[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH065772B2 - Method of manufacturing thin film solar cell substrate - Google Patents

Method of manufacturing thin film solar cell substrate

Info

Publication number
JPH065772B2
JPH065772B2 JP62083540A JP8354087A JPH065772B2 JP H065772 B2 JPH065772 B2 JP H065772B2 JP 62083540 A JP62083540 A JP 62083540A JP 8354087 A JP8354087 A JP 8354087A JP H065772 B2 JPH065772 B2 JP H065772B2
Authority
JP
Japan
Prior art keywords
solar cell
thin film
anodized film
substrate
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62083540A
Other languages
Japanese (ja)
Other versions
JPS63249380A (en
Inventor
清志 多田
永三 礒山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP62083540A priority Critical patent/JPH065772B2/en
Publication of JPS63249380A publication Critical patent/JPS63249380A/en
Publication of JPH065772B2 publication Critical patent/JPH065772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は薄膜太陽電池用基板の製造方法に関し、さら
に詳しくいえば高電圧を取出すのに好適な直列接続型薄
膜太陽電池に用いられる基板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a substrate for a thin film solar cell, more specifically, a method for manufacturing a substrate used for a series-connected thin film solar cell suitable for extracting a high voltage. Regarding

この明細書において、「アルミニウム」という語には、
純アルミニウム板はもちろんのことすべてのアルミニウ
ム合金を含むものとする。
In this specification, the term "aluminum" refers to
It includes all aluminum alloys as well as pure aluminum plates.

従来技術とその問題点 1枚の基板上に複数個の太陽電池を形成し、これらを直
列に接続した直列接続型アモルファスシリコン薄膜太陽
電池としては、たとえば基板上に、クロム等からなる下
部電極を電子ビーム蒸着法により複数形成し、各下部電
極上に薄膜アモルファスシリコン(以下a−Siとい
う)をたとえCVD法により形成し、各a−Si層を透
明導電膜で被覆し、各電池を直列に接続したものがあ
る。このような太陽電池においては、当然のことながら
下部電極間が電気的に絶縁されていなければならず、下
部電極間の抵抗値をたとえば20MΩ以上とすることが
必要となってくる。
Conventional technology and its problems As a series connection type amorphous silicon thin film solar cell in which a plurality of solar cells are formed on one substrate and are connected in series, for example, a lower electrode made of chromium or the like is provided on the substrate. A plurality of layers are formed by electron beam evaporation, thin film amorphous silicon (hereinafter referred to as a-Si) is formed on each lower electrode even by a CVD method, each a-Si layer is covered with a transparent conductive film, and each battery is connected in series. There is something connected. In such a solar cell, as a matter of course, the lower electrodes must be electrically insulated from each other, and the resistance value between the lower electrodes needs to be, for example, 20 MΩ or more.

従来、a−Si薄膜太陽電池用基板としては、ガラス製
のもの、ポリイミド樹脂等の高耐熱性樹脂製のものおよ
びステンレス鋼板の表面に電気絶縁層としてポリイミド
樹脂等の高耐熱性樹脂からなる皮膜が形成されたもの、
などが用いられていた。しかしながら、上記第1番目の
ものでは、放熱性が悪く、重く、フレキシビリティがな
く、しかも破損しやすいとう問題があった。また、上記
第2番目のものでは、樹脂が非常に高価であるので、太
陽電池のコスト・ダウンを図ることがむずかしく、柔か
すぎてこしがなく、しかもa−Si形成時にガスが発生
するという問題があった。さらに、上記第3番目のもの
では、ステンレス鋼板およびポリイミド樹脂のいずれも
が非常に高価であるので、太陽電池のコスト・ダウンを
図ることはむずかしいという問題があった。
Conventionally, as a-Si thin film solar cell substrates, those made of glass, those made of high heat-resistant resin such as polyimide resin, and films made of high heat-resistant resin such as polyimide resin as an electric insulating layer on the surface of a stainless steel plate. Were formed,
Was used. However, the above-mentioned first one has a problem that it has poor heat dissipation, is heavy, has no flexibility, and is easily damaged. Further, in the second one, since the resin is very expensive, it is difficult to reduce the cost of the solar cell, it is too soft and strainless, and gas is generated during the formation of a-Si. There was a problem. Further, in the third one, both the stainless steel plate and the polyimide resin are very expensive, so there is a problem that it is difficult to reduce the cost of the solar cell.

そこで、上記の問題を解決したa−Si薄膜太陽電池用
基板として、アルミニウム光沢圧延板の表面に陽極酸化
皮膜が形成されたものが提案された。ところが、この基
板では、光沢圧延板の表面は平滑であるにもかかわら
ず、形成された陽極酸化皮膜の表面に微細な凹凸が多数
存在したものとなるので、陽極酸化皮膜上に下部電極を
形成した場合、太陽電池とアルミニウム板との間の電気
絶縁性が十分ではなくなり、その結果各太陽電池間の電
気絶縁性が十分ではなくなるという問題があった。
Therefore, as a substrate for an a-Si thin film solar cell that solves the above problems, a substrate having an anodized film formed on the surface of an aluminum glossy rolled plate has been proposed. However, on this substrate, although the surface of the glossy rolled plate was smooth, there were many fine irregularities on the surface of the formed anodized film, so the lower electrode was formed on the anodized film. In that case, there is a problem that the electric insulation between the solar cell and the aluminum plate is not sufficient, and as a result, the electric insulation between the solar cells is not sufficient.

この発明の目的は、上記問題を解決した薄膜太陽電池用
基板を製造する方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a thin film solar cell substrate that solves the above problems.

問題点を解決するための手段 この発明による薄膜太陽電池用基板の製造方法は、アル
ミニウム板の少なくとも片面に陽極酸化皮膜を形成した
後、この陽極酸化皮膜に金属塩を含む水溶液を用いて封
孔処理を施し、ついで封孔処理の施された陽極酸化皮膜
の表面を研摩して表面粗さをRmax.0.5μm以下とするこ
とを特徴とするものである。
Means for Solving Problems A method for manufacturing a substrate for a thin-film solar cell according to the present invention comprises forming an anodized film on at least one side of an aluminum plate and then sealing the anodized film with an aqueous solution containing a metal salt. It is characterized in that the surface of the anodized film, which has been subjected to a sealing treatment and then subjected to a sealing treatment, is polished to reduce the surface roughness to Rmax. 0.5 μm or less.

上記において、陽極酸化皮膜としては、硫酸陽極酸化皮
膜、しゅう酸陽極酸化皮膜、クロム酸陽極酸化皮膜等各
種のものを使用することができる。また、陽極酸化皮膜
に金属塩を含む水溶液を用いて封孔処理を施すのは、次
の理由による。すなわち、陽極酸化皮膜には、沸騰水中
や水蒸気中に封孔処理を施すのが一般的であるが、沸騰
水中や水蒸気中で封孔処理を施された陽極酸化皮膜で
は、その表面に水和酸化物の針状粒子が成長し、微細な
針状構造となるので、その後工程においてその表面粗さ
がRmax.0.5μmとなるように表面を研摩する作業が面倒
になるからである。これに対して、金属塩を含む水溶液
を使用して封孔処理を施すと、たとえばNi(OH)
により封孔されるため、表面が針状構造とならない。し
たがって、陽極酸化皮膜に封孔処理を施す場合には、金
属塩の水溶液中で行なうべきである。この場合、処理時
間は2〜30分、処理温度は常温〜100℃、水溶液中
の金属塩の量は2〜30g/とするのがよい。陽極酸
化皮膜の膜厚は1〜10μmとするのが好ましい。膜厚
が1μm未満であると後工程の研摩によって、または取
扱い上のきずによって絶縁破壊を起こすおそれがあり、
10μmを越えるとa−Si層をCVD法により形成す
るさいの基板温度の上昇により陽極酸化皮膜にクラック
が発生し、絶縁破壊を起こす可能性が大きくなるばかり
であり、絶縁性の向上にはあまり寄与しないからであ
る。
In the above, as the anodized film, various types such as a sulfuric acid anodized film, an oxalic acid anodized film, and a chromic acid anodized film can be used. The reason why the anodic oxide film is sealed with an aqueous solution containing a metal salt is as follows. That is, the anodized film is generally subjected to a sealing treatment in boiling water or water vapor, but in the anodized film subjected to a sealing treatment in boiling water or water vapor, the surface is hydrated. This is because the acicular particles of the oxide grow and form a fine acicular structure, so that in the subsequent step, the work of polishing the surface so that the surface roughness becomes Rmax. On the other hand, when the sealing treatment is performed using an aqueous solution containing a metal salt, for example, Ni (OH) 2
The surface is not needle-shaped because it is sealed by. Therefore, when the anodic oxide film is subjected to the sealing treatment, it should be performed in an aqueous solution of a metal salt. In this case, it is preferable that the treatment time is 2 to 30 minutes, the treatment temperature is room temperature to 100 ° C., and the amount of metal salt in the aqueous solution is 2 to 30 g /. The thickness of the anodized film is preferably 1 to 10 μm. If the film thickness is less than 1 μm, dielectric breakdown may occur due to polishing in the subsequent process or due to handling flaws.
If the thickness exceeds 10 μm, a rise in the substrate temperature when forming the a-Si layer by the CVD method may cause cracks in the anodic oxide film, which may increase the possibility of dielectric breakdown, which is not enough for improving the insulating property. This is because it does not contribute.

また、上記において、アルミニウム板の両面に陽極酸化
皮膜を形成し、両面の陽極酸化皮膜のうち少なくともい
ずれか一方の表面を研摩してもよいし、あるいはアルミ
ニウム板の片面だけに陽極酸化皮膜を形成し、この表面
を研摩してもよい。後者の場合、アルミニウム板の片面
をマスキングしておくか、あるいは2枚のアルミニウム
板を重ね合せ状態に仮止めしておいて陽極酸化処理を施
すのがよい。
Further, in the above, an anodized film may be formed on both sides of the aluminum plate and at least one of the anodized films on both sides may be polished, or an anodized film may be formed on only one side of the aluminum plate. However, this surface may be polished. In the latter case, one surface of the aluminum plate may be masked, or two aluminum plates may be temporarily fixed in a stacked state and anodized.

実施例 以下、この発明の実施例を、比較例とともに説明する。Examples Hereinafter, examples of the present invention will be described together with comparative examples.

実施例 JISA1050からなる縦×横×厚さが100mm×1
00mm×0.3mmであるアルミニウム板を用意した。こ
のアルミニウム板の表面粗さはRmax.1.1μmであった。
そして、このアルミニウム板に、15wt%HSO
溶液からなる液温20±1℃の電解液中で、電流密度
1.3A/dm2で直流電解により所定時間陽極酸化処理
を施して膜厚5μmの硫酸陽極酸化皮膜を形成した。つ
いで、酢酸ニッケルを10g/含む95℃の水溶液中
で30分間封孔処理を施した。その後、アルミニウム板
の片面の陽極酸化皮膜を研摩し、その表面粗さをRmax.
0.3μmとして薄膜太陽電池用基板を製造した。研摩後
の陽極酸化皮膜の膜厚は3μmであった。
Example Length x width x 100 mm x 1 consisting of JIS A1050
An aluminum plate having a size of 00 mm × 0.3 mm was prepared. The surface roughness of this aluminum plate was Rmax.1.1 μm.
Then, this aluminum plate was subjected to anodizing treatment for a predetermined time by direct current electrolysis at a current density of 1.3 A / dm 2 in an electrolyte solution containing a 15 wt% H 2 SO 4 aqueous solution at a liquid temperature of 20 ± 1 ° C. A 5 μm sulfuric acid anodized film was formed. Then, a sealing treatment was performed for 30 minutes in an aqueous solution of nickel acetate of 10 g / 95 ° C. After that, the anodized film on one side of the aluminum plate was polished and the surface roughness was Rmax.
A substrate for a thin film solar cell having a thickness of 0.3 μm was manufactured. The thickness of the anodized film after polishing was 3 μm.

比較例 封孔処理後研摩しなかつたことを除いては、上記実施例
と同様にして薄膜太陽電池用基板を製造した。陽極酸化
皮膜の表面粗さはRmax.1.2μmであった。
Comparative Example A substrate for a thin film solar cell was manufactured in the same manner as in the above-mentioned example except that polishing was not performed after the sealing treatment. The surface roughness of the anodized film was Rmax of 1.2 μm.

評価試験 上記2種の薄膜太陽電池用基板の性能を評価するために
次の試験を行なった。すなわち、電子ビーム蒸着法によ
り、実施例では研摩した陽極酸化皮膜上に、比較例では
研摩していない陽極酸化皮膜上にそれぞれクロムからな
る一辺15mmの正方形状下部電極を24個形成した。そ
して、各下部電極とアルミニウム板との間の抵抗を測定
し、電気絶縁性を調べた。その結果、実施例では24個
の下部電極中、1つの下部電極について上記抵抗が20
MΩ未満であり、他は20MΩ以上であつた。比較例で
は24個すべてについて20MΩ未満であった。
Evaluation Test The following tests were conducted to evaluate the performance of the above-mentioned two types of thin film solar cell substrates. That is, 24 square-shaped lower electrodes each having a side length of 15 mm and made of chromium were formed by an electron beam evaporation method on the anodized film that was polished in the example and on the anodized film that was not polished in the comparative example. Then, the resistance between each lower electrode and the aluminum plate was measured to examine the electrical insulation. As a result, in the example, among the 24 lower electrodes, one of the lower electrodes has the above resistance of 20.
It was less than MΩ, and the others were 20 MΩ or more. In the comparative example, all 24 were less than 20 MΩ.

発明の効果 この発明による薄膜太陽電池用基板の製造方法は上述の
ように構成されているから、この方法で製造された基板
は、従来の基板に比べて次のような長所を持っている。
すなわち、従来のステンレス鋼板の表面にポリイミド樹
脂等の高耐熱性樹脂皮膜を形成したものに比べて安価で
あるとともに軽量となる。また、従来のガラス製のもの
に比べて軽量であるとともに放熱性に優れ、しかも取扱
いのさいにも破損のおそれがない。また、従来のポリイ
ミド樹脂等の高耐熱性樹脂製のものに比べて、安価であ
る。
EFFECTS OF THE INVENTION Since the method for manufacturing a thin film solar cell substrate according to the present invention is configured as described above, the substrate manufactured by this method has the following advantages over conventional substrates.
That is, it is cheaper and lighter in weight than a conventional stainless steel plate on which a high heat resistant resin film such as a polyimide resin is formed. Further, it is lighter in weight than the conventional one made of glass and has excellent heat dissipation, and there is no risk of damage during handling. Further, it is cheaper than the conventional one made of a high heat resistant resin such as a polyimide resin.

また、この発明の方法では、アルミニウム板の少なくと
も片面に陽極酸化皮膜を形成した後、この陽極酸化皮膜
に金属塩を含む水溶液を用いて封孔処理を施すのである
から、封孔処理の施された陽極酸化皮膜の表面が針状と
はならず、その後の表面粗さをRmax.0.5μm以下とする
研摩作業を簡単に行うことができる。
Further, in the method of the present invention, after forming an anodized film on at least one surface of the aluminum plate, the anodized film is subjected to a pore-sealing treatment using an aqueous solution containing a metal salt. Further, the surface of the anodic oxide film does not have a needle shape, and the subsequent polishing work for making the surface roughness Rmax. 0.5 μm or less can be easily performed.

さらに、この発明の方法で製造された基板では、陽極酸
化皮膜の表面粗さがRmax.0.5μm以上であるから、従来
のアルミニウム光沢圧延板の表面に陽極酸化皮膜が形成
されたものに比べて、アルミニウム板と、陽極酸化皮膜
上に形成される太陽電池の下部電極との間の電気絶縁が
優れている。
Further, in the substrate manufactured by the method of the present invention, the surface roughness of the anodized film is Rmax.0.5 μm or more, so that compared with the conventional aluminum glossy rolled plate on which the anodized film is formed, The electrical insulation between the aluminum plate and the lower electrode of the solar cell formed on the anodized film is excellent.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム板の少なくとも片面に陽極酸
化皮膜を形成した後、この陽極酸化皮膜に金属塩を含む
水溶液を用いて封孔処理を施し、ついで封孔処理の施さ
れた陽極酸化皮膜の表面を研摩して表面粗さをRmax.0.5
hm以下とすることを特徴とする薄膜太陽電池用基板の
製造方法。
1. An aluminum plate is provided with an anodized film on at least one side thereof, and then the anodized film is subjected to a pore-sealing treatment using an aqueous solution containing a metal salt. The surface is polished and the surface roughness is Rmax.0.5.
hm or less, The manufacturing method of the board | substrate for thin film solar cells characterized by the above-mentioned.
JP62083540A 1987-04-03 1987-04-03 Method of manufacturing thin film solar cell substrate Expired - Lifetime JPH065772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083540A JPH065772B2 (en) 1987-04-03 1987-04-03 Method of manufacturing thin film solar cell substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083540A JPH065772B2 (en) 1987-04-03 1987-04-03 Method of manufacturing thin film solar cell substrate

Publications (2)

Publication Number Publication Date
JPS63249380A JPS63249380A (en) 1988-10-17
JPH065772B2 true JPH065772B2 (en) 1994-01-19

Family

ID=13805338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083540A Expired - Lifetime JPH065772B2 (en) 1987-04-03 1987-04-03 Method of manufacturing thin film solar cell substrate

Country Status (1)

Country Link
JP (1) JPH065772B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041659A1 (en) * 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
EP2197037A1 (en) * 2007-09-28 2010-06-16 Fujifilm Corporation Substrate for solar cell and solar cell
WO2010032802A1 (en) * 2008-09-18 2010-03-25 富士フイルム株式会社 Solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119784A (en) * 1983-12-01 1985-06-27 Kanegafuchi Chem Ind Co Ltd Manufacture of insulation metal base plate and device utilizing thereof
JPS59152675A (en) * 1983-02-21 1984-08-31 Sumitomo Electric Ind Ltd Amorphous silicon photovoltaic element

Also Published As

Publication number Publication date
JPS63249380A (en) 1988-10-17

Similar Documents

Publication Publication Date Title
JP2663544B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
US4936957A (en) Thin film oxide dielectric structure and method
JPS63249379A (en) Manufacture of substrate for thin film solar cell
JP3266489B2 (en) Method of forming a battery having a titanium dioxide coated current collector
WO2007037382A1 (en) Positive electrode current collector for lead accumulator
JP5303837B2 (en) Positive electrode current collector for lead acid battery and method for producing the same
US3421195A (en) Capacitor and method of making same
JPH065772B2 (en) Method of manufacturing thin film solar cell substrate
TW202125538A (en) Method for manufacturing flexibleconductive wire with ceramic insulating layer
JPH0773871A (en) Bipolar plate for lead-acid battery
JPS6249673A (en) Photovoltaic device
JPS63250866A (en) Manufacture of substrate for thin film solar cell
JP3482605B2 (en) Lead storage battery
JPS61284971A (en) Substrate for thin film solar battery
WO2003092139A2 (en) Durable bipolar plates for fuel cells
US7903391B2 (en) Aluminum electrode plate for electrolytic capacitor
Church The dielectric properties of anodic aluminium oxide films
JPS61133676A (en) Substrate for amorphous si solar battery
JPS6142972A (en) Manufacture of substrate for a-si solar cell
JP2000277384A (en) Electrolytic capacitor
CN221632553U (en) Silicon carbide composite substrate structure
JPH01205571A (en) Manufacture of substrate for thin-film solar cell
JPS6170766A (en) Thin-film solar cell
JP2023089803A (en) Single layer capacitor using dielectric area with flat interface, and production method thereof
Siegmund The aluminum electrolytic condenser