JPH0650687A - Heat accumulator - Google Patents
Heat accumulatorInfo
- Publication number
- JPH0650687A JPH0650687A JP4204101A JP20410192A JPH0650687A JP H0650687 A JPH0650687 A JP H0650687A JP 4204101 A JP4204101 A JP 4204101A JP 20410192 A JP20410192 A JP 20410192A JP H0650687 A JPH0650687 A JP H0650687A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- substance
- housing
- gas permeable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、蓄熱装置に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device.
【0002】[0002]
【従来の技術】本発明に係わる従来技術として、例えば
国際公開番号WO91/19155に開示された「蒸発
/凝縮装置及びエネルギシステム」がある。この従来技
術を図3に基づいて説明すると、流体タンク71内の底
部には蓄熱流体72が溜まっており、キャピラリ部73
において管80内を流れる外部流体によって蓄熱流体7
2の蒸発が促進される。蒸発した蓄熱流体72は管74
内を上方に向けて移動し、弁体75の開度に応じて室7
6内に侵入する。室76内には蓄熱物質77が充填され
ており、蓄熱流体72が蓄熱物質77と結合するときに
発熱反応が生じる。この発熱反応によって生じた熱は、
室76の外壁81外周部を流れる外部流体を加熱する。
しかし、室76内の底部に充填される蓄熱物質77ほ
ど、蒸発した蓄熱流体72が到達しにくく、発熱反応が
遅いといった不具合を有している。2. Description of the Related Art As a prior art relating to the present invention, there is "evaporation / condensation device and energy system" disclosed in, for example, International Publication No. WO91 / 19155. This conventional technique will be described with reference to FIG. 3. The heat storage fluid 72 is accumulated at the bottom of the fluid tank 71, and the capillary portion 73 is used.
In the heat storage fluid 7 by the external fluid flowing in the pipe 80 at
The evaporation of 2 is promoted. The heat storage fluid 72 that has evaporated is a pipe 74.
The inside of the chamber 7 is moved upwards depending on the opening degree of the valve body 75.
Intrude into 6. The chamber 76 is filled with a heat storage substance 77, and when the heat storage fluid 72 is combined with the heat storage substance 77, an exothermic reaction occurs. The heat generated by this exothermic reaction is
The external fluid flowing around the outer peripheral portion of the outer wall 81 of the chamber 76 is heated.
However, the heat storage substance 77 filled in the bottom portion of the chamber 76 has a problem that the evaporated heat storage fluid 72 is hard to reach and the exothermic reaction is slow.
【0003】また、蓄熱物質77と外壁81外周部を流
れる外部流体とが互いに混じり合うことなく熱交換を行
う為には、通気性を持たない外壁81が必ず必要とな
り、熱容量が増えるために、反応熱が外部流体へと伝わ
る前に外壁81自体を暖めるための熱量が多く必要であ
り、外部流体との熱交換の立ち上がりが遅くなるといっ
た不具合を有している。Further, in order to perform heat exchange without the heat storage substance 77 and the external fluid flowing on the outer peripheral portion of the outer wall 81 being mixed with each other, the outer wall 81 having no air permeability is indispensable, and the heat capacity is increased. A large amount of heat is required to warm the outer wall 81 itself before the reaction heat is transferred to the external fluid, which causes a problem that the heat exchange with the external fluid is delayed in rising.
【0004】更に、室76内への蓄熱物質77の充填量
には限界があり、より多くの蓄熱量を得るためには室7
6の数を増やさなければならず、それに伴って外壁81
の数、即ち熱容量が増大するといった不具合を有してい
る。尚、本発明に係わる基本原理的な従来技術として
は、例えば特開昭53−148753号公報に開示され
たものがある。Further, there is a limit to the amount of the heat storage substance 77 that can be filled in the chamber 76, and in order to obtain a larger amount of heat storage, the chamber 7 can be used.
The number of 6 must be increased and the outer wall 81
However, there is a problem that the number of heat treatments, that is, the heat capacity increases. As a basic principle related art relating to the present invention, for example, there is one disclosed in Japanese Patent Laid-Open No. 53-148753.
【0005】[0005]
【発明が解決しようとする課題】そこで、本発明では蓄
熱装置における発熱反応の向上、及び蓄熱装置自体の熱
容量低減を、その技術的課題とする。Therefore, the technical problems of the present invention are to improve the exothermic reaction in the heat storage device and to reduce the heat capacity of the heat storage device itself.
【0006】[0006]
【0007】[0007]
【課題を解決するための手段】前述した本発明の技術的
課題を解決するために講じた本発明の技術的手段は、互
いに結合/分離が可能な第1,第2蓄熱物質と、第1,
第2蓄熱物質が封入されるハウジングと、ハウジングの
第1蓄熱物質の液体が貯留される第1貯留部と、ハウジ
ングの第2蓄熱物質の固体が貯留される第2貯留部とを
有する蓄熱装置において、第2貯留部を、ハウジングに
支承され、その内部を流体が流れる管状部材と、ハウジ
ングとは非接触に且つ管状部材外周面上にその内端が伝
熱可能に固設されるフィンと、ハウジングとは非接触に
フィンの外端を包囲する筒状の気体透過部材とから構成
し、第2蓄熱物質が管状部材外周面と気体透過部材との
間に保持されようにしたと共に、気体透過部材外周部を
第1蓄熱物質の気体が流れるようにしたことである。The technical means of the present invention taken to solve the above-mentioned technical problems of the present invention include a first heat storage material and a second heat storage material which can be coupled / separated from each other, and a first heat storage material. ,
A heat storage device having a housing in which a second heat storage substance is enclosed, a first storage part in which the liquid of the first heat storage substance in the housing is stored, and a second storage part in which the solid of the second heat storage substance in the housing is stored. In, a tubular member that supports the second storage portion in a housing and through which a fluid flows, and a fin whose inner end is fixed to the outer circumferential surface of the tubular member so as to be able to transfer heat without contacting the housing. , A housing and a tubular gas permeable member that surrounds the outer ends of the fins in a non-contact manner. The second heat storage material is held between the outer peripheral surface of the tubular member and the gas permeable member, and the gas That is, the gas of the first heat storage substance is allowed to flow through the outer peripheral portion of the permeable member.
【0008】[0008]
【作用】上述した本発明の技術的手段によれば、第2貯
留部のハウジング内に導入された第1蓄熱物質の気体が
気体透過部材の外周部を流れると、気体透過部材を通過
して第2蓄熱物質と吸着,結合する。ここで、筒状の気
体透過部材はフィン外端を包囲しておりその面積が大き
く、第1蓄熱物質の気体は筒状の気体透過部材の上方部
から下方部までどの部分でも通過でき、効率よく第2蓄
熱物質と吸着,結合できる。According to the above-mentioned technical means of the present invention, when the gas of the first heat storage substance introduced into the housing of the second storage portion flows through the outer peripheral portion of the gas permeable member, it passes through the gas permeable member. Adsorbs and binds to the second heat storage material. Here, the tubular gas permeable member encloses the outer end of the fin and has a large area, and the gas of the first heat storage material can pass through any portion from the upper portion to the lower portion of the tubular gas permeable member. Can well adsorb and bond with the second heat storage material.
【0009】[0009]
【実施例】以下、本発明の技術的手段を具体化した実施
例について添付図面に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the technical means of the present invention will be described below with reference to the accompanying drawings.
【0010】図1において、蓄熱装置10は第1貯留部
11と第2貯留部12とからなり、両貯留部11,12
間は制御弁13を有する管14により接続されている。
第1貯留部11において、パイプ21の一部は第1ハウ
ジング(ハウジング)22内の空間23内に配設されて
おり、空間23内においてパイプ21の周囲には多数の
フィン24が固設されている。また、空間23内には液
体状態にある第1蓄熱物質(例えばH2 O等)15が適
量封入され、パイプ21内には流体17を流している。In FIG. 1, the heat storage device 10 comprises a first storage section 11 and a second storage section 12, and both storage sections 11, 12 are provided.
The spaces are connected by a pipe 14 having a control valve 13.
In the first storage portion 11, a part of the pipe 21 is arranged in a space 23 in the first housing (housing) 22, and a large number of fins 24 are fixed around the pipe 21 in the space 23. ing. Further, a proper amount of the first heat storage substance (for example, H 2 O) 15 in a liquid state is enclosed in the space 23, and the fluid 17 flows in the pipe 21.
【0011】図2も参照の上第2貯留部12を説明する
と、管状部材31,32,33(但し、管状部材は3本
に限定されず何本でもよい)は、第2ハウジング(ハウ
ジング)34内の空間43内に位置するようハウジング
34に支承され、導入室35から排出室36に向けて管
状部材31(32,33)内を流体16が流れる。管状
部材31(32,33)の外周面上には複数のドーナツ
盤状フィン37(38,39)が、ハウジング34とは
非接触で配設されるが、この時、フィン37(38,3
9)の内端は管状部材31(32,33)と伝熱可能に
溶接,接着等の手段を用いて固設される。ここで、フィ
ン37(38,39)のうち図示最上部にあるものが上
底として作用し、図示最下部にあるものが下底として作
用する。The second storage portion 12 will be described with reference to FIG. 2 as well. The tubular members 31, 32 and 33 (however, the tubular members are not limited to three and may be any number) include a second housing (housing). The fluid 16 flows in the tubular member 31 (32, 33) from the introduction chamber 35 toward the discharge chamber 36 while being supported by the housing 34 so as to be positioned in the space 43 in the inside 34. A plurality of donut-shaped fins 37 (38, 39) are arranged on the outer peripheral surface of the tubular member 31 (32, 33) without contacting the housing 34. At this time, the fins 37 (38, 3) are arranged.
The inner end of 9) is fixed to the tubular member 31 (32, 33) so as to be able to transfer heat by means such as welding or adhesion. Here, among the fins 37 (38, 39), the one at the uppermost portion in the drawing acts as the upper bottom, and the one at the lowermost portion in the drawing acts as the lower bottom.
【0012】一方、フィン37(38,39)の外端を
包囲するように例えば円筒状の気体透過部材40(4
1,42)がハウジング34とは非接触で配設されてい
る。この気体透過部材40(41,42)としては、例
えばメッシュ、合成繊維又は焼結金属等があり、後述す
る第2蓄熱物質18がこぼれないように確実に保持で
き、通気性のあるものならば何でもよい。また、本実施
例ではフィン37(38,39)の形状として、ドーナ
ツ盤状のものを示しているが、管状部材31(32,3
3)の外周面と気体透過部材40(41,42)の内周
面とを接続するような形となっていればどの様な形状で
もよく、例えばスパイラル板状や、垂直方向に延びる平
板状でもよい。但し、これらの場合には、上下端に第2
蓄熱物質18がこぼれないように上下底板が設けられ
る。そして、管状部材31(32,33)の外周面と気
体透過部材40(41,42)の内周面との間には、例
えばNa2S等の第2蓄熱物質18が筒状に保持され
る。この熱物質18の保持に際しては、熱物質18を隣
合うフィン37(38,39)間に充填した後、気体透
過部材40(41,42)をフィン37(38,39)
外端を包囲するように覆えばよく、容易に行うことがで
きる。尚、空間23内,管14内及び空間43内は、蓄
熱装置10の作動時には真空,低圧状態に保持されてい
る。 以上の構成を有する蓄熱装置10の作動について
説明する。この蓄熱装置10は流体16の加熱及び流体
17の冷却が基本的な目的である。まず、第1貯留部1
1において、パイプ21内を流体17が流れる時、真
空,低圧状態の空間23内にある液体状の第1蓄熱物質
15は容易に沸騰し、気体状となって管14から第2貯
留部12の空間43へと進む。この第1蓄熱物質15の
沸騰に際して、流体17から第1蓄熱物質15へと蒸発
潜熱として熱の移動がフィン24を介して効率よく生
じ、流体17が冷却される。On the other hand, for example, a cylindrical gas permeable member 40 (4) that surrounds the outer ends of the fins 37 (38, 39).
1, 42) are arranged in non-contact with the housing 34. The gas permeable member 40 (41, 42) may be, for example, a mesh, a synthetic fiber, a sintered metal or the like, and can be surely held so as not to spill the second heat storage substance 18 described later, and if it is breathable. Anything is fine. Further, in this embodiment, the fins 37 (38, 39) have a donut disc shape, but the tubular member 31 (32, 3).
Any shape may be used as long as it connects the outer peripheral surface of 3) and the inner peripheral surface of the gas permeable member 40 (41, 42), such as a spiral plate shape or a flat plate shape extending in the vertical direction. But it's okay. However, in these cases, the second
Upper and lower bottom plates are provided to prevent the heat storage material 18 from spilling. The second heat storage material 18, such as Na 2 S, is cylindrically held between the outer peripheral surface of the tubular member 31 (32, 33) and the inner peripheral surface of the gas permeable member 40 (41, 42). It When holding the heat substance 18, the heat substance 18 is filled between the adjacent fins 37 (38, 39), and then the gas permeable member 40 (41, 42) is inserted into the fins 37 (38, 39).
It is sufficient to cover the outer end so as to surround it, and this can be easily performed. The space 23, the pipe 14 and the space 43 are kept in a vacuum and low pressure state when the heat storage device 10 is operated. The operation of the heat storage device 10 having the above configuration will be described. The basic purpose of the heat storage device 10 is to heat the fluid 16 and cool the fluid 17. First, the first storage unit 1
In FIG. 1, when the fluid 17 flows in the pipe 21, the liquid first heat storage substance 15 in the space 23 under vacuum and low pressure is easily boiled and becomes a gas, and the first heat storage substance 15 is changed from the pipe 14 to the second storage portion 12. To the space 43. When the first heat storage substance 15 boils, heat is efficiently transferred from the fluid 17 to the first heat storage substance 15 as latent heat of vaporization through the fins 24, and the fluid 17 is cooled.
【0013】一方、第2貯留部12では、制御弁13が
開いていれば気体状の第1蓄熱物質15が空間43内へ
と侵入していき、気体透過部材40(41,42)の外
周部を流れる。第2蓄熱物質18は、蓄熱装置10の放
熱作動時には例えばNa2 Sの状態にありH2 Oをもた
ない。しかし、気体透過部材40(41,42)の外周
部を気体状の第1蓄熱物質15が流れはじめると、気体
透過部材40(41,42)を通して気体状の第1蓄熱
物質15が第2蓄熱物質18に作用しはじめる。即ち、
第2蓄熱物質18が第1蓄熱物質15と吸着,結合し、
例えばNa2 SがNa2 S・xH2 O(0<x<5)と
なって発熱反応が生じる。ここで、フィン37(38,
39)は管状部材31(32,33)の外周面と気体透
過部材40(41,42)の内周面とを接続するような
形となっているので、第2蓄熱物質18が管状部材31
(32,33)よりにあろうと気体透過部材40(4
1,42)よりにあろうとも、発熱反応により生じた熱
は円周方向に延在するフィン37(38,39)を介し
て効率よく管状部材31(32,33)、そして流体1
6へと伝わって流体16を加熱できる。また、前述の従
来技術とは異なり、第1蓄熱物質15の気体が筒状とな
っている第2蓄熱物質18の外周側から作用するため、
より多くの気体が第2蓄熱物質18と吸着,結合しやす
い。更に、管状部材31,32,33の熱容量は、従来
技術のような外壁よりも小さく、気体透過部材40(4
1,42)の熱容量も従来技術のような外壁よりも小さ
い。On the other hand, in the second storage portion 12, if the control valve 13 is opened, the first heat storage substance 15 in the form of gas enters the space 43, and the outer periphery of the gas permeable member 40 (41, 42). Flowing through the section. The second heat storage material 18 is in a state of, for example, Na 2 S and does not have H 2 O when the heat storage device 10 performs the heat radiation operation. However, when the gaseous first heat storage substance 15 starts to flow in the outer peripheral portion of the gas permeable member 40 (41, 42), the gaseous first heat storage substance 15 passes through the gas permeable member 40 (41, 42) to generate the second heat storage. It begins to act on the substance 18. That is,
The second heat storage material 18 is adsorbed and combined with the first heat storage material 15,
For example, Na 2 S becomes Na 2 S.xH 2 O (0 <x <5), and an exothermic reaction occurs. Here, the fins 37 (38,
39) has such a shape that the outer peripheral surface of the tubular member 31 (32, 33) is connected to the inner peripheral surface of the gas permeable member 40 (41, 42), so that the second heat storage substance 18 is connected to the tubular member 31.
Gas-permeable member 40 (4
1, 42), the heat generated by the exothermic reaction is efficiently transferred through the circumferentially extending fins 37 (38, 39) to the tubular member 31 (32, 33) and the fluid 1
The fluid 16 can be heated by going to 6. Further, unlike the above-described conventional technique, the gas of the first heat storage substance 15 acts from the outer peripheral side of the cylindrical second heat storage substance 18,
More gas is likely to be adsorbed and bonded to the second heat storage material 18. Further, the heat capacity of the tubular members 31, 32, 33 is smaller than that of the outer wall as in the prior art, and the gas permeable member 40 (4
1, 42) also has a smaller heat capacity than the outer wall as in the prior art.
【0014】最終的には、第1貯留部11における液体
状の第1蓄熱物質15が略全て気体状となり、第1貯留
部12において第2蓄熱物質18に吸着,結合されるこ
とで、流体16の加熱及び流体17の冷却が終了する。
しかし、以下に説明する再生を繰り返し行うことで、何
度でも流体16の加熱及び流体17の冷却を行うことが
できる。Eventually, the liquid first heat storage substance 15 in the first storage portion 11 becomes substantially entirely in a gaseous state, and is adsorbed and bonded to the second heat storage substance 18 in the first storage portion 12, thereby forming a fluid. The heating of 16 and the cooling of the fluid 17 are complete.
However, the fluid 16 can be heated and the fluid 17 can be cooled any number of times by repeatedly performing the regeneration described below.
【0015】即ち、管状部材31(32,33)内に第
2蓄熱物質18の発熱温度よりも高温の流体16を流
し、パイプ21に第1蓄熱物質15の蒸発温度よりも低
温の流体17を流す。この結果、第2貯留部12におい
てNa2 S・xH2 O(0<x<5)の状態にある第2
蓄熱物質18はxH2 O(0<x<5)を放出し、第1
貯留部11に至り、流体17によりフィン24を介して
冷却されることで液化し、空間23内に溜まっていく。
そして、第1貯留部11及び第2貯留部12内にある第
1蓄熱物質15の略全てが液化されることで、再生が終
了する。That is, the fluid 16 having a temperature higher than the heat generation temperature of the second heat storage material 18 is caused to flow in the tubular member 31 (32, 33), and the fluid 17 having a temperature lower than the evaporation temperature of the first heat storage material 15 is passed through the pipe 21. Shed. As a result, the second storage unit 12 is in the state of Na 2 S · xH 2 O (0 <x <5)
The heat storage material 18 emits xH 2 O (0 <x <5),
The liquid reaches the storage portion 11, is liquefied by being cooled by the fluid 17 via the fins 24, and is accumulated in the space 23.
Then, almost all of the first heat storage substance 15 in the first storage unit 11 and the second storage unit 12 is liquefied, and the regeneration is completed.
【0016】[0016]
【発明の効果】上述したように本発明の蓄熱装置では、
第2貯留部のハウジング内に導入された第1蓄熱物質の
気体が気体透過部材を通過して第2蓄熱物質と吸着,結
合するとき、気体透過部材がフィン外端を包囲してるた
めにその面積が大きく、第1蓄熱物質の気体が効率よく
第2蓄熱物質と吸着,結合できるので、この吸着,結合
に伴う発熱反応が向上する。As described above, in the heat storage device of the present invention,
When the gas of the first heat storage substance introduced into the housing of the second storage part passes through the gas permeable member and is adsorbed and combined with the second heat storage substance, the gas permeable member surrounds the outer end of the fin. Since the area is large and the gas of the first heat storage substance can be efficiently adsorbed and bound to the second heat storage substance, the exothermic reaction associated with this adsorption and binding is improved.
【0017】また、ハウジングとフィン或いは気体透過
部材とが接触していないので、反応部における熱容量が
小さく、発熱反応の立ち上がりが早くなる。Further, since the housing is not in contact with the fins or the gas permeable member, the heat capacity in the reaction part is small and the exothermic reaction starts up quickly.
【図1】本発明実施例の蓄熱装置の構成図を示す。FIG. 1 shows a configuration diagram of a heat storage device according to an embodiment of the present invention.
【図2】図1における要部拡大透視図を示す。FIG. 2 shows an enlarged perspective view of a main part in FIG.
【図3】従来技術の蒸発/凝縮装置及びエネルギシステ
ムの断面図を示す。FIG. 3 shows a cross-sectional view of a prior art evaporation / condensation device and energy system.
10 蓄熱装置、 11 第1貯留部、 12 第2貯留部、 15 第1蓄熱物質、 18 第2蓄熱物質、 22 第1ハウジング(ハウジング)、 31,32,33 管状部材、 34 第2ハウジング(ハウジング)、 37,38,39 フィン、 40,41,42 気体透過部材。 10 heat storage device, 11 1st storage part, 12 2nd storage part, 15 1st heat storage substance, 18 2nd heat storage substance, 22 1st housing (housing), 31, 32, 33 tubular member, 34 2nd housing (housing) ), 37, 38, 39 fins, 40, 41, 42 gas permeable members.
Claims (1)
熱物質と、 前記第1,第2蓄熱物質が封入されるハウジングと、 前記ハウジングの前記第1蓄熱物質の液体が貯留される
第1貯留部と、 前記ハウジングの前記第2蓄熱物質の固体が貯留される
第2貯留部とを有する蓄熱装置において、 前記第2貯留部は、 前記ハウジングに支承され、その内部を流体が流れる管
状部材と、 前記ハウジングとは非接触に且つ前記管状部材外周面上
にその内端が伝熱可能に固設されるフィンと、 前記ハウジングとは非接触に前記フィンの外端を包囲す
る筒状の気体透過部材とからなり、 前記第2蓄熱物質が前記管状部材外周面と前記気体透過
部材との間に保持されると共に、前記気体透過部材外周
部を前記第1蓄熱物質の気体が流れることを特徴とする
蓄熱装置。1. A first and a second heat storage substance that can be combined / separated from each other, a housing in which the first and the second heat storage substance are enclosed, and a liquid of the first heat storage substance in the housing is stored. In the heat storage device which has a 1st storage part and a 2nd storage part by which the solid of the 2nd heat storage substance of the housing is stored, the 2nd storage part is supported by the housing, and a fluid flows inside. A tubular member, a fin whose inner end is fixedly mounted on the outer peripheral surface of the tubular member in a non-contact manner with the tubular member, and a cylinder surrounding the outer end of the fin in a non-contact manner with the housing. The second heat storage material is held between the outer peripheral surface of the tubular member and the gas permeable member, and the gas of the first heat storage material flows through the outer peripheral portion of the gas permeable member. Characterized by Heat equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4204101A JPH0650687A (en) | 1992-07-30 | 1992-07-30 | Heat accumulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4204101A JPH0650687A (en) | 1992-07-30 | 1992-07-30 | Heat accumulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0650687A true JPH0650687A (en) | 1994-02-25 |
Family
ID=16484818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4204101A Pending JPH0650687A (en) | 1992-07-30 | 1992-07-30 | Heat accumulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0650687A (en) |
-
1992
- 1992-07-30 JP JP4204101A patent/JPH0650687A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2596169B2 (en) | Cooler | |
KR100620303B1 (en) | Gas storage tank and its manufacturing method | |
US5661986A (en) | Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor | |
US4901790A (en) | Self-heated diffuser assembly for a heat pipe | |
US20120312701A1 (en) | Hydrogen storage unit | |
US20130334067A1 (en) | Hydrogen storage device | |
KR20170117503A (en) | System, apparatus and method for gas distribution in a soberer | |
KR20100105851A (en) | Absorption machine having a built-in energy storage working according to the matrix method | |
JPH0650687A (en) | Heat accumulator | |
JP4737074B2 (en) | Adsorber and adsorber manufacturing method | |
JP4821563B2 (en) | Adsorption module and method of manufacturing adsorption module | |
JPS5925956B2 (en) | metal hydride container | |
JP4830799B2 (en) | Adsorption module | |
US10386100B2 (en) | Adsorption system heat exchanger | |
JP6757613B2 (en) | Heat storage system, heat storage container, heat storage device using heat storage container, and warming device using heat storage device | |
JPH0599538A (en) | Adsorption type heat exchanger | |
JPH0712425B2 (en) | Reactor | |
JP2005325708A (en) | Canister | |
JPS6176887A (en) | Vessel for accommodating metallic hydrides | |
JP4821746B2 (en) | Adsorption heat exchanger | |
JP2695615B2 (en) | Heat exchanger | |
CN101248320A (en) | Thermochemical reactor used for cooling and/or heater | |
JPH07133745A (en) | Evaporation fuel treatment device | |
JPS5925955B2 (en) | Metal hydride heat storage device | |
JPH05248728A (en) | Chemically heat-accumulating type heat pump |