JPH0647540A - Method and device for detecting welding groove shape - Google Patents
Method and device for detecting welding groove shapeInfo
- Publication number
- JPH0647540A JPH0647540A JP4206634A JP20663492A JPH0647540A JP H0647540 A JPH0647540 A JP H0647540A JP 4206634 A JP4206634 A JP 4206634A JP 20663492 A JP20663492 A JP 20663492A JP H0647540 A JPH0647540 A JP H0647540A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- welding
- distance meter
- information
- range finder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title description 5
- 230000010365 information processing Effects 0.000 claims 1
- 239000011295 pitch Substances 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 16
- 238000001514 detection method Methods 0.000 description 13
- 238000009826 distribution Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、開先溶接での溶接開先
形状の検知方法及び装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding groove shape detecting method and apparatus in groove welding.
【0002】[0002]
【従来の技術】溶接作業の自動化による省力化及び品質
向上の要請が高まるに従い、溶接開先形状に不整があっ
ても、溶接装置の側でその変動に応じて溶接条件及び溶
接トーチ位置等を調整し、良好な溶接を自動施工するこ
とが必要となってきており、その実現の上で、溶接開先
形状の検知技術が重要な技術的ポイントとなっている。
開先形状検知装置が特公昭59−61574号公報が開
示されている。これは、図10に示すように、溶接開先
上方に溶接部材31の表面までの距離を検知する縦距離
計1を配置し、パルスモータ9及びボールねじ11等に
より距離計1を溶接線すなわち開先の長手方向に対し、
直角方向に横行して、開先部に直接に縦距離計1から発
するレーザー等のビームを照射し、開先の形状を測定す
る。2. Description of the Related Art As the demand for labor saving and quality improvement through automation of welding work has increased, even if there are irregularities in the shape of the welding groove, the welding conditions and welding torch position, etc. can be adjusted according to the fluctuations in the welding equipment. It has become necessary to adjust and automatically perform good welding, and the technology for detecting the shape of the weld groove is an important technical point in achieving this.
A groove shape detecting device is disclosed in Japanese Patent Publication No. 59-61574. As shown in FIG. 10, the vertical distance meter 1 for detecting the distance to the surface of the welding member 31 is arranged above the welding groove, and the distance meter 1 is connected to the welding line by the pulse motor 9 and the ball screw 11. For the longitudinal direction of the groove,
The groove is traversed, and the groove is directly irradiated with a beam of a laser or the like emitted from the longitudinal distance meter 1 to measure the shape of the groove.
【0003】このように、縦距離計1を開先を横断する
方向に駆動して開先形状すなわち開先断面形状を検知す
る方法は、図10に示すようにV,X開先などの溶接部
材31の開先形状を検知する際には、溶接線方向(開先
の長手方向)に直角な断面32と溶接開先面および溶接
部材上面の交わる直線33にたいして、縦距離計1から
の距離情報がほぼ全線33で確実に得られることによっ
て、断面32での開先形状を精度よく測定することがで
きる。As described above, the method of driving the longitudinal distance meter 1 in the direction traversing the groove to detect the groove shape, that is, the groove cross-sectional shape is as shown in FIG. When the groove shape of the member 31 is detected, the distance from the longitudinal distance meter 1 is measured with respect to the cross section 32 perpendicular to the welding line direction (longitudinal direction of the groove) and the straight line 33 at which the welding groove surface and the upper surface of the welding member intersect. Since the information is surely obtained on almost the entire line 33, the groove shape at the cross section 32 can be accurately measured.
【0004】[0004]
【発明が解決しようとする課題】前述した従来の開先形
状検知の技術を、形状,寸法にばらつきがある溶接部材
あるいは表面が荒れた溶接部材によっで形成される溶接
開先に適用した場合以下のような問題がある。一般的に
縦距離計1にセンサーとして測長が長く、コンパクトな
特徴を有する光学式の変位センサーを用いる場合が多
い。この光学式変位センサーは、図11に示すように、
半導体レーザーで発光した光を対象物に照射し、その乱
反射光をレンズで集光し、受光素子PSDを用いて三角
法の原理にて距離を検知する機構のものである。しか
し、実際に対象とする溶接部材は、光反射特性が一様な
圧延表面であることは少ない。前記の光学式距離計は、
その計測精度が測定表面の性状や色等に依存して誤差を
生じる傾向がある。特に対象が鏡面に近い状況になって
いた場合には適正な乱反射光が得られず、表面までの距
離を検知出来ない場合が多い。例えば開先周辺に、傷の
手入れのためのグライダー加工等により、鏡状に光択を
有すると共に多角面状になった場合には、光が受光素子
PSDを外れる方向に反射してしまい、また、高強度仕
様のための水焼入れ等のQT処理により表面がスケール
等による凹凸を生じていたり錆を生じている場合には、
受光素子PSDへの反射光が少い。ゆえに、このような
表面性状の十分に良好でない溶接開先に対し、従来技術
に従い、溶接開先上方で光学式の距離計を横行移動させ
ても、適正な反射光が得られず、そのため検知された開
先形状データの信頼性が低下する。When the above-mentioned conventional groove shape detection technique is applied to a weld groove formed by a welded member having variations in shape and size or a welded member having a rough surface. There are the following problems. In general, an optical displacement sensor, which has a long length and is compact, is used as the sensor for the vertical distance meter 1 in many cases. This optical displacement sensor, as shown in FIG.
This is a mechanism in which light emitted from a semiconductor laser is applied to an object, the diffused reflected light is condensed by a lens, and the distance is detected by the principle of trigonometry using a light receiving element PSD. However, the welding member actually targeted is rarely a rolled surface with uniform light reflection characteristics. The optical rangefinder is
The measurement accuracy tends to cause an error depending on the properties and color of the measurement surface. In particular, when the target is in a state close to a mirror surface, proper diffuse reflection light cannot be obtained, and the distance to the surface cannot be detected in many cases. For example, when the periphery of the groove has a mirror-like light selection and a polygonal shape due to a gliding process for repairing a scratch or the like, the light is reflected in a direction away from the light receiving element PSD, and If the surface is roughened by scales or rusted by QT treatment such as water quenching for high strength specifications,
Light reflected by the light receiving element PSD is small. Therefore, according to the conventional technique, even if the optical rangefinder is traversed above the welding groove for such a welding groove whose surface quality is not sufficiently good, proper reflected light cannot be obtained, and therefore detection is performed. The reliability of the prepared groove shape data is reduced.
【0005】例えば、図5に示すように、グラインダー
処理部Grでは、検知データにとぎれを生じたり、スケ
ールやサビの付着部では検知したデータにバラツキ誤差
を伴う。これらの情報だけをもとに開先形状を推定した
場合、信頼性が十分に高い溶接開先の位置・形状検知の
達成が難しくなる問題がある。For example, as shown in FIG. 5, in the grinder processing unit Gr, the detection data is interrupted, and in the scale or rust-attached portion, the detected data has a variation error. When the groove shape is estimated based on only this information, there is a problem that it is difficult to achieve sufficiently reliable detection of the position and shape of the welding groove.
【0006】かかる問題により、溶接施工において開先
表面の性状にバラツキがある場合に、開先センサーで開
先形状(とくに幅寸法)を検知し、それをもとに溶接条
件および溶接トーチ位置を適正値にコントロールして溶
接施工することができなくなり、溶接品質・効率の確保
に大きな支障をきたす。特に、開先面の傾斜角が大きい
場合、例えば90度前後の壁状の面であるときには、縦
距離計1による開先面(壁状面)の正確な形状(傾斜角
又は深さ方向各位置での横方向位置)測定が難かしい。[0006] Due to such a problem, when there are variations in the properties of the groove surface during welding, the groove shape (especially the width dimension) is detected by the groove sensor, and the welding conditions and welding torch position are determined based on this. It will not be possible to control the welding to an appropriate value and carry out the welding process, which will greatly hinder the welding quality and efficiency. In particular, when the inclination angle of the groove surface is large, for example, when it is a wall-shaped surface of about 90 degrees, the correct shape (inclination angle or depth direction) of the groove surface (wall-shaped surface) by the vertical distance meter 1 is used. It is difficult to measure the position in the lateral direction.
【0007】本発明は、開先形状測定の信頼性を向上す
ることを第1の目的とし、傾斜角が大きい(90度前
後)場合の高信頼性の測定を実現することを第2の目的
とする。The first object of the present invention is to improve the reliability of the groove shape measurement, and the second object is to realize the highly reliable measurement when the inclination angle is large (around 90 degrees). And
【0008】[0008]
【課題を解決するための手段】本発明では、溶接開先を
形成する対向溶接部材(Mv,Mh)の上方に配設した横距離
計(2)を溶接深さ方向に平行移動させ、開先を形成する
両溶接部材(Mv,Mh)の上面位置と溶接深さ方向段差部の
壁面の位置の情報を得、開先の上方に配設した縦距離計
(1)を開先の長手方向を横切る方向に横行させて開先断
面の位置情報を得、前記横距離計(2)で得た溶接深さ方
向段差部の壁面の位置情報と、前記縦距離計(1)で得た
横方向各位置の開先断面位置情報により、開先面の幅及
び深さを測定する。なお、カッコ内の記号は、図面に示
す本発明を実施する装置の一実施例の対応要素を示す。According to the present invention, a horizontal distance meter (2) disposed above an opposing welding member (Mv, Mh) forming a welding groove is moved in parallel in the welding depth direction to open it. A vertical distance meter installed above the groove by obtaining information on the upper surface position of both welding members (Mv, Mh) forming the tip and the position of the wall surface of the step portion in the welding depth direction.
The position information of the groove cross section is obtained by traversing (1) in the direction transverse to the longitudinal direction of the groove, and the position information of the wall surface of the step portion in the welding depth direction obtained by the horizontal distance meter (2) and the vertical direction. The width and depth of the groove surface are measured based on the groove cross-section position information at each lateral position obtained by the distance meter (1). The symbols in parentheses indicate the corresponding elements of one embodiment of the apparatus for carrying out the present invention shown in the drawings.
【0009】[0009]
【作用】壁状の開先面を有する対象物を例として図7に
示す。この例では相対向する溶接部材間に段差がある。
段差面すなわち壁面に平行な方向に縦距離計1を配して
段差面と直角方向に横行移動させた場合には、図7に示
すようなプロット線(破線)で示されるような対象物形
状に関する情報が得られる。この場合、対象物の高さ方
向位置は、縦距離計1の検知する対象物までの距離情報
であり、対象物の表面性状の状況により検知情報に誤差
等の影響を受けるが、段差の存する横方向位置は、エン
コーダー等の位置計の情報であり、縦距離計1の検知す
る情報の大きく変化する位置を判別するので、壁状の開
先面が垂直(壁状の開先面に対して縦距離計1の検出方
向が平行)な場合には、対象物の表面性状の影響をほと
んど受けずに精度良く検知することが出来る。しかし、
壁状の開先面が垂直からずれているときには、そこでの
検出値が大きくばらつくか、又は計測不能となる。FIG. 7 shows an object having a wall-shaped groove surface as an example. In this example, there is a step between the welding members facing each other.
When the vertical distance meter 1 is arranged in a direction parallel to the step surface, that is, the wall surface and is moved laterally in the direction perpendicular to the step surface, the object shape as shown by the plot line (broken line) as shown in FIG. Get information about. In this case, the height direction position of the object is the distance information to the object detected by the vertical distance meter 1, and the detection information is affected by an error or the like depending on the surface texture of the object, but there is a step. The lateral position is the information of a position meter such as an encoder, and the position where the information detected by the vertical distance meter 1 changes greatly is determined. Therefore, the wall-shaped groove surface is vertical (to the wall-shaped groove surface). When the detection direction of the vertical distance meter 1 is parallel), the object can be accurately detected with almost no influence of the surface texture of the object. But,
When the wall-shaped groove surface is deviated from the vertical, the detection value there is largely varied or the measurement becomes impossible.
【0010】次に前記と同様な対象物に対し、図8に示
すように、段差面に垂直もしくは略垂直に対向する方向
に、横距離計2を配して、段差面と平行または略平行に
上下移動させた場合には、図8に示すようなプロット線
(破線)で示す対象物形状に関する情報が得られる。こ
の場合、前記(図7)とは逆に、段差の存する横方向位置
が横距離計2の検知する距離情報で得られ、対象物の高
さ方向位置は、エンコーダー等の位置計の情報となる。
つまり、距離計の検知する距離情報の大きく変化する位
置(壁面を持つ溶接部材の上面と開先底)を判別するこ
とにより、従来の検知方法では信頼性の高くなかった対
象物、特に垂直前後の壁面を有する溶接部材の高さ方向
位置を表面性状の影響をほとんど受けずに精度良く検知
することが出来る。また、L型溶接開先では、片側の開
先面が鋼機の圧延面であることが多く、光等の距離情報
の反射性能が非常に良い為、前記図8の検知方法により
横方向の位置情報も高い精度で検知することが出来る。Next, as shown in FIG. 8, a lateral distance meter 2 is arranged in a direction facing a step surface perpendicularly or substantially perpendicularly to an object similar to the above, and is parallel or substantially parallel to the step surface. When moved up and down, information about the object shape shown by the plot line (broken line) as shown in FIG. 8 is obtained. In this case, contrary to the above (FIG. 7), the lateral position where the step exists is obtained by the distance information detected by the lateral distance meter 2, and the position in the height direction of the object corresponds to the information of the position meter such as an encoder. Become.
In other words, by determining the position where the distance information detected by the rangefinder changes greatly (the upper surface of the welded member with the wall surface and the groove bottom), the object that was not highly reliable by the conventional detection method, especially the vertical front-back direction. It is possible to detect the position in the height direction of the welded member having the wall surface with high accuracy with almost no influence of the surface texture. Further, in the L-shaped welding groove, the groove surface on one side is often the rolling surface of the steel machine, and the reflection performance of distance information such as light is very good. Position information can also be detected with high accuracy.
【0011】本発明では、図7に示す態様と図8に示す
態様の両者で開先形状演算に必要な情報を収集し、一方
の態様では得られないか信頼性が低い箇所を他方の態様
で得られる高信頼性のデ−タで補足して開先断面の全形
状を得るので、信頼性が高い開先形状デ−タが得られ
る。In the present invention, the information necessary for the groove shape calculation is collected in both the embodiment shown in FIG. 7 and the embodiment shown in FIG. 8, and the portion which cannot be obtained or is unreliable in one embodiment is identified in the other embodiment. Since the entire shape of the groove cross section is obtained by supplementing it with the highly reliable data obtained in step 1, highly reliable groove shape data can be obtained.
【0012】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.
【0013】[0013]
【実施例】図1から図4に、本発明を一態様で実施する
装置の一実施例を示す。本発明は、特に片側壁面が鋼材
の圧延面であるL型開先等で有効であるので、その開先
における適用例を説明する。この種の溶接開先は、図9
の(a)〜(e)に例を示すように多くの場所で使用さ
れている。1 to 4 show an embodiment of an apparatus for carrying out the present invention in one mode. The present invention is particularly effective for an L-shaped groove or the like in which one side wall surface is a rolled surface of steel material, so an application example of the groove will be described. This kind of welding groove is shown in FIG.
It is used in many places as shown in (a) to (e).
【0014】図1において、溶接開先の長手方向(図1
の紙面に垂直な方向)に移動自在の図示しない溶接移動
台に、姿勢調節機構を介して装着された計測機構支持枠
WBs2に、水平方向に延びるボ−ルねじ11vと垂直方
向に延びるボ−ルねじ11hが回転自在に支持されてい
る。これらのボ−ルねじ11v,11hに平行にガイドバ
−12v,12hが配置され、支持枠WBsに固着されて
いる。距離計キャリッジ13v,13hがボ−ルねじ11
v,11hにねじ結合しかつガイドバ−12v,12hでそ
れらが延びる方向に自動自在に案内されている。In FIG. 1, the longitudinal direction of the weld groove (see FIG.
(Not shown in the drawing) and a measuring mechanism support frame WBs2 mounted via a posture adjusting mechanism on a welding moving base (not shown) which is movable, and a ball screw 11v extending horizontally and a ball screw extending vertically. A screw 11h is rotatably supported. Guide bars 12v and 12h are arranged in parallel with the ball screws 11v and 11h and fixed to the support frame WBs. Distance measuring carriages 13v, 13h are ball screws 11
It is screwed to v, 11h and is guided automatically by guide bars 12v, 12h in the direction in which they extend.
【0015】キャリッジ13vには、図示しない2軸の
角度調整機構を介して、紙面(図1)に垂直な軸を中心
にしかもこの垂直軸に直交し紙面と平行な軸を中心に角
度調整自在に、縦距離計1が装着されている。キャリッ
ジ13hには、図示しない2軸の角度調整機構を介し
て、紙面(図1)に垂直な軸を中心にしかもこの垂直軸
に直交し紙面と平行な軸を中心に角度調整自在に、横距
離計2が装着されている。The carriage 13v can be angle-adjusted through a two-axis angle adjusting mechanism (not shown) about an axis perpendicular to the paper surface (FIG. 1) and about an axis orthogonal to the vertical axis and parallel to the paper surface. The vertical distance meter 1 is attached to the. The carriage 13h is provided with a two-axis angle adjusting mechanism (not shown) so that the angle can be adjusted freely about the axis perpendicular to the paper surface (FIG. 1) and about the axis orthogonal to the vertical axis and parallel to the paper surface. Distance meter 2 is attached.
【0016】ボ−ルねじ11vはパルスモ−タ9vで、
ボ−ルねじ11hはパルスモ−タ9hでそれぞれ正,逆
転駆動される。パルスモ−タ9v,9hの回転軸にはそ
れぞれロ−タリエンコ−ダ10v,10hが結合されて
おり、これらがそれぞれ、ボ−ルねじ11v,11hの
所定小角度の回転につき1パルスの速度同期パルスと、
回転方向(正,逆転)を表わす方向信号を発生し、これ
らをパルスカウンタPC1,PC2に与える。The ball screw 11v is a pulse motor 9v,
The ball screw 11h is driven in the forward and reverse directions by the pulse motor 9h. The rotary shafts of the pulse motors 9v and 9h are respectively coupled to the rotary encoders 10v and 10h, which are speed-synchronized pulses of one pulse for each rotation of the ball screws 11v and 11h by a predetermined small angle. When,
A direction signal representing the direction of rotation (forward or reverse) is generated and given to the pulse counters PC1 and PC2.
【0017】図示は省略したが、キャリッジ13vが右
限界位置(退避位置=ホ−ムポジション)に達すると閉
じるリミットスイッチ(ホ−ムポジションセンサ)があ
り、このスイッチの閉を表わす信号(ホ−ムポジション
信号)がクリア信号としてカウンタPC1に与えられ
る。カウンタPC1は、ホ−ムポジション信号がある間
はクリア状態(カウント値=0を表わすカウント出力)
にあり、ホ−ムポジション信号が無いときには、正転信
号が到来(キャリッジ13vが左移動)しているときに
は速度同期パルスをカウントアップし、逆転信号が到来
(キャリッジ13vが右移動)しているときには速度同
期パルスをカウントダウンする。したがってカウンタP
C1のカウント出力は、キャリッジ13v(縦距離計
1)がホ−ムポジション(右限界位置)からどれだけ左
方に移動しているか(横方向距離)を表わす。このカウ
ント出力はデ−タ処理装置DPDに与えられる。Although not shown, there is a limit switch (home position sensor) that closes when the carriage 13v reaches the right limit position (retracted position = home position), and a signal (home) indicating this switch is closed. The m-position signal) is given to the counter PC1 as a clear signal. The counter PC1 is in a clear state while the home position signal is present (count output indicating a count value = 0).
When there is no home position signal, the forward rotation signal arrives (carriage 13v moves to the left), the speed synchronization pulse is counted up, and the reverse rotation signal arrives (carriage 13v moves to the right). Sometimes the speed sync pulse is counted down. Therefore, the counter P
The count output of C1 indicates how far the carriage 13v (longitudinal distance meter 1) is moving leftward from the home position (right limit position) (horizontal distance). This count output is given to the data processing device DPD.
【0018】同様に、図示は省略したが、キャリッジ1
3hが上限界位置(退避位置=ホ−ムポジション)に達
すると閉じるリミットスイッチ(ホ−ムポジションセン
サ)があり、このスイッチの閉を表わす信号(ホ−ムポ
ジション信号)がクリア信号としてカウンタPC2に与
えられる。カウンタPC2は、ホ−ムポジション信号が
ある間はクリア状態(カウント値=0を表わすカウント
出力)にあり、ホ−ムポジション信号が無いときには、
正転信号が到来(キャリッジ13hが下移動)している
ときには速度同期パルスをカウントアップし、逆転信号
が到来(キャリッジ13hが上移動)しているときには
速度同期パルスをカウントダウンする。したがってカウ
ンタPC2のカウント出力は、キャリッジ13h(横距
離計2)がホ−ムポジション(上限界位置)からどれだ
け下方に移動しているか(深さ方向距離)を表わす。こ
のカウント出力はデ−タ処理装置DPDに与えられる。Similarly, although not shown, the carriage 1
There is a limit switch (home position sensor) that closes when 3h reaches the upper limit position (retracted position = home position), and a signal indicating the closing of this switch (home position signal) is used as a clear signal on the counter PC2. Given to. The counter PC2 is in a clear state (count output indicating a count value = 0) while there is a home position signal, and when there is no home position signal,
When the forward rotation signal arrives (the carriage 13h moves downward), the speed synchronization pulse is counted up, and when the reverse rotation signal arrives (the carriage 13h moves upward), the speed synchronization pulse is counted down. Therefore, the count output of the counter PC2 represents how far the carriage 13h (horizontal distance meter 2) is moving from the home position (upper limit position) (depth direction distance). This count output is given to the data processing device DPD.
【0019】図1に示す計測機構FMDのセッテングは
以下の要領で行う。まず、溶接移動台に対して支持枠W
Bsの姿勢を調節する機構を調節して、開先巾方向(図1
で左右方向)と縦距離計1の横行移動方向(ボ−ルねじ
11vが延びる方向)が平行になり、開先巾の範囲を横
行移動範囲がおおう位置に、かつ開先深さ方向(図1で
上下方向)と横距離計2の上下移動方向(ボ−ルねじ1
1hが延びる方向)が平行になり、突き合わせ開先部上
端までを上下移動範囲がおおう位置にセットする。次に
操作ボ−ド(図示せず)を操作して、デ−タ処理装置D
PDを介してキャリッジ13v,13hを駆動してそれ
ら(必然的に縦,横距離計1,2)をホ−ムポジション
にセットする。この前後に、2軸の角度調整機構で縦,
横距離計1,2の角度を調整する。The setting of the measuring mechanism FMD shown in FIG. 1 is performed as follows. First, the support frame W is attached to the welding carriage.
Adjust the mechanism that adjusts the posture of Bs to adjust the groove width direction (Fig. 1
The horizontal movement direction of the vertical distance meter 1 (the direction in which the ball screw 11v extends) becomes parallel, and the range of the groove width is covered by the horizontal movement range, and the groove depth direction (Fig. 1 up and down) and horizontal distance meter 2 up and down movement direction (ball screw 1
The direction in which 1h extends) becomes parallel, and the vertical movement range is set up to cover the upper end of the butt groove. Next, an operation board (not shown) is operated to operate the data processing device D.
The carriages 13v and 13h are driven via the PD to set them (necessarily the vertical and horizontal distance meters 1 and 2) to the home position. Before and after this, a biaxial angle adjustment mechanism
Adjust the angles of the horizontal distance meters 1 and 2.
【0020】デ−タ処理装置DPDが、モ−タドライバ
MD1,MD2を介して、パルスモ−タ9v,9hを
縦,横距離計1,2のホ−ムポジション(右限界位置,
上限界位置)から定速度で正転駆動して、定ピッチで
縦,横距離計1,2の距離信号を、A/D変換器AD
1,AD2を介して収集する。これにより、デ−タ処理
装置DPDは、横距離計2より、図3に示すような位置
情報を得、また、縦距離計1より、図4に示すような位
置情報を得る。これらの情報より、デ−タ処理装置DP
Dは、開先片側壁面の横方向位置及び開先上面の高さ位
置及び段差を検知する。The data processing device DPD sets the pulse motors 9v and 9h vertically and horizontally through the motor drivers MD1 and MD2, and the home position of the horizontal distance meters 1 and 2 (right limit position,
Forward rotation is performed at a constant speed from the upper limit position), and the distance signals of the vertical and horizontal distance meters 1 and 2 are fed at a constant pitch to the A / D converter AD.
1, collect via AD2. As a result, the data processing device DPD obtains the position information as shown in FIG. 3 from the horizontal distance meter 2 and the position information as shown in FIG. 4 from the vertical distance meter 1. From this information, the data processing device DP
D detects the lateral position of the side wall surface of the groove, the height position of the groove upper surface, and the step.
【0021】すなわち、横距離計2の位置情報(図3の
黒丸)を開先巾方向(距離検出方向)にヒストグラム処
理(図3のデ−タ測定点(黒丸)の、横軸への投影によ
る、測定点分布密度の算出)を行い、これにより得た測
定点分布密度が高い領域を壁面の位置と判定し、更に、
横距離計2の位置情報(図3の黒丸)を開先深さ方向
(距離計2駆動方向)にヒストグラフ処理(図3のデ−
タ測定点(黒丸)の、縦軸への投影による、測定点分布
密度の算出)を行ない、これにより得た測定点分布密度
が高い領域(Mv上面対応位置とMh上面対応位置の2
箇所)を、溶接部材Mv,Mhの上面位置と判定する。
また、同様に、縦距離計1の位置情報(図4の点線)の
ヒストグラフ処理により、壁面の位置ならびに溶接部材
Mv,Mhの上面位置を判定する。更には、横距離計2
で得た位置情報(図3)を、図4に示す縦距離計1で得
た位置情報の縦,横軸値に校正して、縦距離計1で得た
位置情報に重ね合せることにより、一方の距離計で得ら
れなかった領域を他方の距離計の検出情報で補充した情
報グル−プを生成して、2軸座標系(図4)における該
情報グル−プの各情報の分布より、溶接部材Mvおよび
Mhの上面,両部材の開先面、および、開先底、を近似
する直線を求めて、溶接開先形状(深さ各位置の幅)を
求める。That is, the position information of the horizontal distance meter 2 (black circles in FIG. 3) is subjected to histogram processing in the groove width direction (distance detection direction) (projection of data measurement points (black circles) in FIG. 3 onto the horizontal axis). Calculation of the measurement point distribution density) is performed, and the area with the high measurement point distribution density obtained by this is determined as the position of the wall surface.
The position information of the horizontal distance meter 2 (black circles in FIG. 3) is processed in the groove depth direction (distance meter 2 driving direction) by histograph processing (data in FIG. 3).
Calculation of the measurement point distribution density by projecting the measurement points (black circles) onto the vertical axis, and the obtained measurement point distribution density is high in two areas (Mv upper surface corresponding position and Mh upper surface corresponding position 2).
Location) is determined as the upper surface position of the welding members Mv, Mh.
Similarly, the position of the wall surface and the upper surface positions of the welding members Mv and Mh are determined by the histogram processing of the position information (dotted line in FIG. 4) of the vertical distance meter 1. Furthermore, the horizontal distance meter 2
By calibrating the position information (FIG. 3) obtained in step 1 to the vertical and horizontal axis values of the position information obtained by the vertical rangefinder 1 shown in FIG. 4, and superimposing it on the position information obtained by the vertical rangefinder 1, From the distribution of each information of the information group in the two-axis coordinate system (Fig. 4), an information group in which the area not obtained by one distance meter is supplemented by the detection information of the other distance meter is generated. , The upper surfaces of the welding members Mv and Mh, the groove surfaces of both members, and the groove bottom are calculated to obtain a welding groove shape (width at each depth position).
【0022】このように溶接開先に対し、上記の2種の
センシングから開先形状情報が得られることになり、溶
接開先形状情報のうち、図2の開先片側の上面高さ位置
ア、開先片側の側面横位置イ、開先他方の上面高さ位置
ウについては、共通した重複のデータとして検知するこ
とが出来、それらのデータが互いに差異がないかどうか
をチェックして整合をとることにより、より信頼性の高
い開先形状検知を達成出来る。As described above, the groove shape information can be obtained from the above-mentioned two kinds of sensing for the weld groove, and among the welding groove shape information, the upper surface height position position on the groove side of FIG. , Side lateral position a on one side of the groove, and height position c on the other side of the groove can be detected as common overlapping data, and it is checked by checking whether those data are different from each other and matching is performed. By doing so, a more reliable groove shape detection can be achieved.
【0023】また、当発明において、横距離計2の上下
移動単独で、溶接部材Mv(の壁面)の高さおよび横方
向位置を検知するので、非接触で高精度の溶接開先のな
らいセンサーとしての機能も発揮することが出来る。Further, in the present invention, the vertical and horizontal movements of the horizontal distance meter 2 alone detect the height and the lateral position of the welding member Mv (the wall surface of the welding member Mv). Can also function as.
【0024】[0024]
【発明の効果】本発明は、以下に記載するような効果を
奏する。The present invention has the following effects.
【0025】(1) 溶接開先の表面性状が十分に良好でな
くても、溶接開先位置・形状(幅・深さ寸法)を効率的
に正確に測定できる。(1) Even if the surface texture of the weld groove is not sufficiently good, the weld groove position / shape (width / depth dimension) can be measured efficiently and accurately.
【0026】(2) 本発明の実現により、溶接進行中に溶
接条件および溶接トーチ位置を制御して施工する自動溶
接システムに正確な開先位置・形状情報をインプットす
ることが可能となり、特に開先形状にバラツキを有する
ワークに対する溶接作業を効率的に高品質に対応するこ
とが可能となる。(2) The realization of the present invention makes it possible to input accurate groove position / shape information to an automatic welding system which controls welding conditions and welding torch positions while welding is in progress. It becomes possible to efficiently perform high-quality welding work on a workpiece having variations in tip shape.
【0027】このように実用的効果が、非常に大きい。As described above, the practical effect is very large.
【図1】 本発明を一態様で実施する装置の一実施例を
示すブロック図である。FIG. 1 is a block diagram illustrating an example of an apparatus that implements the present invention in one aspect.
【図2】 図1に示す開先3の概要を示す横断面図であ
る。FIG. 2 is a cross-sectional view showing an outline of the groove 3 shown in FIG.
【図3】 図1に示す横距離計2で得た位置情報を示す
グラフである。FIG. 3 is a graph showing position information obtained by the lateral distance meter 2 shown in FIG.
【図4】 図1に示す縦距離計1で得た位置情報を示す
グラフである。FIG. 4 is a graph showing position information obtained by the vertical distance meter 1 shown in FIG.
【図5】 グラインダ−による研削およびスケ−ルサビ
がある溶接部材の横断面図、および、そこに示される溶
接開先の縦距離計による測定デ−タを示すグラフであ
る。FIG. 5 is a cross-sectional view of a welded member having grinder grinding and scale rust, and a graph showing the measurement data of the weld groove shown therein by a longitudinal distance meter.
【図6】 表面性状の良好な溶接部材の横断面図、およ
び、そこに示される溶接開先の縦距離計による測定デ−
タを示すグラフである。FIG. 6 is a cross-sectional view of a welded member having a good surface texture, and a measurement data of a weld groove shown therein by a longitudinal distance meter.
It is a graph which shows the data.
【図7】 縦距離計による段差部形状検出態様を示す横
断面図、および検出デ−タを示すグラフである。7A and 7B are a cross-sectional view showing a mode of detecting a step portion shape by a vertical distance meter, and a graph showing detection data.
【図8】 横距離計による段差部形状検出態様を示す横
断面図、および検出デ−タを示すグラフである。8A and 8B are a cross-sectional view showing a mode of detecting a stepped portion shape by a horizontal distance meter, and a graph showing detection data.
【図9】 L型溶接開先を形成する各種溶接部材を示す
図面であり、(a),(b),(c)および(d)は斜
視図、(e−1/2)は正面図、(e−2/2)は側面
図である。FIG. 9 is a drawing showing various welding members forming an L-shaped welding groove, in which (a), (b), (c) and (d) are perspective views, and (e-1 / 2) is a front view. , (E-2 / 2) is a side view.
【図10】 板来の溶接開先測定装置の外観を示す斜視
図である。FIG. 10 is a perspective view showing the external appearance of a welding groove measuring device in Itarai.
【図11】 図10に示す縦距離計1の構成要素のいく
つかと、測定対象面(断面)を示す拡大正面図である。11 is an enlarged front view showing some of the components of the vertical distance meter 1 shown in FIG. 10 and a measurement target surface (cross section).
【図12】 図10に示す縦距離計1の構成要素のいく
つかと、測定対象面(断面)を示す拡大正面図である。FIG. 12 is an enlarged front view showing some of the components of the vertical distance meter 1 shown in FIG. 10 and a measurement target surface (cross section).
【図13】 図10に示す縦距離計1の構成要素のいく
つかと、測定対象面(断面)を示す拡大正面図である。13 is an enlarged front view showing some of the constituent elements of the vertical distance meter 1 shown in FIG. 10 and a measurement target surface (cross section).
WBs:溶接移動台に装着された支持枠 1:縦距離計 2:横距離計 3:溶接開先 Mv,Mh:溶接
部材 Mr:裏当て部材 4:溶接開先上
面 5:溶接開先側面(壁面) 6:溶接開先側面 7:溶接開先上面 8:開先底面 9:パルスモータ 10:エンコーダ 11v,11h:ボールねじ 12v,12h:
ガイドバ− 13v,13h:距離計キャリッジの支持部材 31:溶接部材 32:溶接方向に
直角な断面 33:32の断面と溶接開先の交わる直線 FMD:計測機構 DPD:デ−タ処
理装置WBs: Support frame mounted on welding carriage 1: Vertical distance meter 2: Horizontal distance meter 3: Weld groove Mv, Mh: Welding member Mr: Backing member 4: Weld groove upper surface 5: Weld groove side surface ( Wall surface 6: Weld groove side surface 7: Weld groove top surface 8: Groove bottom surface 9: Pulse motor 10: Encoder 11v, 11h: Ball screw 12v, 12h:
Guide bar 13v, 13h: Supporting member of distance measuring carriage 31: Welding member 32: Cross section perpendicular to welding direction 33: Straight line where cross section of 32 and welding groove FMD: Measuring mechanism DPD: Data processing device
Claims (2)
配設した横距離計を溶接深さ方向に平行移動させ、開先
を形成する両溶接部材の上面位置と溶接深さ方向段差部
の壁面の位置の情報を得、 開先の上方に配設した縦距離計を開先の長手方向を横切
る方向に横行させて開先断面の位置情報を得、 前記横距離計で得た溶接深さ方向段差部の壁面の位置情
報と、前記縦距離計で得た横方向各位置の開先断面位置
情報により、開先面の幅及び深さを測定する、対向溶接
部材間の溶接開先形状の検知方法。1. A horizontal distance meter disposed above an opposed welding member forming a welding groove is translated in the welding depth direction, and upper surface positions of both welding members forming the groove and a step in the welding depth direction. The position information of the wall surface of the part was obtained, and the longitudinal distance meter arranged above the groove was made to traverse in the direction transverse to the longitudinal direction of the groove to obtain position information of the groove cross section, which was obtained by the lateral distance meter. Welding between opposing welding members, which measures the width and depth of the groove surface by the position information of the wall surface of the step portion in the welding depth direction and the groove cross-section position information of each position in the horizontal direction obtained by the vertical distance meter. How to detect the groove shape.
動する溶接移動台に、該開先の深さ方向に移動自在に設
けられた横距離計,前記溶接移動台に前記開先の長手方
向を横切る方向に横行自在に設けられた縦距離計、およ
び、前記横距離計が得た溶接深さ方向段差部の壁面の位
置情報および前記縦距離計で得た横方向各位置の開先断
面位置情報を読込みこれらの情報に基づいて、対向溶接
部材間の対向する面間の溶接開先形状を規定するパラメ
−タを算出する情報処理手段、を備える、対向溶接部材
間の溶接開先形状の検知装置。2. A lateral distance meter movably provided in a depth direction of the groove on a welding moving table that moves in the longitudinal direction of the welding groove between the opposed welding members, and the groove on the welding moving table. Of the longitudinal distance meter provided transversely in the direction transverse to the longitudinal direction, and the position information of the wall surface of the welding depth direction step portion obtained by the lateral distance meter and the lateral direction positions obtained by the longitudinal distance meter. Welding between opposed welding members, including information processing means for reading groove cross-section position information and calculating parameters for defining a welding groove shape between opposing surfaces between opposed welding members based on these information A groove shape detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4206634A JP2635892B2 (en) | 1992-08-03 | 1992-08-03 | Method and apparatus for detecting welding groove shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4206634A JP2635892B2 (en) | 1992-08-03 | 1992-08-03 | Method and apparatus for detecting welding groove shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0647540A true JPH0647540A (en) | 1994-02-22 |
JP2635892B2 JP2635892B2 (en) | 1997-07-30 |
Family
ID=16526615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4206634A Expired - Fee Related JP2635892B2 (en) | 1992-08-03 | 1992-08-03 | Method and apparatus for detecting welding groove shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2635892B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102284558A (en) * | 2011-08-01 | 2011-12-21 | 天津市津兆机电开发有限公司 | Step pitch detection method and device for punching continuous die |
CN110230991A (en) * | 2019-06-06 | 2019-09-13 | 武汉科技大学 | A kind of use for laboratory thin plate groove signal pickup assembly based on PSD |
CN111179221A (en) * | 2019-12-09 | 2020-05-19 | 中建钢构有限公司 | Method and device for detecting welding groove and storage medium |
CN111922548A (en) * | 2020-09-24 | 2020-11-13 | 山东海德智能科技有限公司 | 3D weld scanning system based on weld three-dimensional shape detection |
-
1992
- 1992-08-03 JP JP4206634A patent/JP2635892B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102284558A (en) * | 2011-08-01 | 2011-12-21 | 天津市津兆机电开发有限公司 | Step pitch detection method and device for punching continuous die |
CN110230991A (en) * | 2019-06-06 | 2019-09-13 | 武汉科技大学 | A kind of use for laboratory thin plate groove signal pickup assembly based on PSD |
CN110230991B (en) * | 2019-06-06 | 2024-02-20 | 武汉科技大学 | PSD-based laboratory sheet groove signal acquisition device |
CN111179221A (en) * | 2019-12-09 | 2020-05-19 | 中建钢构有限公司 | Method and device for detecting welding groove and storage medium |
CN111179221B (en) * | 2019-12-09 | 2024-02-09 | 中建科工集团有限公司 | Method, equipment and storage medium for detecting welding groove |
CN111922548A (en) * | 2020-09-24 | 2020-11-13 | 山东海德智能科技有限公司 | 3D weld scanning system based on weld three-dimensional shape detection |
Also Published As
Publication number | Publication date |
---|---|
JP2635892B2 (en) | 1997-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1194349A (en) | Adaptive welding system | |
US6040903A (en) | Electro-optical measuring device for determining the relative position of two bodies, or of two surface areas of bodies, in relation to each other | |
US5953127A (en) | Device for measuring dimensions of workpieces | |
JPH0599617A (en) | Method and device for detecting edge section and hole by optical scanning head | |
US6741363B1 (en) | Method and an apparatus for the optical detection of a contrast line | |
US4498776A (en) | Electro-optical method and apparatus for measuring the fit of adjacent surfaces | |
US7127824B2 (en) | Apparatus for detecting the position in space of a carriage moveable along a coordinate axis | |
US6727986B1 (en) | Method and device for measuring a folding angle of a sheet in a folding machine | |
CA1194211A (en) | Automatic production control of extended work pieces | |
JP4571256B2 (en) | Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method | |
JPH0647540A (en) | Method and device for detecting welding groove shape | |
KR960013682B1 (en) | Steel area size measuring method and device | |
JP3876758B2 (en) | Equipment for measuring hot dimensions and shapes of H-section steel | |
JP5608984B2 (en) | Groove portion deepest position detecting device and groove portion deepest position detecting method | |
JPH0123041B2 (en) | ||
JPH0711412B2 (en) | Pipe shape measuring device | |
KR20010063525A (en) | Apparatus for detecting the edge of colded roll | |
JP2001004362A (en) | Method and device for measuring shape of metal plate | |
JPH048144B2 (en) | ||
JP2564738B2 (en) | Method and apparatus for detecting welding groove shape | |
JP2004012430A (en) | Non-contact measurement method and measurement device | |
JP4159809B2 (en) | Non-contact measuring method and measuring apparatus | |
US20240375208A1 (en) | Method for determining a geometrical outcome variable and/or a quality feature of a weld seam on a workpiece | |
JP2753342B2 (en) | Work position detector | |
JP2635891B2 (en) | Method and apparatus for detecting welding groove shape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970311 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |