JPH0644648B2 - Laser equipment - Google Patents
Laser equipmentInfo
- Publication number
- JPH0644648B2 JPH0644648B2 JP31252487A JP31252487A JPH0644648B2 JP H0644648 B2 JPH0644648 B2 JP H0644648B2 JP 31252487 A JP31252487 A JP 31252487A JP 31252487 A JP31252487 A JP 31252487A JP H0644648 B2 JPH0644648 B2 JP H0644648B2
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- laser beam
- laser
- coating film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08059—Constructional details of the reflector, e.g. shape
- H01S3/08063—Graded reflectivity, e.g. variable reflectivity mirror
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/034—Optical devices within, or forming part of, the tube, e.g. windows, mirrors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08081—Unstable resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/0915—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
- H01S3/092—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
- H01S3/093—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/20—Lasers with a special output beam profile or cross-section, e.g. non-Gaussian
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0615—Shape of end-face
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/0915—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
- H01S3/092—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明はレーザ装置、とくにそのレーザビームの高品
質化に関するものである。The present invention relates to a laser device, and more particularly to improving the quality of a laser beam thereof.
[従来の技術] 第8図は例えばレーザハンドブック(Laser Handbook 19
79 North-Holland Publishing Campany)に記載された従
来の不安定型共振器を有するレーザ装置を示す断面構成
図である。図において(1)は凹面鏡よりるコリメートミ
ラー、(2)はこのコリメートミラーに対向配置された凸
面鏡よりなる拡大ミラーであり、両ミラー(1)(2)は全反
射ミラーをなす。(3)はレーザ媒質であり、CO2レー
ザ等のガスレーザを例にとれば、放電等により励起され
たガス媒質、YAGレーザ等の固体レーザを例にとれ
ば、フラッシュランプ等により励起されたガラス媒質で
ある。(4)はウィンドミラー、(5)はウィンドミラー面上
に施された無反射コーティング膜、(6)は周囲を覆う箱
体、(7)はミラー(1)(2)により構成される光共振器内に
発生するレーザビーム、(8)は拡大ミラー周囲部より外
部に取り出されたレーザビームである。[Prior Art] FIG. 8 shows, for example, Laser Handbook 19
79 North-Holland Publishing Campany) is a cross-sectional configuration diagram showing a laser device having a conventional unstable resonator described in (79 North-Holland Publishing Campany). In the figure, (1) is a collimating mirror which is a concave mirror, (2) is a magnifying mirror which is a convex mirror which is arranged to face this collimating mirror, and both mirrors (1) and (2) form a total reflection mirror. (3) is a laser medium, for example, a gas laser such as a CO 2 laser is used as an example, a gas medium excited by discharge or the like, and a solid laser such as a YAG laser is used as a glass, which is excited by a flash lamp or the like. It is a medium. (4) is a wind mirror, (5) is a non-reflective coating film applied on the surface of the wind mirror, (6) is a box covering the surroundings, (7) is light composed of mirrors (1) and (2) A laser beam generated in the resonator, (8) is a laser beam taken out from the periphery of the magnifying mirror.
次に動作について説明する。Next, the operation will be described.
ミラー(1)(2)はいわゆる不安定型共振器を構成してお
り、拡大ミラー(2)により反射拡大されたレーザビーム
はレーザ媒質(3)により増幅されるとともに、コリメー
トミラー(1)により平行ビームにコリメートされ、拡大
ミラー(2)及びミラー周囲部上に反射され、リング状の
ビームとしてウィンドミラー(4)より外部に取り出され
る。取り出されるリング状のレーザビーム(8)はほとん
ど等位相で得られるため、レンズ等で集光することによ
り中高のビームとなり、鉄板などの切断、溶接等を効率
よく行なうことができる。The mirrors (1) and (2) form a so-called unstable resonator.The laser beam reflected and expanded by the magnifying mirror (2) is amplified by the laser medium (3) and collimated by the collimating mirror (1). The beam is collimated, reflected on the magnifying mirror (2) and the peripheral portion of the mirror, and taken out from the wind mirror (4) as a ring-shaped beam. Since the ring-shaped laser beam (8) to be extracted is obtained in almost the same phase, it becomes a medium-high beam by being condensed by a lens or the like, and cutting and welding of an iron plate or the like can be efficiently performed.
また、その集光の度合は取り出されるリング状ビームの
内径と外径との比(M値(Magnification facter))でき
まり、M値が大きいほど、即ちより中づまりで取り出さ
れたビームほどよく集光される。しかしM値を大きくす
ると発振効率が著しく悪化するため、工業的に現実にも
ちられるM値の上限は2程度である。Also, the degree of focusing depends on the ratio of the inner diameter and the outer diameter of the extracted ring-shaped beam (M value (Magnification facter)). To be done. However, when the M value is increased, the oscillation efficiency is remarkably deteriorated, and therefore, the upper limit of the M value which is industrially actually used is about 2.
[発明が解決しようとする問題点] 従来のレーザ装置は以上のように構成されていたので、
集光特性を向上させるためにM値を大きくすると発振効
率が悪化するため、実用的にはM値を最高集光性能の得
られる無限大近くまであげられないといった問題点があ
った。また、ウィンドミラー(4)がリング状のレーザビ
ームにより不均一に加熱されるため、不均一な内部応力
が発生し、通過するレーザビームの位相分布をくずし、
集光性能を悪化させる等の問題点があった。[Problems to be Solved by the Invention] Since the conventional laser device is configured as described above,
If the M value is increased in order to improve the light condensing characteristics, the oscillation efficiency is deteriorated, so that there is a problem that the M value cannot be practically raised to infinity where the maximum light condensing performance can be obtained. Further, since the wind mirror (4) is non-uniformly heated by the ring-shaped laser beam, non-uniform internal stress is generated and the phase distribution of the passing laser beam is destroyed,
There was a problem that the light collecting performance was deteriorated.
この発明は上記のような問題点を解決するためになされ
たものであり、発振効率の低下を招かずにM値が無限大
に近い高品質のレーザビームを取り出すことのできるレ
ーザ装置を容易に得ることを目的とする。The present invention has been made to solve the above problems, and facilitates a laser device capable of extracting a high-quality laser beam with an M value close to infinity without lowering the oscillation efficiency. The purpose is to get.
[問題点を解決するための手段] この発明に係わるレーザ装置は、拡大ミラーを凹または
凸面鏡で構成し、コリメートミラーとの対向面中央に部
分反射膜を、その周囲部に無反射コーティング膜を施
し、上記部分反射膜の厚みが上記凹または凸面鏡中央部
とその周囲部を通過するレーザビームを等位相化するよ
うに調整したものである。[Means for Solving the Problems] In the laser device according to the present invention, the magnifying mirror is composed of a concave or convex mirror, and a partially reflective film is formed in the center of the surface facing the collimating mirror and a non-reflective coating film is provided in the periphery thereof. The thickness of the partial reflection film is adjusted so that the laser beam passing through the central portion of the concave or convex mirror and the peripheral portion thereof is phased.
[作用] この発明における拡大ミラーは、レーザビームの一部を
透過させることにより、そのビーム形状を従来のリング
状から中づまり状のレーザビームとして取り出す。さら
に厚みの調整された部分反射膜によりその中づまり状の
レーザビームは等位相化される。[Operation] The magnifying mirror according to the present invention allows a part of the laser beam to pass therethrough, thereby extracting the beam shape from the conventional ring-shaped laser beam. Further, the partially reflected film having the thickness adjusted adjusts the phase of the confined laser beam.
[実施例] 以下、この発明の一実施例を図について説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.
第1図はこの発明の一実施例によるレーザ装置う示す断
面構成図であり、図において、(40)はウィンドミラーを
かねる凸面鏡であり、その外側に無反射コーティング膜
(5)が施され、さらに内側のコリメートミラー(1)との対
向面の中央部には部分反射膜(20)が、その周囲部には無
反射コーティング膜(5)が施され、さらに厚み調整用の
コーティング膜(22)が部分反射膜(20)の上に施されてい
る。FIG. 1 is a cross-sectional configuration diagram showing a laser device according to an embodiment of the present invention. In the figure, (40) is a convex mirror that also serves as a wind mirror, and an antireflection coating film is provided on the outside thereof.
(5) is applied, a partial reflection film (20) is applied to the center of the inner surface facing the collimating mirror (1), and a non-reflective coating film (5) is applied to the surrounding area to further increase the thickness. A coating film (22) for adjustment is provided on the partial reflection film (20).
次に動作について説明する。Next, the operation will be described.
コリメートミラー(1)および凸面鏡(40)の部分反射膜(2
0)部はいわゆる不安定型共振器を構成しており、凸面鏡
(40)の部分反射膜(20)で反射拡大されたレーザビーム
(7)は、レーザ媒質(3)により増幅されるとともに、コリ
メートミラー(1)により平行ビームにコリメートされ、
凸面鏡(40)より外部へレーザビーム(8)として取り出さ
れる。このレーザビーム(8)は、部分反射膜(20)および
コーティング膜(22)を通過する部分と、無反射コーティ
ング膜(5)を通過する部分とでできており、部分反射膜
(20)を通過する部分は部分透過性を持つので、レーザビ
ームは中づまりであり、従来の不安定型共振器で定義さ
れたM値は無限大に相当する。Partial reflection film (2) of collimator mirror (1) and convex mirror (40)
The (0) part constitutes a so-called unstable resonator, and the convex mirror
Laser beam reflected and expanded by the partial reflection film (20) of (40)
(7) is amplified by the laser medium (3) and collimated into a parallel beam by the collimating mirror (1),
It is taken out as a laser beam (8) from the convex mirror (40) to the outside. This laser beam (8) is composed of a part that passes through the partial reflection film (20) and the coating film (22) and a part that passes through the non-reflection coating film (5).
Since the portion that passes through (20) has partial transparency, the laser beam is a hollow, and the M value defined by the conventional unstable resonator corresponds to infinity.
第2図(a)(b)は各々従来及びこの発明の一実施例による
不安定型共振器で発生したレーザビームをレンズで集光
させた場合のパターン形状を模式的に示す特性図であ
り、横軸は光軸からの距離、縦軸はビーム強度である。
この実験では両者の発振特性をほぼ同一にするため、部
分反射膜(20)の反射率は50%、また部分反射膜(20)の径
とビーム外径との比は1.5とした。(即ち、M=1.5の従
来の不安定型共振器の拡大ミラー(2)に50%の部分透過
性をもたせて、この発明の不安定型共振器とした)ま
た、凸面鏡(40)の両面の曲率は同一とし(厚みを一定と
し)、レーザビーム(8)が凸面鏡(40)を通過後も平行ビ
ームであるようにした。第2図(a)(b)で示される各集光
性能を比較すると、この発明によるものでは(第2図
(b))、中央強度が高く、かつ光軸上に集中したレーザ
ビームが得られることがわかる。FIGS. 2 (a) and 2 (b) are characteristic diagrams schematically showing the pattern shapes when the laser beam generated by the unstable resonator according to the embodiment of the present invention and the unstable resonator according to the present invention are focused by the lens, respectively. The horizontal axis is the distance from the optical axis, and the vertical axis is the beam intensity.
In this experiment, the reflectance of the partial reflection film (20) was 50%, and the ratio of the diameter of the partial reflection film (20) to the outer diameter of the beam was set to 1.5 in order to make the oscillation characteristics of the two substantially the same. (That is, the unstable mirror of the present invention is obtained by making the magnifying mirror (2) of the conventional unstable resonator of M = 1.5 have a partial transmittance of 50%). Are the same (the thickness is constant), and the laser beam (8) is a parallel beam even after passing through the convex mirror (40). Comparing the light-collecting performances shown in FIGS. 2 (a) and 2 (b), according to the present invention (see FIG.
(b)), it can be seen that a laser beam with high central intensity and concentrated on the optical axis can be obtained.
次にこの発明による拡大ミラーの設計について説明す
る。上記コーティング膜(22)の厚みは上記無反射コーテ
ィング膜(5)と部分反射膜(20)及びコーティング膜(22)
を通過するレーザビーム間の位相差が小さく、なおかつ
上記コーティング膜(22)及び部分反射膜(20)でレーザビ
ームが部分反射されるように決定される。第3図は集光
点での軸上強度の1/e2倍になる点の直径(スポット径)
及びその径内に含まれるレーザパワーの全体に対する割
合(パワー集中度)と位相差との関係を各々曲線A及び
Bにより示す特性図である。この曲線は波動計算により
共振器内に発生するレーザビーム、及びそれを用いて集
光点での強度分布を計算した結果にもどずくものであ
る。スポット径が小さく、パワー集中度が大きいほど集
光性能が良いと判断できる。Next, the design of the magnifying mirror according to the present invention will be described. The thickness of the coating film (22) is the antireflection coating film (5), the partial reflection film (20) and the coating film (22).
The phase difference between the laser beams passing through is small, and the laser beam is partially reflected by the coating film (22) and the partial reflection film (20). Fig. 3 shows the diameter (spot diameter) at the point where 1 / e 2 times the axial intensity at the focal point is reached.
3 is a characteristic diagram showing curves A and B showing the relationship between the phase difference and the ratio (power concentration degree) of the laser power included in the diameter to the whole. This curve returns to the result of calculating the intensity distribution at the condensing point using the laser beam generated in the resonator by wave calculation. It can be determined that the smaller the spot diameter and the larger the power concentration degree, the better the light converging performance.
例えば位相差が0°から45°程度内に打ち消されていれ
ば、パワー集中度、スポット径ともほぼ同一であるが、
100°以上の位相差が生じた場合はとくにスポット径が
著しく悪化し、集光性能が悪化することがわかる。For example, if the phase difference is canceled within 0 ° to 45 °, the power concentration and the spot diameter are almost the same,
It can be seen that particularly when a phase difference of 100 ° or more occurs, the spot diameter significantly deteriorates, and the condensing performance deteriorates.
この位相差とコーティング膜(22)の膜厚との関係を第4
図に示す。この例はZnSeの基板上にPbF2(屈折率1.55)
を1.7μm施して無反射コーティング膜(5)を形成し、一
方、中央部にはZnSe基板上にPbF2を2.9μm施して50%
の部分反射膜とした場合に、その厚みをさらにどのくら
い厚くしていくと中央部の透過率(曲線C)、中央部と
周囲部とを通過するビーム間の位相差(曲線D)がいか
になるかを示すものである。第4図から第2図(b)に示
すような特性を得るために透過率50%、位相差45°以内
になるにはコーティング膜(22)の厚さは約6μmである
ことがわかる。工業的製法を考えるとこのように厚い薄
膜を形成することは高価であるが、この発明例では中央
部のみを厚くするので、その面積は小さく、その高価格
化を軽減できる。また、中央部の部分反射膜(20)やコー
ティング膜(22)は周囲部の無反射コーティング膜(5)と
独立して形成されているためその設計の自由度が増す。The relationship between this phase difference and the film thickness of the coating film (22) is
Shown in the figure. This example shows PbF 2 (refractive index 1.55) on a ZnSe substrate.
Is applied to form a non-reflective coating film (5) with a thickness of 1.7 μm, while PbF 2 is applied on the ZnSe substrate to a thickness of 2.9 μm for 50%
If the thickness of the partial reflection film is further increased, the transmittance at the central portion (curve C) and the phase difference between the beams passing through the central portion and the peripheral portion (curve D) will be what. It shows that. From FIG. 4 to FIG. 2 (b), it is understood that the thickness of the coating film (22) is about 6 μm so that the transmittance is 50% and the phase difference is within 45 ° in order to obtain the characteristics shown in FIG. Considering an industrial manufacturing method, it is expensive to form such a thin thin film, but in this example of the invention, only the central portion is thickened, so that the area is small and the cost increase can be reduced. Further, since the partial reflection film (20) and the coating film (22) in the central portion are formed independently of the non-reflection coating film (5) in the peripheral portion, the degree of freedom in design is increased.
なお、上記実施例では部分反射膜(20)は単一膜のものを
示したが、第5図に示すように二層またはそれ以上の複
数よりなるものであってもよい。Although the partial reflection film (20) is a single film in the above embodiment, it may be composed of two or more layers as shown in FIG.
また、コーティング膜(22)についても第6図に示すよう
に複数の膜により構成されていても良い。Further, the coating film (22) may be composed of a plurality of films as shown in FIG.
また、拡大ミラーは第7図に示すように凹面鏡(41)であ
ってもよい。Further, the magnifying mirror may be a concave mirror (41) as shown in FIG.
[発明の効果] 以上のように、この発明によればレーザ装置の拡大ミラ
ーを凹または凸面鏡で構成し、コリメートミラーとの対
向面中央部に部分反射膜を、その周囲部に無反射コーテ
ィング膜を施し、上記部分反射膜の厚みが上記凹または
凸面鏡中央部とその周囲部を通過するレーザビームを等
位相化するように調整したので、発振効率を犠牲にする
ことなく中づまりの集光性能の良いレーザビームが得ら
れるとともに、レーザビームはウィンドミラーを全体に
加熱するため熱応力が発生しにくく安定して長期間ビー
ムを取り出すことができる効果がある。さらにミラー中
央部のみに厚いコーティング膜を形成するので安価に等
位相化が実現できる効果がある。[Effects of the Invention] As described above, according to the present invention, the magnifying mirror of the laser device is composed of a concave or convex mirror, a partial reflection film is formed in the center of the surface facing the collimating mirror, and a non-reflection coating film is formed in the periphery thereof. Since the thickness of the partial reflection film is adjusted so as to make the laser beam passing through the central portion of the concave or convex mirror and its peripheral portion equal phase, the condensing performance of the centered light can be reduced without sacrificing the oscillation efficiency. A good laser beam can be obtained, and since the laser beam heats the entire wind mirror, there is an effect that thermal stress hardly occurs and the beam can be stably taken out for a long period of time. Further, since the thick coating film is formed only on the central portion of the mirror, there is an effect that the phase equalization can be realized at low cost.
第1図はこの発明の一実施例によるレーザ装置を示す断
面構成図、第2図(a)(b)は各々従来、及びこの発明の一
実施例によるレーザ装置におけるレーザビームの集光特
性を示す特性図、第3図は集光点でのスポット径及びパ
ワー集中度と位相差との関係を示す特性図、第4図は部
分反射膜の膜厚と位相差及び透過率との関係を示す特性
図、第5図、及び第6図は各々この発明の他の実施例に
係わる拡大ミラーを示す断面構成図、第7図はこの発明
の他の実施例によるレーザ装置を示す断面構成図、並び
に第8図は従来のレーザ装置を示す断面構成図である。 図において、(1)はコリメートミラー、(3)はレーザ媒
質、(40)は凸面鏡、(5)は無反射コーティング膜、(7)
(8)はレーザビーム、(20)(201)(202)は部分反射膜、(2
2)(221)(222)はコーティング膜、(41)は凹面鏡である。 なお、図中、同一符号は同一または相当部分を示す。FIG. 1 is a cross-sectional configuration diagram showing a laser device according to an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) show the focusing characteristics of a laser beam in a conventional laser device and an embodiment of the present invention, respectively. FIG. 3 is a characteristic diagram showing the relationship between the spot diameter at the converging point and the power concentration degree and the phase difference, and FIG. 4 is a relationship between the film thickness of the partially reflective film and the phase difference and the transmittance. FIG. 5 is a sectional view showing a magnifying mirror according to another embodiment of the present invention, and FIG. 7 is a sectional view showing a laser device according to another embodiment of the present invention. , And FIG. 8 are cross-sectional configuration diagrams showing a conventional laser device. In the figure, (1) is a collimating mirror, (3) is a laser medium, (40) is a convex mirror, (5) is a non-reflective coating film, (7)
(8) is a laser beam, (20) (201) (202) is a partially reflective film, (2
2) (221) and (222) are coating films, and (41) is a concave mirror. In the drawings, the same reference numerals indicate the same or corresponding parts.
Claims (1)
トミラーより不安定型共振器を構成し、レーザビームを
取り出すものにおいて、上記拡大ミラーは凹または凸面
鏡であり、上記コリメートミラーとの対向面中央部に部
分反射膜が、その周囲部に無反射コーティング膜が施さ
れ、上記部分反射膜の厚みが上記凹または凸面鏡中央部
とその周囲部を通過するレーザビームを等位相化するよ
うに調整されていることを特徴とするレーザ装置。1. In an unstable resonator comprising a magnifying mirror and a collimating mirror which are arranged so as to face each other to extract a laser beam, the magnifying mirror is a concave or convex mirror, and a central portion of a surface facing the collimating mirror. The partial reflection film is provided with a non-reflective coating film on its peripheral portion, and the thickness of the partial reflection film is adjusted so as to make the laser beam passing through the central portion of the concave or convex mirror and its peripheral portion equal phase. A laser device characterized by the above.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31252487A JPH0644648B2 (en) | 1987-12-10 | 1987-12-10 | Laser equipment |
KR1019880006600A KR910008990B1 (en) | 1987-06-03 | 1988-06-02 | Laser apparatus |
EP88108902A EP0293907B1 (en) | 1987-06-03 | 1988-06-03 | Laser apparatus |
DE8888108902T DE3879547T2 (en) | 1987-06-03 | 1988-06-03 | LASER APPARATUS. |
US07/201,999 US4903271A (en) | 1987-06-03 | 1988-06-03 | Laser apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31252487A JPH0644648B2 (en) | 1987-12-10 | 1987-12-10 | Laser equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01152778A JPH01152778A (en) | 1989-06-15 |
JPH0644648B2 true JPH0644648B2 (en) | 1994-06-08 |
Family
ID=18030264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31252487A Expired - Lifetime JPH0644648B2 (en) | 1987-06-03 | 1987-12-10 | Laser equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0644648B2 (en) |
-
1987
- 1987-12-10 JP JP31252487A patent/JPH0644648B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01152778A (en) | 1989-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5058123A (en) | Laser apparatus | |
US20060186098A1 (en) | Method and apparatus for laser processing | |
KR910008990B1 (en) | Laser apparatus | |
JPH0644648B2 (en) | Laser equipment | |
JP2660335B2 (en) | Laser device | |
JP2800006B2 (en) | Laser device | |
JP2673304B2 (en) | Laser device | |
JP2526946B2 (en) | Laser device | |
JPH0834325B2 (en) | Laser equipment | |
JPH0463556B2 (en) | ||
JP2580702B2 (en) | Laser device | |
JPH0682873B2 (en) | Laser equipment | |
JPH0463557B2 (en) | ||
JPH0511671B2 (en) | ||
JP2597499B2 (en) | Laser device | |
JPH0680852B2 (en) | Laser device | |
JP2580703B2 (en) | Laser device | |
JPH0575185A (en) | Laser equipment | |
JPH0666490B2 (en) | Laser equipment | |
JP2580704B2 (en) | Laser device | |
RU2097800C1 (en) | Light splitting interference coating | |
RU2150773C1 (en) | High-power laser with stable-unstable resonator | |
JPH0666489B2 (en) | Laser output mirror | |
JPH0728068B2 (en) | Laser device | |
JPH07101762B2 (en) | Laser processing equipment |