[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0658206B2 - Positioning assembly device - Google Patents

Positioning assembly device

Info

Publication number
JPH0658206B2
JPH0658206B2 JP61175505A JP17550586A JPH0658206B2 JP H0658206 B2 JPH0658206 B2 JP H0658206B2 JP 61175505 A JP61175505 A JP 61175505A JP 17550586 A JP17550586 A JP 17550586A JP H0658206 B2 JPH0658206 B2 JP H0658206B2
Authority
JP
Japan
Prior art keywords
shaped body
plate
shaft
inner diameter
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61175505A
Other languages
Japanese (ja)
Other versions
JPS6332304A (en
Inventor
輝 藤井
和重 橋本
達弥 新家
健 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61175505A priority Critical patent/JPH0658206B2/en
Publication of JPS6332304A publication Critical patent/JPS6332304A/en
Publication of JPH0658206B2 publication Critical patent/JPH0658206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は計測方法およびその装置に関し、特に複雑な形
状を有する被測定物に対して非接触で測定および/また
は位置決めをするのに好適な計測方法およびその装置に
関する。
The present invention relates to a measuring method and an apparatus therefor, and is particularly suitable for non-contact measurement and / or positioning of an object to be measured having a complicated shape. The present invention relates to a measuring method and an apparatus thereof.

〔従来の技術〕[Conventional technology]

精密部品の組立には近年ますます精密な寸法計測技術が
要求され、扱う部品の大きさや形状、および材質などの
制約条件があり、特にμm級の精度を要求される計測と
位置決めについては実用化が難しく、TVカメラを使用
したものがあるが、解像度が低いため、観測視野を大き
くとれない。またレーザ光線を使った計測が盛んである
が、使用上の制約が多く、装置は大型で高価なものにな
る。そこで近年解像度の高いラインセンサ(電荷結合素
子)などを使用して、位置計測あるいは形状計測を行な
っているものが多く見られる。
Assembling of precision parts requires more and more precise dimension measurement technology in recent years, and there are constraints such as size and shape of the parts to be handled, and materials. Practical application of measurement and positioning, which requires μm-class accuracy. However, there are some that use a TV camera, but the observation field of view cannot be large because the resolution is low. Although measurement using a laser beam is popular, there are many restrictions in use, and the device becomes large and expensive. Therefore, in recent years, it is often seen that position measurement or shape measurement is performed using a line sensor (charge coupled device) having a high resolution.

「被測定体の中心位置検出装置」として特開昭56-35004
号および特開昭56-35006号発明に開示されているもの
は、ラインセンサによる一次元計測方法で、データ処理
の簡素化を目的としたものである。また「上辺の幅の測
定装置」として特公昭55-6163号発明および「間隙およ
び線の電気・光学的測定方法および装置」として特公昭
55-13525号発明に開示されているものは、透過照明方式
による計測である。
Japanese Unexamined Patent Application Publication No. 56-35004
The inventions disclosed in Japanese Patent Laid-Open No. 56-35006 and Japanese Patent Laid-Open No. 56-35006 are one-dimensional measurement methods using a line sensor and are intended to simplify data processing. In addition, the invention of Japanese Examined Patent Publication No. 55-6163 as “a device for measuring the width of the upper side” and the Japanese Patent Publication No.
What is disclosed in the invention of No. 55-13525 is measurement by a transillumination system.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

精密部品の組立に関する部品計測方法の一例として、一
つの部品の穴に他の部品の軸を嵌合するに当り、隙間が
小さくかつ非接触で挿入するような精密組立を行なう場
合には、それぞれの嵌合部分の端縁を正確に計測しなけ
ればならない。なぜならば隙間が小さい精密な嵌合は、
こじれや塵埃の介在によって部品の損傷を招くことが多
いからである。しかし組付け部品の穴の内径、軸の外径
の計測は、部品の構造、加工精度、照明方法など精密計
測が困難な要因が多く、特に穴を有する部品の内径を非
接触で計測することは非常に高度の装置と技術を要す
る。例えば第5図は磁気ディスク7の穴の内径近傍の断
面を示す拡大図であるが、第5図(a)〜(d)のうち
(c)、(d)が代表的な形状例であって、高精度加工
が要求される部分は、ディスク表面33と組立時の内接面
34であり、テーパ部35、36、37は表面33、内接面34ほどの
精度は要求されない。このため反射光を利用して計測す
る方法においては、テーパ部35の加工バラツキが計測精
度に大きく影響を与えるのである。
As an example of a part measurement method related to the assembly of precision parts, when fitting the shaft of another part into the hole of one part, there is a small gap and when performing precision assembly such that it is inserted without contact, The edge of the mating part of must be measured accurately. Because the precise fitting with a small gap,
This is because the components are often damaged by twisting or the inclusion of dust. However, when measuring the inner diameter of the hole and the outer diameter of the shaft of the assembled parts, there are many factors that make precise measurement difficult, such as the structure of the part, processing accuracy, lighting method, etc. Requires very sophisticated equipment and technology. For example, FIG. 5 is an enlarged view showing a cross section in the vicinity of the inner diameter of the hole of the magnetic disk 7. Of FIGS. 5A to 5D, (c) and (d) are typical shape examples. The parts that require high-precision machining are the disk surface 33 and the inscribed surface during assembly.
34, the taper portions 35, 36 and 37 are not required to have the same accuracy as the surface 33 and the inscribed surface 34. Therefore, in the method of measuring using reflected light, the processing variation of the tapered portion 35 has a great influence on the measurement accuracy.

従来技術のうち被測定物からの反射光を計測する方法
は、照射角度と被測定物の構造の影響を強く受けるため
困難性があった。上述したラインセンサを利用した従来
技術の場合、真円度ないし円の中心点を求めるには十分
な精度を備えているが、磁気ディスクの穴と軸の径に対
し、μm級の測定を行なうには精度および経費の点で問
題があり、また電気光学的測定技術を用い、被測定物に
対して測定器の反対側に照射光源を配置するいわゆる透
過照明を用いることにより、被測定物のシルエットを計
測する場合には、装置が大型になったり組立装置の構造
によっては計測が不可能になるという問題点があった。
Among the conventional techniques, the method of measuring the reflected light from the measured object has a difficulty because it is strongly influenced by the irradiation angle and the structure of the measured object. In the case of the conventional technique using the above-mentioned line sensor, the accuracy is sufficient for obtaining the roundness or the center point of the circle, but the measurement of the μm class is performed for the hole of the magnetic disk and the diameter of the shaft. Have problems in terms of accuracy and cost, and by using so-called transmitted illumination in which an irradiation light source is arranged on the opposite side of the measuring device with respect to the measured object, electro-optical measurement technology is used. When measuring the silhouette, there is a problem that the device becomes large and the measurement becomes impossible depending on the structure of the assembly device.

本発明の目的は組立装置の構造上の制約を受けることな
く、部品内外形寸法の精密計測および/または位置決め
方法とその装置を提供することにある。
An object of the present invention is to provide a method and apparatus for precisely measuring and / or locating internal and external dimensions of parts without being restricted by the structure of the assembling apparatus.

〔問題点を解決するための手段〕 上記の目的は、軸状体の外径と板状体の内径を計測し、
前記軸状体と前記板状体を嵌合させる位置決め組付装置
において、前記軸状体を載置し移動可能に設けたベース
と、前記ベースの上方に設けられ、前記板状体を載置し
移動可能な板状体供給装置と、対象物すなわち前記軸状
体と前記板状体の上方に設けられ、光源ランプ、レン
ズ、ハーフミラー、対物レンズを有し、前記光源ランプ
からの光を前記対象物に照射する垂直落射照明部、及
び、前記対物レンズ、前記ハーフミラー、シリンドリカ
ルレンズ、面積当りの光情報を一次元処理するラインセ
ンサで受光し、前記板状体の内径を計測する観測部を有
する鏡筒と、前記板状体の下面に設けた反射板とを備
え、前記鏡筒により前記軸状体の外径を計測したのち、
前記反射板からの反射光を背景光として前記板状体内径
の内径を計測し、前記軸状体の外径と前記板状体内径の
内径が互いに対応する円周上の3点の計測ギャップ値が
概ね等しくなったとき、前記軸状体と前記板状体とを非
接触で嵌合させることを特徴とする位置決め組付装置に
よって達成される。
[Means for Solving Problems] The above-mentioned object is to measure the outer diameter of the shaft-shaped body and the inner diameter of the plate-shaped body,
In a positioning and assembling device for fitting the shaft-shaped body and the plate-shaped body together, a base on which the shaft-shaped body is mounted and movably provided, and a plate-shaped body mounted above the base are mounted. And a movable plate-shaped body supplying device, and an object, that is, the shaft-shaped body and the plate-shaped body, provided above the plate-shaped body, and has a light source lamp, a lens, a half mirror, and an objective lens. A vertical epi-illumination unit for irradiating the object, the objective lens, the half mirror, a cylindrical lens, a line sensor for one-dimensionally processing light information per area, and an observation for measuring the inner diameter of the plate-shaped body. A lens barrel having a portion, and a reflection plate provided on the lower surface of the plate-shaped body, after measuring the outer diameter of the shaft-shaped body by the lens barrel,
The inner diameter of the inner diameter of the plate-shaped body is measured by using the reflected light from the reflection plate as background light, and the measurement gaps at three points on the circumference where the outer diameter of the shaft-shaped body and the inner diameter of the inner diameter of the plate-shaped body correspond to each other. This is achieved by a positioning and assembling device characterized in that when the values become substantially equal, the shaft-shaped body and the plate-shaped body are fitted in a non-contact manner.

〔作用〕[Action]

第5図の例において、磁気ディスクの底面すなわち計測
方向から見て磁気ディスクの裏側に反射板を密着させ、
反射光を背景光として計測に利用することにより、テー
パ部の加工バラツキに影響されることなく部品端縁の精
密計測、特に光の照射方向と平行な面の計測ができる。
この方式は第5図に示した断面形状(a)〜(d)すべ
てに有効である。
In the example of FIG. 5, a reflection plate is closely attached to the bottom surface of the magnetic disk, that is, the back side of the magnetic disk when viewed from the measuring direction,
By using the reflected light as the background light for the measurement, it is possible to perform the precise measurement of the edge of the component without being affected by the processing variation of the taper portion, especially the measurement of the surface parallel to the light irradiation direction.
This method is effective for all the sectional shapes (a) to (d) shown in FIG.

〔実施例〕〔Example〕

本発明の実施例を第1〜10図により説明する。 An embodiment of the present invention will be described with reference to FIGS.

精密組立の対象である磁気デイスク装置は、第2図に示
すように、スピンドル18にディスク19とスペーサ20を交
互に挿入し、複数段積み重ねて固定するが、精密な記録
媒体としての製品の性質上無塵環境下での処理が要求さ
れるから、この組立には非接触挿入が最も好ましい。
As shown in FIG. 2, the magnetic disk device, which is the target of precision assembly, alternately inserts the disk 19 and the spacer 20 into the spindle 18 and stacks and fixes them in multiple stages. Non-contact insertion is the most preferable for this assembly because processing in a dust-free environment is required.

本発明に係る磁気ディスク装置組立の概要は、第1図お
よび第3図、第4図に示されている。第1図においてX
Yテーブル16によって位置決めされた磁気ディスク装置
のベース17を、姿勢制御機構(図示せず)によりスピン
ドル18がベース17に対し垂直になるように固定する。第
3図においてスピンドル18の外径を計測し、続いてアー
ム14を介して真空吸着リング26で吸着保持されたディス
ク19の内径を計測し、位置ずれ量を算出して、微動位置
決め機構(図示せず)により、ディスク19の位置を修正
後、ディスク19をスピンドル18へ挿入する。
The outline of the magnetic disk device assembly according to the present invention is shown in FIGS. 1, 3, and 4. X in FIG.
The base 17 of the magnetic disk device positioned by the Y table 16 is fixed by an attitude control mechanism (not shown) so that the spindle 18 is perpendicular to the base 17. In FIG. 3, the outer diameter of the spindle 18 is measured, and subsequently, the inner diameter of the disk 19 sucked and held by the vacuum suction ring 26 via the arm 14 is measured to calculate the position shift amount, and the fine movement positioning mechanism (Fig. After correcting the position of the disk 19 by not shown), the disk 19 is inserted into the spindle 18.

計測部と観測光路の構成は第1図に示すように、視覚セ
ンサにラインセンサ1を使用して、その前面にシリンド
リカルレンズ2と干渉フィルタ3を配し、対物レンズ4
と、照明ランプ5、広帯域波長フィルタ(以下NDフィ
ルタと記す)6′、レンズ6、ハーフミラー7を含んで
一体化された鏡筒8は、焦点合わせ装置9によって上下
動する機構になっており、被測定物であるディスク19と
スピンドル18に対する焦点合わせを自動的に行なう。照
明はランプ5の光源をレンズ6で集束し、ハーフミラー
7を介した垂直落射方式を採用している。上記NDフィ
ルタ6′には、ロータリソレノイドによる光路開閉機構
(図示せず)が設置され、観測光路上のNDフィルタ
6′の有無により、光量を調節できるようになってい
る。総体的には、上記鏡筒8は観測面に対面して円周方
向に120度間隔で三組設置されている。また被測定物の
下部にスライド機構を用いた反射板15を配置したことが
本計測装置の特徴であって、本実施例図はディスク19の
穴の内径の計測状況を示している。
As shown in FIG. 1, the configuration of the measuring unit and the observation optical path is such that a line sensor 1 is used as a visual sensor, a cylindrical lens 2 and an interference filter 3 are arranged in front of it, and an objective lens 4 is used.
The lens barrel 8 including the illumination lamp 5, the broadband wavelength filter (hereinafter referred to as ND filter) 6 ′, the lens 6, and the half mirror 7 is vertically moved by the focusing device 9. Focusing is automatically performed on the disk 19 and the spindle 18 which are the objects to be measured. For illumination, the light source of the lamp 5 is focused by a lens 6, and a vertical epi-illumination method via a half mirror 7 is adopted. An optical path opening / closing mechanism (not shown) using a rotary solenoid is installed in the ND filter 6 ', and the amount of light can be adjusted depending on the presence or absence of the ND filter 6'on the observation optical path. Overall, three sets of the lens barrel 8 are installed facing the observation surface at 120 ° intervals in the circumferential direction. Further, the feature of the present measuring device is that the reflecting plate 15 using the slide mechanism is arranged below the object to be measured, and this embodiment diagram shows the measuring state of the inner diameter of the hole of the disk 19.

次に被測定物の下部に反射板15を配したことによる効果
と本発明に係る計測方法の詳細を第5図〜第7図により
説明する。第5図はディスク19の穴近傍の断面拡大図
で、(a)〜(d)に示すようないろいろな断面形状の
ものがある。この中でも非接触挿入を前提とした場合、
好ましい代表例は(c)または(d)である。組立装置
に対しては構造上の制約から透過照明が得られないた
め、最も安定した照明手段として、観測光路を使用した
垂直落射照明で例えば第5図(c)の形状断面を観測し
た例を第6〜7図に示す。
Next, the effect of arranging the reflector 15 under the object to be measured and the details of the measuring method according to the present invention will be described with reference to FIGS. FIG. 5 is an enlarged sectional view of the vicinity of the hole of the disk 19, which has various sectional shapes as shown in FIGS. Of these, assuming non-contact insertion,
Preferred representative examples are (c) or (d). Since transmitted illumination cannot be obtained from the assembly device due to structural restrictions, an example of observing the shape cross section of FIG. 5 (c) by vertical epi-illumination using the observation light path is the most stable illumination means. It is shown in FIGS.

第6図に示すディスク19の穴の断面において、表面33、
テーパ面35、36および内径面34をシリンドリカルレンズ
2を介してラインセンサ1で観測した観測波形を示すも
のが第7図であって、(a)、(b)はディスク19の下
部に反射板15を設けない場合、(c)は反射板15を使用
した場合の波形を示している。このうち(a)と(b)
の波形の相違は、第6図B−C間のテーパ面35の傾斜角
度の加工誤差による反射光量のバラツキの相違を示すも
のである。また第6図C点は第7図(a)および(b)
のいずれにもC点として明瞭に現われるけれども第6図
のB点はいずれにも明瞭に現われてこない。また最も重
要な第6図A点は第7図(a)、(b)には明瞭に捕捉
されない。つまり内接面34に近いテーパ面36はほとんど
反射光が観測されず、したがって内接面34との境界を示
すA点を識別できない。これに対してディスク19の下部
に反射板15を設置した場合の波形は(c)に示すように
テーパ面35、36の傾斜角のバラツキに関係なく反射板15
による反射波が平坦波形として現われ、内接面34の端縁
がA点として明瞭に識別される。
In the cross section of the hole of the disc 19 shown in FIG.
FIG. 7 shows observed waveforms of the taper surfaces 35, 36 and the inner diameter surface 34 observed by the line sensor 1 through the cylindrical lens 2, and FIGS. When 15 is not provided, (c) shows the waveform when the reflector 15 is used. Of these, (a) and (b)
The difference in waveform indicates the difference in the amount of reflected light due to a processing error in the inclination angle of the tapered surface 35 between FIGS. 6B and 6C. The point C in FIG. 6 is shown in FIGS. 7 (a) and 7 (b).
Although it clearly appears as point C in any of the above, the point B in FIG. 6 does not appear clearly in any of them. Also, the most important point in FIG. 6A is not clearly captured in FIGS. 7 (a) and 7 (b). That is, almost no reflected light is observed on the tapered surface 36 close to the inscribed surface 34, and therefore the point A indicating the boundary with the inscribed surface 34 cannot be identified. On the other hand, when the reflection plate 15 is installed below the disk 19, the waveform of the reflection plate 15 is irrespective of the variation in the inclination angles of the tapered surfaces 35 and 36 as shown in (c).
The reflected wave due to appears as a flat waveform, and the edge of the inscribed surface 34 is clearly identified as point A.

上記計測方法の有効性を確認し応用した実施例を示す図
が第3〜4図であって、第3図に示す計測装置23はディ
スク19を保持する真空吸着リング26と、真空吸着リング
26を上下動させるアーム14が一体構造になっている。こ
の計測装置23と、XYテーブル16で位置決めされた軸部
品のスピンドル18との間には、ディスク供給装置28があ
って、矢視X1、X2方向に摺動可能な構造を有し、ディス
ク19の供給と計測に利用される。
FIGS. 3 to 4 are views showing an embodiment in which the effectiveness of the above-described measuring method is confirmed and applied, and a measuring device 23 shown in FIG. 3 includes a vacuum suction ring 26 for holding a disk 19 and a vacuum suction ring.
An arm 14 for moving the 26 up and down has an integrated structure. A disc supply device 28 is provided between the measuring device 23 and the spindle 18 of the shaft component positioned by the XY table 16, and has a structure that is slidable in the directions X 1 and X 2 as viewed from the arrow. Used for supplying and measuring the disk 19.

ディスク供給装置28は、第4図に示すように左右2部分
に仕切られ、片側半分に反射板15の上に装着されたディ
スク19が位置決め板29で位置決めされている。この位置
決めは、粗位置決めであって観測視野に入ればよく、基
準器30で設定された位置に、位置レバー(図示せず)に
よりノブ31を操作して行なう。ディスク供給装置28内の
他の側は窓32で前段階で位置修正されたディスク19をス
ピンドル18へ挿入するための空間である。上記ディスク
19の供給と計測手順を第8図(a)〜(e)に示す。
As shown in FIG. 4, the disc supply device 28 is divided into two right and left portions, and a disc 19 mounted on the reflection plate 15 is positioned by a positioning plate 29 on one side half. This positioning is rough positioning and may be within the observation field of view, and is performed by operating the knob 31 at a position set by the reference device 30 with a position lever (not shown). The other side of the disk supply device 28 is a space for inserting the disk 19 whose position has been corrected in the previous stage in the window 32 into the spindle 18. Above disc
The supply and measurement procedures of 19 are shown in FIGS. 8 (a) to 8 (e).

(a):ディスク19がディスク供給装置28の反射板15上
に、また計測装置23は窓32上に位置している。
(a): The disk 19 is located on the reflection plate 15 of the disk supply device 28, and the measuring device 23 is located on the window 32.

(b):ディスク19が装着される。(b): The disc 19 is mounted.

(c):ディスク供給装着28が矢印P方向に摺動し、計測
装置23はディスク19を保持する。
(c): The disc supply mounting 28 slides in the direction of arrow P, and the measuring device 23 holds the disc 19.

(d):ディスク供給装置28が矢印Q方向に戻ると共に、
新たなディスク19が反射板15上に導入される。
(d): As the disk supply device 28 returns in the direction of arrow Q,
A new disc 19 is installed on the reflector 15.

(e):計測装置23により、ベース17上のスピンドル18と
ディスク19とを観測し、相互位置を修正したのちアーム
14が伸びてディスク19をスピンドル18に挿入する。この
とき次のディスク19はディスク供給装置28内に供給され
ている。
(e): The measuring device 23 observes the spindle 18 and the disk 19 on the base 17, corrects the mutual positions, and then the arm.
14 extends to insert disk 19 into spindle 18. At this time, the next disk 19 is supplied into the disk supply device 28.

(a)〜(e)は繰り返される。(a) to (e) are repeated.

次に計測データに基づく部品の位置修正の手順を第9図
および第10図を用いて説明する。前記計測装置23は三組
の鏡筒8を一本化したもので、観測穴の円周上に120度
間隔で配置されており、それぞれの計測点をS
、Sとする。まずディスク19を前記ディスク供給
装置28に装着する前にスピンドル外径40を計測し、その
後ディスク19を装着しディスク内径39を計測して、両計
測データから計測差G、G、Gを求める。
Next, a procedure for correcting the position of the component based on the measurement data will be described with reference to FIGS. 9 and 10. The measuring device 23 is obtained by unifying three sets of the lens barrel 8, on the circumference of the observation holes are arranged at 120-degree intervals, S 1 each measurement point,
Let S 2 and S 3 . First, the spindle outer diameter 40 is measured before the disk 19 is mounted on the disk supply device 28, then the disk 19 is mounted and the disk inner diameter 39 is measured, and the measurement differences G 1 , G 2 , and G 3 from both measurement data. Ask for.

………………(1) であれば、ディスク19は非接触で挿入可能となる。上の
式(1)を満足させるには、まず =1/3(G+G+G)………(2) により平均値を求めこの平均値に対するG
、Gの偏差g、g、gを次式により計算す
る。
In the case of G 1 G 2 G 3 (1), the disk 19 can be inserted without contact. In order to satisfy the above formula (1), first, an average value is obtained by = 1/3 (G 1 + G 2 + G 3 ) ... (2), and G 1 with respect to this average value,
The deviations g 1 , g 2 and g 3 of G 2 and G 3 are calculated by the following formula.

〜G=g 〜G=g}…………(3) 〜G=g 位置修正はg、g、gを直交座標に変換して、ス
ピンドル中心点Pとディスク中心点Pを一致させれ
ばよい。
~ G 1 = g 1 ~ G 2 = g 2 } ... (3) ~ G 3 = g 3 For position correction, g 1 , g 2 , g 3 are converted into Cartesian coordinates, and the spindle center point P o. And the center point P a of the disk may be matched.

上記演算は第1図の画像処理装置10のデータに基づい
て、演算処理装置11で行なわれ、微小位置制御装置12に
より、微動機構13を駆動して、ディスク19の位置修正を
する。
The above calculation is performed by the calculation processing device 11 based on the data of the image processing device 10 of FIG. 1, and the fine position control device 12 drives the fine movement mechanism 13 to correct the position of the disk 19.

本方式は精密位置決めあるいは精密組立に関する位置計
測の基本技術であるが、本発明の実施により、第5図に
示したディスク19の穴の断面形状に影響されることなく
正確に穴の内径の観測と前記G、G、Gの各点を
計測することができる。なお反射板と部品間に隙間があ
ると、乱反射と回折現象を拡大することになり精度低下
を招く。
This method is a basic technique for position measurement related to precision positioning or precision assembly, but by implementing the present invention, the inner diameter of the hole can be accurately observed without being affected by the sectional shape of the hole of the disk 19 shown in FIG. And each point of G 1 , G 2 and G 3 can be measured. If there is a gap between the reflection plate and the component, diffuse reflection and diffraction phenomena are magnified, leading to a decrease in accuracy.

また本発明は上記実施例に示したものの他、精密部品の
計測と嵌合組付けおよび複雑な形状を有する部品の寸法
測定などに対し、透過照明が得られなくても小型の装置
で精度の高い計測が得られる特徴がある。
Further, the present invention is not limited to the one shown in the above-mentioned embodiment, and is suitable for measuring precision parts, fitting and assembling, and measuring dimensions of parts having a complicated shape, even if transmitted illumination cannot be obtained with a small device. There is a feature that high measurement can be obtained.

〔発明の効果〕〔The invention's effect〕

本発明の実施により複雑な形状を有する被測定物に対し
て非接触で、精密計測と精密組立を行なうことが可能と
成った。
By implementing the present invention, it becomes possible to perform precision measurement and precision assembly without contact with an object to be measured having a complicated shape.

すなわち光学式計測は照明方式や被測定物の材質によ
り、光学的反射率が変わるため計測条件が複雑になる
が、本発明は反射光を背景光としていることと、被測定
物表面および反射板に垂直な投下照明を用いるために、
被測定物の材質に左右されずしかも装置の小型化が実現
し、信頼性の高い計測ができるという顕著な効果を奏す
るものである。
That is, in the optical measurement, the optical reflectance changes depending on the illumination system and the material of the object to be measured, which complicates the measurement conditions. However, the present invention uses reflected light as background light, and the surface of the object to be measured and the reflection plate. In order to use the vertical drop lighting,
This has a remarkable effect that the device can be downsized regardless of the material of the object to be measured and highly reliable measurement can be performed.

【図面の簡単な説明】 第1図は本発明の一実施例として磁気ディスク装置の精
密組立を対象とした原理説明図、第2図は第1図磁気デ
ィスク装置の構成を示す斜視図、第3図は第1図の磁気
ディスク組立主要部の断面図、第4図は本実施例におけ
るディスク供給装置の斜視図、第5図は磁気ディスクの
各種穴断面形状を示す拡大図、第6図は測定磁気ディス
クの計測位置を示す拡大断面図、第7図は第6図の計測
波形図、第8図は本実施例の磁気ディスクの計測手順の
説明図、第9〜10図は本実施例による計測及び位置決め
説明図である。 1…ラインセンサ、2…シリンドリカルレンズ 4…対物レンズ、5…ランプ 9…焦点合わせ装置、10…画像処理装置 11…演算処理装置、12…位置制御装置 13…微動機構、15…反射板 18…スピンドル、19…磁気ディスク 26…真空吸着リング、28…ディスク供給装置 29…位置決め板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of the principle of precision assembly of a magnetic disk device as an embodiment of the present invention, and FIG. 2 is a perspective view showing the configuration of the magnetic disk device of FIG. FIG. 3 is a sectional view of the main part of the magnetic disk assembly shown in FIG. 1, FIG. 4 is a perspective view of the disk supply device in this embodiment, and FIG. 5 is an enlarged view showing sectional shapes of various holes of the magnetic disk, and FIG. Is an enlarged cross-sectional view showing the measurement position of the measurement magnetic disk, FIG. 7 is a measurement waveform diagram of FIG. 6, FIG. 8 is an explanatory view of the measurement procedure of the magnetic disk of the present embodiment, and FIGS. It is a measurement and positioning explanatory drawing by an example. 1 ... Line sensor, 2 ... Cylindrical lens, 4 ... Objective lens, 5 ... Lamp, 9 ... Focusing device, 10 ... Image processing device, 11 ... Arithmetic processing device, 12 ... Position control device, 13 ... Fine movement mechanism, 15 ... Reflector plate, 18 ... Spindle, 19 ... Magnetic disk 26 ... Vacuum suction ring, 28 ... Disk supply device 29 ... Positioning plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】軸状体の外径と板状体の内径を計測し、前
記軸状体と前記板状体を嵌合させる位置決め組付装置に
おいて、 前記軸状体を載置し移動可能に設けたベースと、 前記ベースの上方に設けられ、前記板状体を載置し移動
可能な板状体供給装置と、 対象物すなわち前記軸状体と前記板状体の上方に設けら
れ、光源ランプ、レンズ、ハーフミラー、対物レンズを
有し、前記光源ランプからの光を前記対象物に照射する
垂直落射照明部、及び、前記対物レンズ、前記ハーフミ
ラーを介してシリンドリカルレンズ、一次元のラインセ
ンサで受光し前記板状体の内径を計測する観測部を有す
る鏡筒と、 前記板状体の下面に設けた反射板とを備え、 前記鏡筒により前記軸状体の外径を計測したのち、前記
反射板からの反射光を背景光として前記板状体内径の内
径を計測し、前記軸状体の外径と前記板状体内径の内径
が互いに対応する円周上の3点の計測ギャップ値が概ね
等しくなったとき、前記軸状体と前記板状体とを非接触
で嵌合させることを特徴とする位置決め組付装置。
1. A positioning and assembling apparatus for measuring an outer diameter of a shaft-shaped body and an inner diameter of a plate-shaped body to fit the shaft-shaped body and the plate-shaped body, wherein the shaft-shaped body can be placed and moved. A base provided on the base, a plate-shaped body supply device provided above the base and capable of mounting and moving the plate-shaped body, an object, that is, provided above the shaft-shaped body and the plate-shaped body, A vertical epi-illumination unit that has a light source lamp, a lens, a half mirror, and an objective lens, and irradiates the object with the light from the light source lamp, and the objective lens and a cylindrical lens through the half mirror, and a one-dimensional It is provided with a lens barrel having an observing unit that receives the light with a line sensor and measures the inner diameter of the plate-shaped body, and a reflection plate provided on the lower surface of the plate-shaped body, and measures the outer diameter of the shaft-shaped body with the lens barrel. After that, the reflected light from the reflector is used as background light. When the inner diameter of the shaft-shaped body is measured, and when the outer diameter of the shaft-shaped body and the inner diameter of the plate-shaped body inner diameter are substantially equal to each other at three measured gap values on the circumference, A positioning and assembling apparatus, characterized in that the plate-like body is fitted in a non-contact manner.
JP61175505A 1986-07-28 1986-07-28 Positioning assembly device Expired - Lifetime JPH0658206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61175505A JPH0658206B2 (en) 1986-07-28 1986-07-28 Positioning assembly device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61175505A JPH0658206B2 (en) 1986-07-28 1986-07-28 Positioning assembly device

Publications (2)

Publication Number Publication Date
JPS6332304A JPS6332304A (en) 1988-02-12
JPH0658206B2 true JPH0658206B2 (en) 1994-08-03

Family

ID=15997217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61175505A Expired - Lifetime JPH0658206B2 (en) 1986-07-28 1986-07-28 Positioning assembly device

Country Status (1)

Country Link
JP (1) JPH0658206B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968720B2 (en) * 2006-09-21 2012-07-04 Hoya株式会社 Electronic device substrate shape inspection apparatus, electronic device substrate shape inspection method, and mask blank glass substrate manufacturing method
JP2012006088A (en) * 2010-06-22 2012-01-12 Hitachi High-Technologies Corp Work edge detection mechanism, and work transferring mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220604A (en) * 1983-05-30 1984-12-12 Hitachi Ltd Method for detecting position between two objects opposed each other with minute gap therebetween
JPS6061648A (en) * 1983-09-16 1985-04-09 Hitachi Ltd Pattern detector
JPS60102505A (en) * 1983-11-08 1985-06-06 Sanpa Kogyo Kk Apparatus for measuring width of thin plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220604A (en) * 1983-05-30 1984-12-12 Hitachi Ltd Method for detecting position between two objects opposed each other with minute gap therebetween
JPS6061648A (en) * 1983-09-16 1985-04-09 Hitachi Ltd Pattern detector
JPS60102505A (en) * 1983-11-08 1985-06-06 Sanpa Kogyo Kk Apparatus for measuring width of thin plate

Also Published As

Publication number Publication date
JPS6332304A (en) 1988-02-12

Similar Documents

Publication Publication Date Title
US10612907B2 (en) Device and method for measuring workpieces
JP4947774B2 (en) Light wave interference measuring apparatus and light wave interference measuring method
TWI292033B (en)
JP3678915B2 (en) Non-contact 3D measuring device
WO2021187191A1 (en) Inner surface shape measurement device, alignment method for inner surface shape measurement device, and magnification calibration method
US20070024870A1 (en) Apparatuses and methods for measuring head suspensions and head suspension assemblies
US5076689A (en) Off axis mirror alignment
US4537509A (en) Optical inspection and alignment verification system
US7764387B2 (en) Apparatus and method for measuring suspension and head assemblies in a stack
JP4791118B2 (en) Image measuring machine offset calculation method
KR20140078621A (en) Measuring form changes of a substrate
JPH0658206B2 (en) Positioning assembly device
JP2009195955A (en) High-accuracy laser beam processing and laser beam-electrolysis composite processing apparatus
JPH05118999A (en) X-ray analyzing device
JP4897658B2 (en) Shape measuring device
WO2021187192A1 (en) Inner surface shape measurement apparatus, and alignment method for inner surface shape measurement apparatus
JP2990431B1 (en) Shape measuring method with shape measuring device
JP2021148772A (en) Inner surface shape measuring machine and alignment method therefor
JPS62123509A (en) Positioning method and its device
JP2021148770A (en) Magnification calibration method for inner surface shape measuring machine, and inner surface shape measuring machine
JPH07286830A (en) Method for measuring surface shape
JPS63189909A (en) Positioning device for substrate
JPS62106307A (en) Method and jig for positioning surface to be inspected of surface shape measuring machine
JPH0584850U (en) X-ray diffractometer goniometer optical axis adjustment jig
JPS6313234A (en) Measurement device for electron gun