JPH0659169A - Optical fiber cable for high temperature - Google Patents
Optical fiber cable for high temperatureInfo
- Publication number
- JPH0659169A JPH0659169A JP4235298A JP23529892A JPH0659169A JP H0659169 A JPH0659169 A JP H0659169A JP 4235298 A JP4235298 A JP 4235298A JP 23529892 A JP23529892 A JP 23529892A JP H0659169 A JPH0659169 A JP H0659169A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- inner pipe
- end side
- pipe
- sealed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高温雰囲気で使用され
る高温用光ファイバケーブルに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature optical fiber cable used in a high temperature atmosphere.
【0002】[0002]
【従来の技術】通常の光ファイバケーブルは、−30℃
〜60℃程度の温度雰囲気での使用が考慮されている。
そして、これ以上の温度雰囲気で使用する場合は、図
3に示すように光ファイバAの被覆材を、シリコン、ポ
リイミド、セラミック等の耐熱性材料で製し、これを耐
熱パイプBに入れて保護するように構成した高温用光フ
ァイバケーブルを用いることが一般的である。2. Description of the Related Art A typical optical fiber cable is -30 ° C.
It is considered to be used in an atmosphere with a temperature of about -60 ° C.
When used in a temperature atmosphere higher than this, as shown in FIG. 3, the coating material of the optical fiber A is made of a heat resistant material such as silicon, polyimide, or ceramic, and is put in a heat resistant pipe B for protection. It is common to use a high temperature optical fiber cable configured as described above.
【0003】[0003]
【発明が解決しようとする課題】光ファイバAを耐熱パ
イプB内に収容するように構成した耐熱用光ファイバケ
ーブルは、これを高温雰囲気に晒した場合、光ファイバ
の被覆材または当該パイプ自身等から水素を発生すると
共に、当該水素がファイバ内に入り込み、光ファイバの
伝送損失を増加させてしまうと言うような問題が生じ
た。The heat-resistant optical fiber cable constructed so that the optical fiber A is housed in the heat-resistant pipe B is, when exposed to a high temperature atmosphere, a coating material for the optical fiber or the pipe itself. There is a problem that hydrogen is generated from the hydrogen and the hydrogen enters the fiber to increase the transmission loss of the optical fiber.
【0004】このような問題を解消するために、従来、
パイプ内に不活性ガスを吹き流すという方法がとられて
いる。 そして、通常用いられている一層のパイプの場
合、その遠端側に排気装置を設けるか、ガスをそのまゝ
吹き流してしまうと言う、何れか方法が採られている。
然し乍、排気装置を設ける場合、これを設置するスペ
ースを確保しなければならないと言う問題が生じ、また
ガスをそのまゝ吹き流した場合、塵、埃等が舞い上がっ
てしまうと言うような問題が生じることを余儀なくされ
た。In order to solve such a problem, conventionally,
A method of blowing an inert gas into the pipe is adopted. In the case of a normally used single-layer pipe, either an exhaust device is provided at the far end side or gas is blown off as it is.
However, when an exhaust device is installed, there is a problem that a space for installing the exhaust device must be secured. Was forced to occur.
【0005】本発明は、上記したような従来における問
題を解消し、光ファイバの高温特性の向上化を図った新
規の高温用光ファイバケーブルを提供するものである。The present invention provides a novel high-temperature optical fiber cable which solves the above-mentioned conventional problems and improves the high-temperature characteristics of the optical fiber.
【0006】[0006]
【課題を解決するための手段】本発明は、ケーブル構造
を二重パイプ構造とし、内側パイプの近端側にはガス封
入機構を設け、外側パイプの遠端側を封止し、内側パイ
プの近端側から不活性ガスを封入して、光ファイバを常
時不活性ガス雰囲気に保つことに依り、高温条件下にお
ける水素に依る伝送損失及び機械的強度劣化を少なく
し、高温特性を著しく向上を図るようにしたものであ
る。 更に、外側パイプの遠端側を封止して不活性ガス
が遠端側での排出をなくすことに依り、塵、埃等の舞い
上げの解消化を図ったものである。According to the present invention, the cable structure is a double pipe structure, and a gas filling mechanism is provided on the near end side of the inner pipe to seal the far end side of the outer pipe, By enclosing an inert gas from the near end side and keeping the optical fiber in an inert gas atmosphere at all times, transmission loss and mechanical strength deterioration due to hydrogen under high temperature conditions are reduced, and high temperature characteristics are significantly improved. This is what was planned. Further, by sealing the far end side of the outer pipe to eliminate the discharge of the inert gas at the far end side, the rise of dust and the like is eliminated.
【0007】[0007]
【実施例】図1に於いて、1は光ファイバであって、そ
の外周面は断熱性材料に依って被覆してある。 2はス
テンレス製の内側パイプ、3はステンレス製の外側パイ
プであって、上記した光ファイバ1は内側パイプ2に挿
入貫通されると共に、当該内側パイプ2は外側パイプ3
内に挿入してある。 そして、当該内側パイプ2は0.7
〜3.0 mm程度の内径を具えたものであり、また、外側
パイプ3は、当該内側パイプ2より1mmφ以上の大きい
内径を具えたものを用いることが望ましい。DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 denotes an optical fiber, the outer peripheral surface of which is coated with a heat insulating material. Reference numeral 2 is an inner pipe made of stainless steel, 3 is an outer pipe made of stainless steel, and the above-mentioned optical fiber 1 is inserted and penetrated into the inner pipe 2, and the inner pipe 2 is connected to the outer pipe 3
It is inserted inside. And the inner pipe 2 is 0.7
It is preferable that the inner pipe has an inner diameter of approximately 3.0 mm, and the outer pipe 3 has an inner diameter larger than that of the inner pipe 2 by 1 mmφ or more.
【0008】上記内側パイプ2であるが、これの近端側
は封止材Mで封止すると共に、その近傍にガス封入口4
を設けてある。 そして、当該内側パイプ2の遠端側は
開放状態に保ってある。The inner pipe 2 is sealed with a sealing material M on the near end side thereof, and a gas charging port 4 is provided in the vicinity thereof.
Is provided. The far end side of the inner pipe 2 is kept open.
【0009】前記した外側パイプ3であるが、その近端
側は上記内側パイプ2の外周面に対し封止材Nを介して
封止すると共に、その近傍にはガス排出口5が設けられ
ている。 そして、当該外側パイプ3の遠端側は、上記
内側パイプ2の遠端より所要間隔を保った位置(ガスの
流通が阻害されない程度の間隔)で封止してある。Pは
その封止材である。The outer pipe 3 described above has its near end side sealed to the outer peripheral surface of the inner pipe 2 via a sealing material N, and a gas discharge port 5 is provided in the vicinity thereof. There is. Then, the far end side of the outer pipe 3 is sealed at a position keeping a required distance from the far end of the inner pipe 2 (a distance that does not hinder the flow of gas). P is the sealing material.
【0010】図1に示す状態において、N2 等の不活性
ガスをガス封入口4から内側パイプ2内に導入する。
そして、当該内側パイプ2は、その遠端側が開放状態と
なっているため、不活性ガスは当該遠端側から外側パイ
プ3に流入し、これの内部を満たした後に、当該外側パ
イプ3の近端側に設けたガス排出口5から排出されるこ
ととなる。In the state shown in FIG. 1, an inert gas such as N 2 is introduced into the inner pipe 2 through the gas charging port 4.
Since the inner pipe 2 is open on the far end side, the inert gas flows into the outer pipe 3 from the far end side, fills the inside thereof, and then closes to the outer pipe 3. The gas is discharged from the gas discharge port 5 provided on the end side.
【0011】上記のようなN2 等の不活性ガスの循環に
基づき、光ファイバ1は不活性ガス雰囲気中に保たれ、
従って、光ファイバケーブルが高温雰囲気に晒されて水
素ガスが発生しても、光ファイバの伝送損失の増加がお
さえられる。Due to the circulation of the inert gas such as N 2 as described above, the optical fiber 1 is kept in the inert gas atmosphere,
Therefore, even if the optical fiber cable is exposed to a high temperature atmosphere and hydrogen gas is generated, an increase in transmission loss of the optical fiber can be suppressed.
【0012】また、ガス封入口4及びガス排出口5を内
側パイプ2及び外側パイプ3の近端側に設けてあるた
め、遠端側に於いては外側パイプの端部封止を成すだけ
で事足り、これに依り、遠端側での端末処理構造が単純
化されるばかりでなく、塵、埃等が舞い上がるようなこ
とがない。Further, since the gas inlet port 4 and the gas outlet port 5 are provided on the near end side of the inner pipe 2 and the outer pipe 3, only the end portion of the outer pipe is sealed at the far end side. Sufficiently, by this, not only the terminal processing structure on the far end side is simplified, but also dust and the like do not fly up.
【0012】図2は本発明の他の実施例を示したもので
ある。 すなわち、光ファイバの散乱光等を測定(OTD
R,FTR)する場合、遠端側から光ファイバ1を出す必要
がないため、図2に示すように、当該光ファイバ1は内
側パイプ2内で切断されフリーな状態と成るようにす
る。FIG. 2 shows another embodiment of the present invention. That is, the scattered light of the optical fiber is measured (OTD
In the case of (R, FTR), it is not necessary to project the optical fiber 1 from the far end side, so that the optical fiber 1 is cut in the inner pipe 2 to be in a free state, as shown in FIG.
【0013】すなわち、図1に示すような構成の場合、
高温雰囲気になると、光ファイバ1の線膨張係数に比
べ、ステンレス製の内側パイプ2及び外側パイプ3の膨
張係数が大きいため、当該光ファイバ1は伸ばされるこ
ととなる。 これに対して図2に示すような構成の場
合、光ファイバ1が外側パイプ3の遠端部端末に固定さ
れていないため、光ファイバ1に加わる伸び及び歪が緩
和され、光ファイバケーブルの信頼性が向上する。That is, in the case of the configuration shown in FIG.
In a high-temperature atmosphere, the expansion coefficient of the inner pipe 2 and the outer pipe 3 made of stainless steel is larger than that of the optical fiber 1, so that the optical fiber 1 is stretched. On the other hand, in the case of the configuration shown in FIG. 2, since the optical fiber 1 is not fixed to the distal end portion of the outer pipe 3, the extension and strain applied to the optical fiber 1 are alleviated, and the reliability of the optical fiber cable is reduced. The property is improved.
【0014】処で、内側パイプ2と外側パイプ3の材質
であるが、これは既述したようなステンレス材料以外、
温度雰囲気が100℃程度までの場合は架橋ポリエチレ
ン、200℃程度までの場合はふっ素系樹脂(TFE、FEE
TFE、PFA等)、200℃以上の場合はSUS、鉄、アル
ミ、銅、チタン等が挙げられる。Here, the materials of the inner pipe 2 and the outer pipe 3 are, except for the stainless steel material as described above,
Cross-linked polyethylene when the temperature atmosphere is up to about 100 ℃, and fluororesin (TFE, FEE) when it is up to about 200 ℃.
(TFE, PFA, etc.), and SUS, iron, aluminum, copper, titanium and the like when the temperature is 200 ° C. or higher.
【0015】そして、内側パイプ2及び外側パイプ3内
に導入する不活性ガスとしては、記述したN2 ガス以
外、Heガス、Arガス等が挙げられる。Examples of the inert gas introduced into the inner pipe 2 and the outer pipe 3 include He gas, Ar gas and the like, in addition to the N 2 gas described above.
【0016】また、光ファイバ1の被覆用材料として
は、シリコン、カーボン、ポリイミド、テフロン、有機
金属ポリマー(セラミック等)の単体、及び、これらを
組合わせたものが用いられる。As the coating material for the optical fiber 1, a single substance of silicon, carbon, polyimide, Teflon, organometallic polymer (ceramic or the like), or a combination thereof is used.
【0017】[0017]
【発明の効果】本発明は、ケーブル構造を二重パイプ構
造とし、内側パイプの近端側にはガス封入機構を設け、
外側パイプの遠端側を封止し、内側パイプの近端側から
不活性ガスを封入するように構成したから、光ファイバ
は常時不活性ガス雰囲気に保たれることとなり、従っ
て、高温条件下における発生水素に依る伝送損失及び機
械的強度劣化を少なくし、高温特性を著しく向上させる
こととなる。According to the present invention, the cable structure is a double pipe structure, and the gas filling mechanism is provided on the near end side of the inner pipe.
Since the far end side of the outer pipe is sealed and the inert gas is filled from the near end side of the inner pipe, the optical fiber is always kept in an inert gas atmosphere, and therefore, under high temperature conditions. In this case, the transmission loss and mechanical strength deterioration due to the generated hydrogen in 2) are reduced, and the high temperature characteristics are remarkably improved.
【0018】更に本発明は、光ファイバケーブルの近端
部でガス封入及び排出が行われるように構成したから、
遠端側での処理が簡便化されるばかりでなく、ガス排気
に基づき遠端側で塵、埃等を舞い上げてしまうような事
柄を全く解消する。Furthermore, according to the present invention, gas filling and discharging are performed at the near end of the optical fiber cable.
This not only simplifies the treatment on the far end side, but also completely eliminates the matter of dusting up the far end side due to gas exhaust.
【0019】図4は高温条件下における光ファイバの伝
達特性を示したグラフであって、下記の条件で試験を行
った結果である。光ファイバは、1.3μm帯シングルモー
ド(5M)ファイバに、厚さ0.05μmのカーボンを被覆
した上に有機ポリマを被覆して外径145μmとしたものを
用いた。そして、当該光ファイバを、内径0.7mm 、外径
0.9mm のステンレス製の二重パイプ内に入れる。 この
状態で温度を上げると共に、前記パイプ内を不活性ガス
雰囲気とした場合と、そうでない場合(大気雰囲気)と
の両者について、その伝達損失変化量を測定した。 そ
の結果は図4に示す通りであった。 この結果からも、
光ファイバは不活性ガス雰囲気に保たれていた方が高温
での損失変化が少ないことが確認された。FIG. 4 is a graph showing the transmission characteristics of an optical fiber under high temperature conditions, which is the result of a test conducted under the following conditions. The optical fiber used was a 1.3 μm band single mode (5M) fiber coated with carbon having a thickness of 0.05 μm and further coated with an organic polymer to have an outer diameter of 145 μm. And, the optical fiber, 0.7mm inner diameter, outer diameter
Put in a 0.9mm stainless steel double pipe. In this state, the temperature was raised and the amount of change in the transmission loss was measured both in the case where the inside of the pipe was in an inert gas atmosphere and in the case where it was not (atmosphere atmosphere). The result was as shown in FIG. From this result,
It was confirmed that the loss change at high temperature was smaller when the optical fiber was kept in the inert gas atmosphere.
【図1】本発明の第1の実施例を示す要部の拡大断面図
である。FIG. 1 is an enlarged cross-sectional view of a main part showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す要部の拡大断面図
である。FIG. 2 is an enlarged cross-sectional view of a main part showing a second embodiment of the present invention.
【図3】従来例を表した拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing a conventional example.
【図4】高温条件下における光ファイバの伝達特性を示
したグラフである。FIG. 4 is a graph showing a transfer characteristic of an optical fiber under a high temperature condition.
1 光ファイバ 2 内側パイプ 3 外側パイプ 4 ガス封入口 5 ガス排出口 M 封止材 N 封止材 P 封止材 1 optical fiber 2 inner pipe 3 outer pipe 4 gas inlet 5 gas outlet M sealing material N sealing material P sealing material
Claims (2)
ァイバ(1)を、内側パイプ(2)内に貫通挿入すると共
に、当該内側パイプ(2)は外側パイプ(3)内に挿入し、
当該内側パイプ(2)の近端側は封止材(M)で封止すると
共に、その近傍に不活性ガスの封入口(4)を設け、ま
た、当該内側パイプ(2)の遠端側は開放端とし、前記外
側パイプ(3)の近端側は上記内側パイプ(2)の外周面に
対し封止材(N)を介して封止すると共に、その近傍には
ガス排出口(5)を設け、更に、当該外側パイプ(3)の遠
端側は、上記内側パイプ(2)の遠端より所定間隔を保っ
た位置で封止し、内側パイプの近端側から封入した不活
性ガスに依り光ファイバ(1)を常時不活性ガス雰囲気に
保つように構成したことを特徴とする高温用光ファイバ
ケーブル。1. An optical fiber (1) having an outer peripheral surface coated with a heat insulating material is inserted into an inner pipe (2), and the inner pipe (2) is inserted into an outer pipe (3). ,
The near end side of the inner pipe (2) is sealed with a sealing material (M) and an inert gas filling port (4) is provided in the vicinity thereof, and the far end side of the inner pipe (2) is provided. Is an open end, the near end side of the outer pipe (3) is sealed to the outer peripheral surface of the inner pipe (2) through a sealing material (N), and the gas discharge port (5 ) Is further provided, and the far end side of the outer pipe (3) is sealed at a position keeping a predetermined distance from the far end of the inner pipe (2), and is sealed from the near end side of the inner pipe. A high-temperature optical fiber cable characterized in that the optical fiber (1) is always kept in an inert gas atmosphere depending on gas.
(2)内で切断されフリーな状態と成るように構成した請
求項1に記載の高温用光ファイバケーブル。2. The inner end of the optical fiber (1) is attached to the far end.
The high-temperature optical fiber cable according to claim 1, wherein the optical fiber cable is cut so as to be in a free state in (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4235298A JPH0659169A (en) | 1992-08-11 | 1992-08-11 | Optical fiber cable for high temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4235298A JPH0659169A (en) | 1992-08-11 | 1992-08-11 | Optical fiber cable for high temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0659169A true JPH0659169A (en) | 1994-03-04 |
Family
ID=16984047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4235298A Pending JPH0659169A (en) | 1992-08-11 | 1992-08-11 | Optical fiber cable for high temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0659169A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7025379B2 (en) | 1993-09-16 | 2006-04-11 | Automotive Technologies International, Inc. | Side impact sensor systems |
CN111766667A (en) * | 2020-07-16 | 2020-10-13 | 杭州富通通信技术股份有限公司 | Anti-freezing high-temperature-resistant optical cable |
CN113522685A (en) * | 2021-06-21 | 2021-10-22 | 昂纳信息技术(深圳)有限公司 | Dispensing method of sealing tube and glue filling system |
-
1992
- 1992-08-11 JP JP4235298A patent/JPH0659169A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7025379B2 (en) | 1993-09-16 | 2006-04-11 | Automotive Technologies International, Inc. | Side impact sensor systems |
US7070202B2 (en) | 1993-09-16 | 2006-07-04 | Automotive Technologies International, Inc. | Side impact sensor systems |
CN111766667A (en) * | 2020-07-16 | 2020-10-13 | 杭州富通通信技术股份有限公司 | Anti-freezing high-temperature-resistant optical cable |
CN111766667B (en) * | 2020-07-16 | 2023-05-05 | 杭州富通通信技术股份有限公司 | Antifreezing high-temperature-resistant optical cable |
CN113522685A (en) * | 2021-06-21 | 2021-10-22 | 昂纳信息技术(深圳)有限公司 | Dispensing method of sealing tube and glue filling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6225602B1 (en) | Vertical furnace for the treatment of semiconductor substrates | |
US6372048B1 (en) | Gas processing apparatus for object to be processed | |
JPH0659169A (en) | Optical fiber cable for high temperature | |
US3064128A (en) | Measuring apparatus | |
JP2003344170A (en) | Temperature measuring probe device and sensor protective tube therefor | |
US3388957A (en) | Gaseous lenses employing catalytic combustion | |
US4433419A (en) | Electrode purge sleeve for glass melting furnaces | |
JP3572312B2 (en) | Ceramic sheath type thermocouple | |
JP2000044269A (en) | Dehydrating and transparent vitrifying apparatus for porous optical fiber preform | |
JP2000252273A (en) | Semiconductor manufacturing equipment | |
EP0401172A1 (en) | A heating mantle with a porous radiation wall | |
US5402038A (en) | Method for reducing molybdenum oxidation in lamps | |
US3479144A (en) | Catalytic burner | |
JP3592629B2 (en) | Temperature measuring probe | |
KR102023117B1 (en) | Piping unit and heating system having the same | |
JP3325384B2 (en) | Temperature measurement device for heat treatment furnace | |
JPH04295810A (en) | Coated optical fiber for high temperature | |
US1494224A (en) | Valve for blast furnaces | |
JPS62262420A (en) | Method of sealing heat resisting tube for heating semiconductor | |
JP3329189B2 (en) | Ceramic sheath type thermocouple | |
KR20010046221A (en) | Device for cooling flange of horizontal type furnace for Low Pressure Chemical Vaper Deposition | |
KR0155920B1 (en) | Pyrogenic unit of semiconductor device manufacture | |
KR20010045802A (en) | Device for sealing flange of horizontal type furnace for Low Pressure Chemical Vaper Deposition | |
JP2003112257A (en) | Refractory nozzle | |
JPS60251616A (en) | Furnace core tube device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040224 |
|
A521 | Written amendment |
Effective date: 20040421 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040910 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Effective date: 20040930 Free format text: JAPANESE INTERMEDIATE CODE: A911 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20050318 |
|
A521 | Written amendment |
Effective date: 20070409 Free format text: JAPANESE INTERMEDIATE CODE: A523 |