electrons in this case) via the Al layer 14 and the molybdenum layer 16 and the n ++ layer. , A CCD n − layer arranged perpendicularly to the plane of the drawing, and a p + layer for a channel stopper. In this structure, since the photoelectric conversion unit 11 and the charge storage unit n + are connected by the electrode 16, the majority carriers in the electrode 16 and the charge storage unit n + must be discharged through the signal read channel 20. Therefore, it takes time to reset the photoelectric conversion unit to a constant voltage, resulting in an afterimage. Further, in this signal reading process, since the reading channel is closed while the signal current is flowing through the reading channel 20, fluctuation of the channel potential caused by thermal noise under the gate electrode 18 is held in the charge storage section. This noise is usually called reset noise of the photoelectric conversion unit. Now, FIG. 1 shows a partial cross-sectional view of a first embodiment of a laminated solid-state image pickup device structure according to the present invention. If the semiconductor impurity concentrations of the photoelectric conversion section 1 and the charge storage section 4 are usually set to about 10 16 cm −3 or less, depletion can be achieved during signal reading. At this time, the materials of the semiconductor substrate 3 and the photoelectric conversion section 1 may be the same or different. When a silicon substrate is usually used, photoelectric conversion efficiency is improved by using a material such as amorphous silicon having a bandgap width wider than that of silicon. In particular, the sensitivity for blue is improved. In this case, it is generally preferable that the photoelectric conversion section 1 is provided with a blocking layer at the interface with the counter electrode 2 and the semiconductor substrate 3, which prevents injection of carriers from the counter electrode 2 and the semiconductor substrate 3 and depletes the above-mentioned depletion layer. Can be realized. When the band gap of the photoelectric conversion part is appropriately wide, one or both blocking layers may be omitted.
【0007】なお同図の参照番号5,6,7,8はそれ
ぞれ絶縁膜、遮光膜、ポリシリコン層などの信号転送電
極、紙面と垂直に配列されるCCDn- 層信号転送路で
ある。図2に第2の実施例構成の部分断面図を示す。前
述のように光電変換部1にバンドギャップの広い材料を
用いた場合には、光電変換部が接続する半導体基板3の
表面の大部分9を、半導体基板深部と同一導電形とする
ことにより、例えば基板深部がp形の場合は、前記半導
体基板表面はホールでアキュミュレートされ異種材料が
接続する同表面より発生する暗電流を防止することがで
きる。また、同基板表面の電位は基板電位と一致し、信
号電荷量が変わり基板内の電位が変化しても積層した光
電変換部にかかる電界をほぼ一定に保つことができるの
で、電荷がトラップに溜まることなどが原因の残像(ト
ラップ性残像)を防止することができる。これは、基板
表面の不純物が基板深部と反対導電形の半導体であって
も、光電変換部にかける電界を選ぶことにより、基板表
面のキャリアを反転させて基板深部と同一導電形のキャ
リアでアキュミュレートさせることができる。これによ
り、前述と同様に基板表面の電位を基板深部の電位と一
致させて受光部の電界を一定に保つことができ、残像を
防止することができる。Reference numerals 5, 6, 7 and 8 in the figure respectively denote an insulating film, a light-shielding film, a signal transfer electrode such as a polysilicon layer, and a CCD n - layer signal transfer path arranged perpendicularly to the paper surface. FIG. 2 shows a partial sectional view of the configuration of the second embodiment. When a material having a wide bandgap is used for the photoelectric conversion unit 1 as described above, by making most of the surface 9 of the semiconductor substrate 3 to which the photoelectric conversion unit connects to have the same conductivity type as the semiconductor substrate deep portion, For example, when the deep portion of the substrate is p-type, the surface of the semiconductor substrate is accumulated by holes and a dark current generated from the surface where different materials are connected can be prevented. In addition, the electric potential of the surface of the substrate matches the electric potential of the substrate, and even if the amount of signal charge changes and the electric potential in the substrate changes, the electric field applied to the stacked photoelectric conversion units can be kept almost constant, so that the electric charge is trapped. It is possible to prevent an afterimage (trapping afterimage) due to accumulation or the like. This is because even if the impurities on the surface of the substrate are semiconductors of the opposite conductivity type to the deep portion of the substrate, the carriers on the surface of the substrate are inverted by selecting the electric field to be applied to the photoelectric conversion portion, and carriers with the same conductivity type as the deep portion of the substrate are accumulated. Can be emulated. As a result, similarly to the above, the electric potential of the substrate surface can be matched with the electric potential of the deep portion of the substrate to keep the electric field of the light receiving unit constant, and the afterimage can be prevented.
【0008】図3は本願発明第3の実施例構成の部分断
面図である。電荷蓄積部4上方の対向電極2に開口部10
を設け、光電変換効率を向上しただけでなく、同図のよ
うに受光部形成時に生じるくぼみがある場合にも電界が
ほぼ均一にかかるため、光電変換部の暗電流を防止する
ことができる。同図の細い線は等電位曲線を示す。図4
は本願発明第4の実施例構成の部分断面図である。対向
電極2を覆うようにして、光電変換部1を形成すること
により、光電変換部表面前面を空乏化するとともに、電
界も均一にかけることができる(同図細い線、等電位曲
線参照)。これにより、ほとんどが半導体の表面近傍で
光電流変換されるような波長の短い光に対しても、受光
部表面が空乏化しているため、電界によって信号電荷は
電荷蓄積部4まで送り込むことができる。このようにし
て、光電変換効率は量子効率で表現すれば1に近付ける
ことができる。また、信号電荷に対しては蓄積部まで空
乏化させることができるので、前記リセットノイズも防
止することができる。以上説明した実施例は本願発明実
施例を限定するものではなく、本願発明の要旨内で各種
の変形、変更の可能なことは当業者に自明であろう。FIG. 3 is a partial cross-sectional view of the third embodiment of the present invention. An opening 10 is formed in the counter electrode 2 above the charge storage unit 4.
In addition to improving the photoelectric conversion efficiency, the electric field is almost evenly applied even when there is a depression that occurs when the light receiving portion is formed as shown in the figure, so that dark current in the photoelectric conversion portion can be prevented. The thin line in the figure shows an equipotential curve. Figure 4
FIG. 7 is a partial cross-sectional view of the configuration of the fourth embodiment of the present invention. By forming the photoelectric conversion unit 1 so as to cover the counter electrode 2, the front surface of the photoelectric conversion unit surface can be depleted and an electric field can be uniformly applied (see thin lines and equipotential curves in the figure). As a result, the signal charge can be sent to the charge storage unit 4 by the electric field because the surface of the light receiving unit is depleted even for light with a short wavelength that is mostly converted into a photocurrent near the surface of the semiconductor. . In this way, the photoelectric conversion efficiency can approach 1 if it is expressed by quantum efficiency. Further, since the signal charge can be depleted up to the storage portion, the reset noise can also be prevented. It will be apparent to those skilled in the art that the embodiments described above are not intended to limit the embodiments of the present invention and that various modifications and changes can be made within the scope of the present invention.
【0009】[0009]
【発明の効果】本願発明によれば、撮像面のうち光電変
換部の占める割合を大きくすることができ感度が向上す
る。また、光電変換部表面を空乏化でき青感度が向上す
る。さらに、第2の実施例では光電変換部と電荷蓄積部
の接合面をアキュミュレートさせ暗電流を防止でき、同
時に光電変換部に係る電界を信号電荷量に関わらず一定
とし、トラップ性の残像を防止することができる。さら
にまた、第3、第4の実施例では光電変換部の広い範囲
にほぼ均一な電界をかけることができ、信号電荷を無駄
なく電荷蓄積部へ運ぶことができる。さらに、信号読み
出し時には光電変換部および電荷蓄積部を容易に空乏化
することができるため、雑音の発生を防止し、残像の発
生をも防止することができる。更に第4の実施例では光
電変換部表面全体を空乏化するとともに、受光の障害と
なる対向電極を光電変換部下部に設けることで光電変換
効率を飛躍的に向上せしめることができる。従って、本
願発明によれば、従来実現できなかった、高感度と低雑
音の固体撮像素子を同時に実現させることができる。According to the present invention, the ratio of the photoelectric conversion portion in the image pickup surface can be increased and the sensitivity is improved. Further, the surface of the photoelectric conversion portion can be depleted, and the blue sensitivity is improved. Furthermore, in the second embodiment, the junction surface between the photoelectric conversion unit and the charge storage unit can be accumulated to prevent dark current, and at the same time, the electric field related to the photoelectric conversion unit can be made constant regardless of the signal charge amount, and the afterimage of trapping property can be obtained. Can be prevented. Furthermore, in the third and fourth embodiments, a substantially uniform electric field can be applied to a wide range of the photoelectric conversion unit, and the signal charges can be carried to the charge storage unit without waste. Furthermore, since the photoelectric conversion unit and the charge storage unit can be easily depleted during signal reading, it is possible to prevent noise from occurring and prevent afterimages from occurring. Furthermore, in the fourth embodiment, the entire surface of the photoelectric conversion portion is depleted, and the counter electrode that interferes with light reception is provided below the photoelectric conversion portion, so that the photoelectric conversion efficiency can be dramatically improved. Therefore, according to the present invention, it is possible to simultaneously realize a high-sensitivity and low-noise solid-state imaging device, which could not be realized conventionally.
【図1】本願発明積層形固体撮像素子第1の実施例構成
の部分断面図FIG. 1 is a partial sectional view of the configuration of a first embodiment of a laminated solid-state image pickup device of the present invention.
【図2】第2の実施例構成の部分断面図FIG. 2 is a partial sectional view of the configuration of the second embodiment.
【図3】第3の実施例構成の部分断面図FIG. 3 is a partial cross-sectional view of the configuration of the third embodiment.
【図4】第4の実施例構成の部分断面図FIG. 4 is a partial sectional view of the configuration of the fourth embodiment.
【図5】従来例構成の部分断面図FIG. 5 is a partial cross-sectional view of a conventional example configuration.
1, 11 光電変換部 2, 12 対向電極 3, 19 半導体基板 4 電荷蓄積部 5, 15 絶縁膜 6 遮光膜 7, 17, 18 ポリシリコン層 8 CCDn- 層 9 光電変換部と半導体基板の界面 10 対向電極の開口部 13 ブロッキング層 14 Al膜 16 モリブデン層1, 11 Photoelectric conversion part 2, 12 Counter electrode 3, 19 Semiconductor substrate 4 Charge storage part 5, 15 Insulation film 6 Light-shielding film 7, 17, 18 Polysilicon layer 8 CCDn - layer 9 Interface between photoelectric conversion part and semiconductor substrate 10 Counter electrode opening 13 Blocking layer 14 Al film 16 Molybdenum layer
Claims (7)
換部を複数個アレイ状に配置し、変換された信号電荷を
順次に読み出す固体撮像素子において、半導体基板表面
または当該表面近傍の半導体基板内部に変換された前記
信号電荷を所定の期間蓄積する電荷蓄積部を前記光電変
換部ごとに対応してこれを形成し、当該電荷蓄積部に蓄
積された信号電荷を読み出すための信号転送路または走
査回路部を前記半導体基板表面に形成し、前記光電変換
部を前記半導体基板と同種または異種の半導体材料で形
成し、前記光電変換部が第1導電形の前記半導体基板お
よびその表面に形成した走査回路部上部全面を覆い、か
つ、第1導電形とは反対の第2導電形で形成した前記電
荷蓄積部の近傍で半導体基板表面と接合している構成で
あることを特徴とする積層形固体撮像素子。1. A solid-state imaging device, wherein a plurality of photoelectric conversion units for converting an incident optical signal into signal charges are arranged in an array, and the converted signal charges are sequentially read out. A charge accumulating unit that accumulates the signal charges converted inside for a predetermined period is formed corresponding to each photoelectric conversion unit, and a signal transfer path for reading out the signal charges accumulated in the charge accumulating unit or The scanning circuit portion is formed on the surface of the semiconductor substrate, the photoelectric conversion portion is formed of a semiconductor material which is the same as or different from the semiconductor substrate, and the photoelectric conversion portion is formed on the semiconductor substrate of the first conductivity type and the surface thereof. The structure is such that it covers the entire upper surface of the scanning circuit portion and is joined to the surface of the semiconductor substrate in the vicinity of the charge storage portion formed of the second conductivity type opposite to the first conductivity type. Stacked solid-state image sensor.
電荷蓄積部近傍の半導体基板表面が第1導電形半導体領
域であることを特徴とする積層形固体撮像素子。2. The stacked solid-state imaging device according to claim 1, wherein the surface of the semiconductor substrate near the charge storage portion is a first conductivity type semiconductor region.
て、対向電極を前記光電変換部の表面に形成し、前記電
荷蓄積部の上方に対応する前記対向電極の部分に開口窓
を設けたことを特徴とする積層形固体撮像素子。3. The image pickup device according to claim 1, wherein a counter electrode is formed on a surface of the photoelectric conversion section, and an opening window is provided in a portion of the counter electrode above the charge storage section. A stacked solid-state imaging device characterized by:
て、光電変換部が前記走査回路部の上方に形成した対向
電極を覆い、当該対向電極と接合を形成していることを
特徴とする積層形固体撮像素子。4. The image pickup device according to claim 1, wherein the photoelectric conversion unit covers the counter electrode formed above the scanning circuit unit and forms a bond with the counter electrode. Type solid-state image sensor.
て、前記光電変換部が前記対向電極とショットキー接合
を形成していることを特徴とする積層形固体撮像素子。5. The stacked solid-state image pickup device according to claim 3, wherein the photoelectric conversion portion forms a Schottky junction with the counter electrode.
対向電極が金属または金属シリサイドで形成され、前記
走査回路部全面を覆い、遮光層を兼ねることを特徴とす
る積層形固体撮像素子。6. The stacked solid-state imaging device according to claim 4, wherein the counter electrode is formed of metal or metal silicide, covers the entire surface of the scanning circuit portion, and doubles as a light shielding layer.
子において、前記電荷蓄積部の蓄積電荷が読み出された
直後には、前記光電変換部および前記電荷蓄積部を空乏
化できる電圧が印加可能な構成であることを特徴とする
積層形固体撮像素子。7. The image pickup device according to claim 1, wherein a voltage capable of depleting the photoelectric conversion unit and the charge storage unit is provided immediately after the stored charge in the charge storage unit is read out. A laminated solid-state imaging device having a structure capable of applying voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21279492A JP3148384B2 (en) | 1992-08-10 | 1992-08-10 | Stacked solid-state image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21279492A JP3148384B2 (en) | 1992-08-10 | 1992-08-10 | Stacked solid-state image sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0661467A true JPH0661467A (en) | 1994-03-04 |
JP3148384B2 JP3148384B2 (en) | 2001-03-19 |
Family
ID=16628494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21279492A Expired - Fee Related JP3148384B2 (en) | 1992-08-10 | 1992-08-10 | Stacked solid-state image sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3148384B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156310A (en) * | 2011-01-26 | 2012-08-16 | Sony Corp | Solid-state imaging device, method of manufacturing solid state imaging device, and electronic apparatus |
JP2013527597A (en) * | 2010-03-19 | 2013-06-27 | インヴィサージ テクノロジーズ インコーポレイテッド | Image sensor using photosensitive semiconductor diode |
US8786997B2 (en) | 2009-09-30 | 2014-07-22 | Kito Corporation | Non-excited operation type electromagnetic brake control device and method |
WO2015087611A1 (en) * | 2013-12-13 | 2015-06-18 | ソニー株式会社 | Imaging element and imaging device |
-
1992
- 1992-08-10 JP JP21279492A patent/JP3148384B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8786997B2 (en) | 2009-09-30 | 2014-07-22 | Kito Corporation | Non-excited operation type electromagnetic brake control device and method |
JP2013527597A (en) * | 2010-03-19 | 2013-06-27 | インヴィサージ テクノロジーズ インコーポレイテッド | Image sensor using photosensitive semiconductor diode |
US9293487B2 (en) | 2010-03-19 | 2016-03-22 | Invisage Technologies, Inc. | Image sensors employing sensitized semiconductor diodes |
US9666634B2 (en) | 2010-03-19 | 2017-05-30 | Invisage Technologies, Inc. | Image sensors employing sensitized semiconductor diodes |
US9972653B2 (en) | 2010-03-19 | 2018-05-15 | Invisage Technologies, Inc. | Image sensors employing sensitized semiconductor diodes |
KR20180113643A (en) * | 2010-03-19 | 2018-10-16 | 인비사지 테크놀로지스, 인크. | Image sensors employing sensitized semiconductor diodes |
JP2012156310A (en) * | 2011-01-26 | 2012-08-16 | Sony Corp | Solid-state imaging device, method of manufacturing solid state imaging device, and electronic apparatus |
WO2015087611A1 (en) * | 2013-12-13 | 2015-06-18 | ソニー株式会社 | Imaging element and imaging device |
US9761628B2 (en) | 2013-12-13 | 2017-09-12 | Sony Corporation | Imaging element and imaging device |
Also Published As
Publication number | Publication date |
---|---|
JP3148384B2 (en) | 2001-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3645585B2 (en) | Charge coupled device type solid-state imaging device having overflow drain structure | |
US7687872B2 (en) | Back-lit image sensor with a uniform substrate temperature | |
US20090075416A1 (en) | Semiconductor imaging device and fabrication process thereof | |
JPH0318793B2 (en) | ||
US5101255A (en) | Amorphous photoelectric conversion device with avalanche | |
US5828091A (en) | Interline charge coupled device solid state image sensor | |
JPH0982932A (en) | Solid state image sensing element | |
JPH02100363A (en) | Solid-state image sensing element | |
JPH0513748A (en) | Solid-state image pickup element | |
JP3148384B2 (en) | Stacked solid-state image sensor | |
JPH0621427A (en) | Photoelectric conversion device | |
JP2917361B2 (en) | Solid-state imaging device | |
JPH0846168A (en) | Solid-state image pickup device | |
US5767560A (en) | Photoelectric conversion device and method of driving the same | |
US5343061A (en) | Solid-state imaging device suppressing dark-current noise | |
JPH0430192B2 (en) | ||
JP3590158B2 (en) | MOS amplification type imaging device | |
JP2982206B2 (en) | Solid-state imaging device | |
JPH0449787B2 (en) | ||
EP0276683B1 (en) | Photoelectric conversion device | |
JP2901328B2 (en) | Solid-state imaging device | |
Chikamura et al. | A high-sensitivity solid-state image sensor using a thin-film ZnSe-Zn 1-x Cd x Te heterojunction photosensor | |
JPH07115183A (en) | Layer-built solid-state image pickup device | |
JP2674524B2 (en) | Solid-state imaging device and driving method thereof | |
Kaneko | Solid-State Image Sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |