JPH0649269A - Flaky ag-pd alloy filler material having electrical conductivity and product containing the filler - Google Patents
Flaky ag-pd alloy filler material having electrical conductivity and product containing the fillerInfo
- Publication number
- JPH0649269A JPH0649269A JP6207793A JP6207793A JPH0649269A JP H0649269 A JPH0649269 A JP H0649269A JP 6207793 A JP6207793 A JP 6207793A JP 6207793 A JP6207793 A JP 6207793A JP H0649269 A JPH0649269 A JP H0649269A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- filler material
- conductive
- alloy
- migration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inks, Pencil-Leads, Or Crayons (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、樹脂やゴムなどのポリ
マーやペースト、塗料あるいはインキに導電性を付与す
るための金属フィラー材ならびにこの金属フィラー材を
使用して得た導電性を有する前記の製品に関する。BACKGROUND OF THE INVENTION The present invention relates to a metal filler material for imparting conductivity to polymers such as resins and rubbers, pastes, paints or inks, and the above-mentioned metal filler material having conductivity. Regarding products.
【0002】[0002]
【従来の技術】従来、樹脂やゴムなどのポリマーに導電
性を付与するための金属フィラー材としては、Ag粉
末、鱗片状のAg粉末、銅粉末等が用いられ、また導電
性ペースト、塗料、インキなどには同じくAg粉末、鱗
片状のAg粉末、銅粉末、AgとPdの混合粉末および
AgとPtの混合粉末等が用いられている。鱗片状金属
粉末の製法としては、例えば特開昭61−155471
号公報、特開平2−52049号公報に提案されてい
る。2. Description of the Related Art Conventionally, Ag powder, scaly Ag powder, copper powder, etc. have been used as a metal filler material for imparting conductivity to polymers such as resins and rubbers, and conductive paste, paint, Similarly, Ag powder, scaly Ag powder, copper powder, mixed powder of Ag and Pd, mixed powder of Ag and Pt, and the like are used for ink and the like. As a method for producing the flaky metal powder, for example, JP-A-61-155471
Japanese Patent Laid-Open No. 5-52049.
【0003】[0003]
【発明が解決しようとする課題】しかるに、樹脂やゴム
などのポリマーに導電性を付与するための金属フィラー
材としてのAg粉末、鱗片状のAg粉末では、樹脂やゴ
ムなどのポリマー中でAgのマイグレーション(移行現
象)が生じやすく、導電特性が不安定になるという問題
がある。However, in the case of Ag powder or scale-like Ag powder as a metal filler material for imparting conductivity to a polymer such as resin or rubber, Ag powder in a polymer such as resin or rubber is Migration (transition phenomenon) is likely to occur, and there is a problem that the conductive characteristics become unstable.
【0004】また、銅粉末を用いた場合、マイグレーシ
ョンは生じにくいが、ポリマー内部で銅粉末の酸化が生
じ、導電特性が低下するという問題があった。Further, when the copper powder is used, migration is unlikely to occur, but there is a problem that the copper powder is oxidized inside the polymer and the conductive characteristics are deteriorated.
【0005】この種の金属フィラー材としてAgとPd
の合金粉末あるいはAgとPtの合金粉末を用いて、上
記問題点を解決する方法が考えられるが、樹脂やゴム等
のポリマー中で導電性を発揮するためには合金粒子相互
が接触するように分級して小径の粒子のみを選別しなけ
ればならず、その分級により多量の損失が生じて製造費
の上昇を招くという欠点があった。Ag and Pd are used as this kind of metal filler material.
A method of solving the above-mentioned problems can be considered by using the above alloy powder or the alloy powder of Ag and Pt. However, in order to exhibit conductivity in a polymer such as resin or rubber, the alloy particles should be in contact with each other. Only small particles having a small diameter have to be classified, and a large amount of loss occurs due to the classification, resulting in an increase in manufacturing cost.
【0006】導電性ペースト、塗料およびインキに使わ
れるAg粉末、鱗片状のAg粉末、銅粉末は、例えば電
子部品としてセラミック基板上に塗布、焼成し、これら
の金属によって回路を形成するが、Agはマイグレーシ
ョンによって、導電特性が不安定になる問題があり、銅
粉末は酸化によって導電特性が低下する問題があった。[0006] Ag powder, scale-like Ag powder and copper powder used in conductive pastes, paints and inks are applied as an electronic component on a ceramic substrate and fired to form a circuit by these metals. Had a problem that the conductive characteristics became unstable due to migration, and the copper powder had a problem that the conductive characteristics deteriorate due to oxidation.
【0007】AgとPdの混合粉末およびAgとPtの
混合粉末を用いたものは、例えば同じく電子部品として
セラミック基板上に塗布、焼成するのであるが、この時
の焼成温度は一般に800℃以上であり、AgとPdの
混合粉末またはAgとPtの混合粉末が基板上で溶解し
て合金を形成し、Agのマイグレーションを防止するも
のである。The mixed powder of Ag and Pd and the mixed powder of Ag and Pt are applied and fired on a ceramic substrate as an electronic component, for example. The firing temperature at this time is generally 800 ° C. or higher. That is, the mixed powder of Ag and Pd or the mixed powder of Ag and Pt is melted on the substrate to form an alloy, and migration of Ag is prevented.
【0008】この場合の技術上の問題点は、例えば、A
g85wt%とPd15wt%またはAg95wt%と
Pt5wt%を混合する場合、両粉末を混合してペース
ト、塗料およびインキ内に均一に分散するのが難しく、
セラミック基板上に塗布、焼成して得られた回路を微視
的に観察すると、合金の形成にムラがあり、完全にマイ
グレーションを防止することが困難であった。The technical problem in this case is, for example, A
When g85wt% and Pd15wt% or Ag95wt% and Pt5wt% are mixed, it is difficult to mix both powders and uniformly disperse in paste, paint and ink,
Microscopically observing the circuit obtained by coating and firing on a ceramic substrate, there was unevenness in the formation of the alloy, and it was difficult to completely prevent migration.
【0009】本発明は、前記した従来技術の問題点を解
消し、安価で特性の優れた導電用金属フィラー材と、そ
れを使用した製品を提供することを目的としている。An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an inexpensive conductive metal filler material having excellent characteristics and a product using the same.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するた
め、本発明者等は鋭意研究を重ねた結果、粉末自体がA
g−Pd合金であり、その形状が鱗片状である場合、A
gのマイグレーションを生じにくい導電用金属フィラー
材としてきわめて有効であることを知見し、またこの鱗
片状粉末をポイリマー中に層状に配向させると導電効率
の増強に一層有利であることを知見し、本発明を完成す
るに至った。In order to achieve the above object, the inventors of the present invention have conducted extensive studies and found that the powder itself is A
If it is a g-Pd alloy and its shape is scale-like, A
It was found that it is extremely effective as a conductive metal filler material that is unlikely to cause migration of g, and that it is more advantageous to enhance the conductive efficiency by orienting this scale-like powder into a layer in the poilimer. The invention was completed.
【0011】[0011]
【発明の構成】本発明は、平均粒径0.1〜100μm
で、短軸と長軸の比が1〜0.3、厚さ5μm以下、好
ましくは1μm以下である鱗片状のPd1〜50wt%
残部Ag及び不可避不純物よりなる導電性フィラーを提
供する。本発明の導電性フィラーは、好ましくは溶融し
たAg−Pd合金を急冷して得た粉末を機械的に扁平化
して造られる。本発明はまた前記の導電用フィラー材、
導電性ポリマー(ゴムを含む)、導電性ペースト、塗料
又はインキを提供する。The present invention has an average particle diameter of 0.1 to 100 μm.
And a scale-like Pd of 1 to 50 wt% with a ratio of the minor axis to the major axis of 1 to 0.3 and a thickness of 5 μm or less, preferably 1 μm or less.
A conductive filler composed of the balance Ag and unavoidable impurities is provided. The conductive filler of the present invention is preferably produced by mechanically flattening a powder obtained by rapidly cooling a molten Ag-Pd alloy. The present invention also provides the conductive filler material,
Provide a conductive polymer (including rubber), a conductive paste, a paint or an ink.
【0012】[0012]
【作用】本発明の構成と作用を説明する。本発明の導電
性フィラーは、水アトマイズ法等によって得られた平均
粒径5〜150μmのほぼ球形の粒子を、ボールを使用
する粉砕機等によって粉砕、および鱗片化する。粉砕及
び鱗片化の度合いはボールの粒径、粉砕時間及び使用す
る溶媒の種類によって決定することができる。The structure and operation of the present invention will be described. The conductive filler of the present invention is obtained by pulverizing substantially spherical particles having an average particle diameter of 5 to 150 μm obtained by a water atomizing method or the like with a pulverizer using balls or the like to form flakes. The degree of crushing and flaking can be determined by the particle size of the balls, the crushing time and the type of solvent used.
【0013】上記のようにして得られた鱗片状の粉末
は、レーザー散乱法により測定した平均粒径で、0.1
〜100μm、鱗片状平面の短軸と長軸の比が1〜0.
3、厚さ5μm以下、好ましくは1μm以下である。ま
た、Ag−Pd粒子の合金組成はPd1〜50wt%残
部Ag及び不可避不純物である。The scale-like powder obtained as described above has an average particle size of 0.1 as measured by a laser scattering method.
˜100 μm, the ratio of the minor axis to the major axis of the scaly plane is 1 to 0.
3. Thickness is 5 μm or less, preferably 1 μm or less. The alloy composition of the Ag-Pd particles is Pd 1 to 50 wt% balance Ag and inevitable impurities.
【0014】前記のように限定した理由は、平均粒径が
0.1μm未満では、粒子相互の凝集が起こって均一に
分散され難く、100μmを超えると導電性に問題を生
ずる。また、鱗片状平面の短軸と長軸の比が規定範囲外
のとき、あるいは厚さが5μmを超えると、鱗片状化に
よる導電性充填材としての効果が低下する。そして、P
d1wt%未満では耐Agマイグレーション性が実用的
でなく、50wt%を超えると前記効果は飽和し、いた
ずらに高価になる。The reason for the above limitation is that if the average particle diameter is less than 0.1 μm, mutual aggregation of the particles occurs and it is difficult to uniformly disperse the particles, and if it exceeds 100 μm, there is a problem in conductivity. Further, when the ratio of the minor axis to the major axis of the scaly plane is out of the specified range, or when the thickness exceeds 5 μm, the effect as a conductive filler due to scalyness decreases. And P
If it is less than d1 wt%, the Ag migration resistance is not practical, and if it exceeds 50 wt%, the above-mentioned effect is saturated and it becomes unnecessarily expensive.
【0015】上記のように鱗片状としたAg−Pd粒子
を使用し、たとえばアクリル樹脂、シリコーン樹脂、ポ
リウレタン樹脂等の中に、ロールミル等を使用して均一
に分散させることにより、導電性ポリマーが得られる。
また、この鱗片状としたAg−Pd粒子を、たとえばポ
リマー(例えば、ポリウレタン樹脂)および溶剤とプレ
ミックスした後、ロールミル等を使用して均一に分散さ
せることにより導電性ペースト、塗料又はインキが得ら
れる。また、この分散させた粉末を磁場および/または
圧力をかけて層状に配向させることにより、接点抵抗を
低減し導電効率を高めることができる。By using Ag-Pd particles in the form of flakes as described above and uniformly dispersing them in, for example, an acrylic resin, a silicone resin, a polyurethane resin using a roll mill or the like, a conductive polymer is obtained. can get.
Further, the scale-like Ag-Pd particles are premixed with, for example, a polymer (for example, a polyurethane resin) and a solvent, and then uniformly dispersed by using a roll mill or the like to obtain a conductive paste, a paint or an ink. To be Further, by applying the magnetic field and / or pressure to orient the dispersed powder in a layered manner, contact resistance can be reduced and conductive efficiency can be increased.
【0016】[0016]
【発明の具体的開示】本発明の構成・効果を実施例によ
り具体的に説明するが、これにより本発明が限定される
ものではない。DETAILED DESCRIPTION OF THE INVENTION The constitution and effect of the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
【0017】実施例1 銀8kg、パラジウム2kgをArガス雰囲気下で黒鉛
るつぼを使用して溶融し、その溶融物を高圧水アトマイ
ズ法により、ほぼ球形で平均粒径15μmのAg−Pd
合金粒子を得た。Example 1 8 kg of silver and 2 kg of palladium were melted using a graphite crucible under an Ar gas atmosphere, and the melt was subjected to a high pressure water atomization method to form a substantially spherical Ag-Pd having an average particle size of 15 μm.
Alloy particles were obtained.
【0018】得られた粒子200gを湿式ボールミル粉
砕機(溶媒としてメチルアルコール800g、分散剤と
してステアリン酸2gを使用)によって、約62時間運
転して粉砕及び扁平化を行なった。200 g of the obtained particles were pulverized and flattened by a wet ball mill pulverizer (using 800 g of methyl alcohol as a solvent and 2 g of stearic acid as a dispersant) for about 62 hours.
【0019】得られた扁平粉末をレーザー散乱法により
測定した結果、平均粒径は1.5μmであった.また、
図1に示すSEM写真より鱗片平面の短軸と長軸の比は
0.55、鱗片の厚さは0.3μmであることが確認さ
れた、このような鱗片状Ag−Pd合金は粉末はこれま
でに報告されていない。As a result of measuring the obtained flat powder by a laser scattering method, the average particle diameter was 1.5 μm. Also,
From the SEM photograph shown in FIG. 1, it was confirmed that the ratio of the minor axis to the major axis of the scale plane was 0.55, and the thickness of the scale was 0.3 μm. Such a scale-like Ag-Pd alloy had a powder Not reported so far.
【0020】この粉末をシリコーン系ゴムに68wt%
の割合で、ロールミルを用いてコンパウンドし、120
℃、1時間で硬化させ、厚さ70μmの薄膜を製作し
た。この薄膜の体積抵抗値は1.5×10-3Ω・cmを
示した。また、この分散させた粉末を硬化させる前に磁
場をかけて層状に配向させたものは8×10-4Ω・cm
の体積抵抗地を示した。この鱗片状粉末をユーザーに供
試品として提供したところ、マイグレーションを起こす
までの時間は、同じ粒度の銀粉末使用の場合の約20倍
であったとの報告を受けた。68 wt% of this powder in silicone rubber
Compound with a roll mill at a ratio of
The film was cured at 1 ° C. for 1 hour to produce a thin film having a thickness of 70 μm. The volume resistance value of this thin film was 1.5 × 10 −3 Ω · cm. In addition, a magnetic field applied to this dispersed powder before hardening is 8 × 10 −4 Ω · cm.
The volume resistance of When this scale-like powder was provided to the user as a sample, it was reported that the time until migration occurred was about 20 times that in the case of using silver powder of the same particle size.
【0021】上に製造した鱗片状Ag−Pd合金粉末
を、ポリウレタン系樹脂に70wt%の割合で混合し、
適量の溶剤(シクロヘキサンとトルエン)を加えてサン
ドミルで分散させ、粘度750cpsのペーストを作っ
てセラミック基板に塗布し、電気炉中で80℃、2時間
で硬化させ、180℃、4時間30分のベーキング処理
をして塗膜を作った。この塗膜の表面抵抗値は1.0×
10-3Ω/□であった。この場合も、硬化前に磁場によ
って粉末を層状に配向させたものは7.2×10-4Ω/
□の表面抵抗値を示した。The scale-like Ag-Pd alloy powder produced above was mixed with a polyurethane resin at a ratio of 70 wt%,
Add an appropriate amount of solvent (cyclohexane and toluene) and disperse with a sand mill to make a paste with a viscosity of 750 cps, apply it to a ceramic substrate, and cure it in an electric furnace at 80 ° C for 2 hours, 180 ° C for 4 hours 30 minutes. A baking treatment was performed to form a coating film. The surface resistance of this coating is 1.0 x
It was 10 −3 Ω / □. In this case as well, the powder obtained by orienting the powder in a layer shape by a magnetic field before curing is 7.2 × 10 −4 Ω /
The surface resistance value of □ is shown.
【0022】実施例2 銀8kg、パラジウム2kgをArガス雰囲気下で黒鉛
るつぼを使用して溶融し、その溶融物を高圧水アトマイ
ズ法により、ほぼ球形で平均粒径50μmのAg−Pd
合金粒子を得た。Example 2 8 kg of silver and 2 kg of palladium were melted in an Ar gas atmosphere using a graphite crucible, and the melt was subjected to a high pressure water atomization method to form a substantially spherical Ag-Pd having an average particle size of 50 μm.
Alloy particles were obtained.
【0023】得られた粒子200gを湿式ボールミル粉
砕機(溶媒としてメチルアルコール920g、分散剤と
してステアリン酸8gを使用)によって、約28時間運
転して粉砕及び扁平化を行なった。200 g of the obtained particles were crushed and flattened by a wet ball mill (using 920 g of methyl alcohol as a solvent and 8 g of stearic acid as a dispersant) for about 28 hours.
【0024】得られた扁平粉末をレーザー散乱法で粒度
測定した結果、平均粒径15μmであった。また鱗片平
面の短軸と長軸の比はほぼ0.7、鱗片の厚さは1μm
であった。The particle size of the obtained flat powder was measured by a laser scattering method, and the average particle size was 15 μm. The ratio of the minor axis to the major axis of the scale plane is about 0.7, and the thickness of the scale is 1 μm.
Met.
【0025】この粉末を実施例1の2番目に記したのと
同様にして塗膜を作製したところ、得られた塗膜の表面
抵抗値は5.4×10-3Ω/□を示した。この場合も塗
膜の硬化前に磁場によって粉末を層状に配向したものは
4.1×10-3Ω/□の表面抵抗値を示した。この粉末
もユーザーに提供したが、実施例1の製品と同様に同じ
粒度の単味銀粉末と比較して同様にマイグレーションを
起こすまでの時間は約20倍であったと報告を受けた。
Ag−Pd合金粉末の充填率の異なる塗膜を作製して
表面抵抗を測定した結果を図2に示す。同じ組成で平均
粒径約15μmであるがほぼ球形のAg−Pd合金粉末
(実施例1の粉砕扁平化前の粉末)を使用した場合の同
様の試験の結果を比較として示した。A coating film was prepared from this powder in the same manner as described in Example 1, and the surface resistance value of the obtained coating film was 5.4 × 10 −3 Ω / □. . In this case as well, the powder obtained by orienting the powder into a layer by the magnetic field before the coating was cured exhibited a surface resistance value of 4.1 × 10 −3 Ω / □. This powder was also provided to the user, but it was reported that the time until migration similarly occurred was about 20 times as much as that of the plain silver powder having the same particle size as the product of Example 1.
FIG. 2 shows the results of measuring the surface resistance by making coating films having different filling rates of the Ag-Pd alloy powder. As a comparison, the results of a similar test in which Ag-Pd alloy powder having the same composition but an average particle size of about 15 μm, but having a substantially spherical shape (powder before grinding and flattening in Example 1) are used are shown.
【0026】実施例3 銀8kg、パラジウム2kgをArガス雰囲気下で黒鉛
るつぼ中で溶融し、その溶融液を高圧ガスアトマイズ法
によりほぼ球形の平均粒径150μmのAg−Pd合金
粉末を得た。その粉末200gを湿式(分散媒としてメ
チルアルコール使用)のボールを用いた粉砕機によって
約15時間粉砕および扁平化を行なった。得られた扁平
粉末の粒径をレーザー散乱法によって測定した結果、平
均粒径は100μmであった。また鱗片平面の短軸と長
軸の比はほぼ0.7、鱗片の厚さは5μmであった。Example 3 8 kg of silver and 2 kg of palladium were melted in a graphite crucible under an Ar gas atmosphere, and the molten liquid was subjected to a high pressure gas atomization method to obtain a nearly spherical Ag-Pd alloy powder having an average particle size of 150 μm. 200 g of the powder was pulverized and flattened for about 15 hours by a pulverizer using a wet ball (using methyl alcohol as a dispersion medium). As a result of measuring the particle size of the obtained flat powder by a laser scattering method, the average particle size was 100 μm. The ratio of the minor axis to the major axis of the scale plane was about 0.7, and the thickness of the scale was 5 μm.
【0027】この粉末をシリコーンゴムに充填量56w
t%(シリコーンゴムに充填できる最大量)でロールミ
ルを用いて混練して塗料を造り、さらに180℃4時間
30分後処理し、厚さ200μmの薄膜を作製した。そ
の薄膜の表面抵抗値は8.2×10-3Ω/□を示した。
この場合も磁場によって粉末を硬化させる前に層状に配
向させたものは7.5×10-3Ω/□の表面抵抗値を示
した。この粉末をユーザーに提供したところ、従来の銀
粉末に比して、薄膜に作製した場合、マイグレーション
を起こすまでの時間は約20倍になったとの報告を受け
た。A filling amount of this powder in silicone rubber 56w
A coating material was prepared by kneading with a roll mill at t% (the maximum amount that can be filled in the silicone rubber) and further post-treated at 180 ° C. for 4 hours and 30 minutes to prepare a thin film having a thickness of 200 μm. The surface resistance value of the thin film was 8.2 × 10 −3 Ω / □.
In this case as well, the one in which the powder was oriented in a layer before being hardened by the magnetic field showed a surface resistance value of 7.5 × 10 −3 Ω / □. When this powder was provided to users, it was reported that the time required for migration to occur was about 20 times longer when a thin film was formed than the conventional silver powder.
【0028】実施例4 実施例1と同様に、ただし、約25時間粉砕および扁平
化を行なった。得られた扁平粉末をレーザー散乱法で粒
度測定した結果、平均粒径5.3μmであった。また鱗
片平面の短軸と長軸の比はほぼ0.7、鱗片の厚さは1
μmであった。この粉末をシリコーンゴムに充填量56
wt%(シリコーンゴムにコンパウンドできる最大量)
で、ロールミルを用いて混練して塗料を造り、さらに1
80℃で4時間30分後処理を行ない、厚さ200μm
の薄膜を製作した。この薄膜の体積抵抗値は3.6×1
0-3Ω・cmを示した。この場合も、薄膜の硬化前に磁
場によって層状に配向させたものは1.9×10-3Ω/
□であった。この粉末もユーザーに提供したが、実施例
1の製品と同様に同じ粒度の単味銀粉末と比較して同様
にマイグレーションを起こすまでの時間は約20倍であ
ったと報告を受けた。Example 4 As in Example 1, except that crushing and flattening were carried out for about 25 hours. As a result of measuring the particle size of the obtained flat powder by a laser scattering method, the average particle size was 5.3 μm. The ratio of the minor axis to the major axis of the scale plane is about 0.7, and the scale thickness is 1
was μm. Fill the silicone rubber with this powder 56
wt% (maximum amount that can be compounded with silicone rubber)
Then, knead with a roll mill to make a paint, and
After treatment for 4 hours and 30 minutes at 80 ℃, thickness 200μm
A thin film of The volume resistance value of this thin film is 3.6 × 1.
It showed 0 −3 Ω · cm. Also in this case, the film oriented in a layer by a magnetic field before the thin film is cured has a thickness of 1.9 × 10 −3 Ω /
It was □. This powder was also provided to the user, but it was reported that the time until migration similarly occurred was about 20 times as much as that of the plain silver powder having the same particle size as the product of Example 1.
【0029】[0029]
【発明の効果】本発明は、以上説明したように構成され
ているから、銀のマイグレーションが生じにくい導電性
フィラー材を得ることが出来、これを使用して、銀マイ
グレーション発生が少なく、導電性が良好で安価な樹
脂、ポリマー、ペースト、塗料およびインキの提供が出
来、産業上きわめて有用である。EFFECTS OF THE INVENTION Since the present invention is constructed as described above, it is possible to obtain a conductive filler material in which migration of silver is unlikely to occur. It is possible to provide resins, polymers, pastes, paints and inks that have good properties and are inexpensive, and are extremely useful in industry.
【図1】実施例1によって製造された本発明の導電性フ
ィラー材粒子の構造を示す走査顕微鏡写真(SEM)写
真である。FIG. 1 is a scanning electron microscope (SEM) photograph showing the structure of the conductive filler material particles of the present invention produced in Example 1.
【図2】実施例2のAg−Pd粉末を充填量を変えて作
製した塗布膜の表面抵抗値を同じ物質で同じ平均粒径で
形状のみ球形の粉末の場合と比較して示したグラフであ
る。FIG. 2 is a graph showing the surface resistance values of coating films prepared by changing the filling amount of Ag-Pd powder of Example 2 in comparison with the case of powder of the same substance but the same average particle diameter and only spherical shape. is there.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年4月26日[Submission date] April 26, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図1[Name of item to be corrected] Figure 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 1/00 H 7244−5G 1/22 Z 7244−5G Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01B 1/00 H 7244-5G 1/22 Z 7244-5G
Claims (5)
長軸の比が1〜0.3、厚さ5μm以下である鱗片状の
Pd1〜50wt%残部Ag及び不可避不純物よりなる
導電用フィラー材。1. A conductive material having an average particle size of 0.1 to 100 μm, a ratio of a short axis to a long axis of 1 to 0.3, and a thickness of 5 μm or less of scaly Pd of 1 to 50 wt% balance Ag and inevitable impurities. Filler material.
粉末を機械的に扁平化したものである請求項1に記載の
導電性フィラー材。2. The conductive filler material according to claim 1, which is obtained by mechanically flattening a powder obtained by rapidly cooling a molten Ag—Pd alloy.
ーを含むことを特徴とする導電性ポリマー。3. A conductive polymer comprising the conductive filler according to claim 1 or 2.
ー材を含む導電性ペースト、塗料又はインキ。4. A conductive paste, paint or ink containing the conductive filler material according to claim 1.
て、ポリマー中に導電性フィラ−が層状に配向している
ことを特徴とする導電性ポリマー材料。5. The conductive polymer material according to claim 3, wherein the conductive filler is layered in the polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6207793A JPH0649269A (en) | 1992-03-27 | 1993-03-22 | Flaky ag-pd alloy filler material having electrical conductivity and product containing the filler |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-102085 | 1992-03-27 | ||
JP10208592 | 1992-03-27 | ||
JP6207793A JPH0649269A (en) | 1992-03-27 | 1993-03-22 | Flaky ag-pd alloy filler material having electrical conductivity and product containing the filler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0649269A true JPH0649269A (en) | 1994-02-22 |
Family
ID=26403140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6207793A Pending JPH0649269A (en) | 1992-03-27 | 1993-03-22 | Flaky ag-pd alloy filler material having electrical conductivity and product containing the filler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649269A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997048107A1 (en) * | 1996-06-11 | 1997-12-18 | Sumitomo Osaka Cement Co., Ltd. | Transparent conductive film, low-reflection transparent conductive film, and display |
EP1009201A2 (en) * | 1998-12-10 | 2000-06-14 | Alps Electric Co., Ltd. | Flexible printed substrate having a conductive pattern formed thereon |
KR100715405B1 (en) * | 1999-07-12 | 2007-05-08 | 소니 가부시끼 가이샤 | Metal material for electronic parts, electronic parts, electronic apparatuses, and method of processing metal materials |
JP2013201133A (en) * | 2007-11-30 | 2013-10-03 | Kyoritsu Kagaku Sangyo Kk | Conductive composition |
-
1993
- 1993-03-22 JP JP6207793A patent/JPH0649269A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997048107A1 (en) * | 1996-06-11 | 1997-12-18 | Sumitomo Osaka Cement Co., Ltd. | Transparent conductive film, low-reflection transparent conductive film, and display |
CN100338154C (en) * | 1996-06-11 | 2007-09-19 | 住友大阪水泥株式会社 | Paint for forming transparent conductive layer |
EP1009201A2 (en) * | 1998-12-10 | 2000-06-14 | Alps Electric Co., Ltd. | Flexible printed substrate having a conductive pattern formed thereon |
EP1009201A3 (en) * | 1998-12-10 | 2003-02-12 | Alps Electric Co., Ltd. | Flexible printed substrate having a conductive pattern formed thereon |
KR100715405B1 (en) * | 1999-07-12 | 2007-05-08 | 소니 가부시끼 가이샤 | Metal material for electronic parts, electronic parts, electronic apparatuses, and method of processing metal materials |
JP2013201133A (en) * | 2007-11-30 | 2013-10-03 | Kyoritsu Kagaku Sangyo Kk | Conductive composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Effects of surfactant treatment of silver powder on the rheology of its thick-film paste | |
US20040248998A1 (en) | Silver compound paste | |
CN104066535A (en) | Silver-coated copper alloy powder and method for manufacturing same | |
JP2018040056A (en) | Silver-coated alloy powder, conductive paste, electronic component and electric device | |
WO2007040195A1 (en) | Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder | |
JP2004362950A (en) | Conductive paste mainly composed of silver powder, and its manufacturing method | |
JP2011006740A (en) | Copper powder for conductive paste, and conductive paste | |
JP4888769B2 (en) | Copper powder and method for producing the same | |
JPH0649269A (en) | Flaky ag-pd alloy filler material having electrical conductivity and product containing the filler | |
JP3299083B2 (en) | Method for producing carbon-based conductive paste | |
KR101138246B1 (en) | Manufacturing method of paste composition having low temperature coefficient resistance for resistor, thick film resistor and manufacturing method of the resistor | |
JP3368420B2 (en) | Uniform molybdenum powder and method for producing the same | |
EP2151832B1 (en) | Process for producing ptc ink composition and ptc ink composition | |
JP2004027246A (en) | Copper powder for conductive paste, and its manufacturing method | |
JP2020196928A (en) | Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method | |
JP2017084587A (en) | Silver oxide slurry, and conductive paste and method for producing the same | |
JP4046785B2 (en) | Non-conductive carbonaceous powder and method for producing the same | |
JPH06223615A (en) | Scaly ag-pt alloy conductive filler and its application | |
JP3030913B2 (en) | Manufacturing method of ITO sintered body | |
Lo et al. | Effects of mixing procedures on the volume fraction of silver particles in conductive adhesives | |
JP3032839B2 (en) | Planar heating element | |
CN116194236A (en) | Electrode or wiring, electrode pair, and method for manufacturing electrode or wiring | |
JP2011006739A (en) | Copper powder for conductive paste, and conductive paste | |
JP2003257244A (en) | Conductive resin paste and conductive resin membrane | |
JPS60221569A (en) | Target for electrical vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20001024 |