JPH0644583B2 - Board-to-board connection terminal and manufacturing method thereof - Google Patents
Board-to-board connection terminal and manufacturing method thereofInfo
- Publication number
- JPH0644583B2 JPH0644583B2 JP60156621A JP15662185A JPH0644583B2 JP H0644583 B2 JPH0644583 B2 JP H0644583B2 JP 60156621 A JP60156621 A JP 60156621A JP 15662185 A JP15662185 A JP 15662185A JP H0644583 B2 JPH0644583 B2 JP H0644583B2
- Authority
- JP
- Japan
- Prior art keywords
- solder
- metal
- solder bump
- metal layer
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01042—Molybdenum [Mo]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Wire Bonding (AREA)
Description
【発明の詳細な説明】 発明の属する技術分野 本発明は端子接続技術に関するものであり、特に、基板
間接続端子及びその製造法に関する。Description: TECHNICAL FIELD The present invention relates to a terminal connection technique, and more particularly to an inter-board connection terminal and a method for manufacturing the same.
従来の技術 チツプと配線板の端子接続法として特公昭43−1654号あ
るいは特公昭43−28735号に示されるような、はんだバ
ンプ接続法(フリツプチツプボンデイング法)が知られ
ている。この接続法では、第1図に示すように、チツプ
aに多数個形成される電極bとこれを支持する一方の配
線板cの端子部dとは、はんだバンプeで直接接合され
ており、チツプaと配線板cの熱膨張係数が異なるため
温度変化によりはんだバンプeに剪断歪が生じる。この
剪断歪は、はんだバンプeとチツプ中心fとの距離の増
加とともに増大するので、第2図に示すように、チツプ
寸法gが大きくなるほど、少ない熱サイクル数ではんだ
バンプは破断に至る。このため、許容しうる剪断歪量か
ら、はんだバンプを配置できる領域に制限を受け、例え
ば、特開昭50−137484号および特開昭59−996号に示さ
れるように、シリコンチツプをセラミツク配線板に接続
する場合には、はんだバンプの配置可能領域はチツプ中
心から半径2.5mm程度である。したがつて、従来のはん
だバンプ接続法では、はんだバンプを配置できる領域が
チツプ中心近傍に限られるため、端子数の増大が困難で
ある。また、はんだバンプの配置可能領域を越えた領域
に位置するチツプ内の素子とはんだバンプとの距離が大
きくなるので、この間を結ぶ配線が長くなり、配線遅延
も増大する。また、第3図に示すように、チツプの大形
化に伴い増大する、チツプや配線板のそり・うねりにも
とづくチツプと配線板間のギヤツプ偏差j(中央のギヤ
ツプをj1,端部のギヤツプをj2とすればギヤツプ偏差j
=j2−j1となる)を、はんだバンプeの一段のみで吸収
することが困難であり、極端な場合には、第4図に示す
ように、端子の一部が短絡することもあつた。2. Description of the Related Art As a terminal connection method between a chip and a wiring board, a solder bump connection method (flip chip bonding method) is known as shown in JP-B-43-1654 or JP-B-43-28735. In this connection method, as shown in FIG. 1, a large number of electrodes b formed on the chip a and the terminal portions d of the wiring board c that supports the electrodes are directly joined by solder bumps e. Since the chip a and the wiring board c have different thermal expansion coefficients, shearing strain occurs in the solder bump e due to temperature change. Since this shear strain increases with an increase in the distance between the solder bump e and the chip center f, as shown in FIG. 2, the larger the chip size g, the smaller the number of thermal cycles the solder bump will reach. Therefore, the allowable shear strain amount limits the area in which the solder bumps can be arranged. For example, as shown in JP-A-50-137484 and JP-A-59-996, a silicon chip is used for ceramic wiring. When connecting to a board, the area where solder bumps can be placed has a radius of about 2.5 mm from the center of the chip. Therefore, in the conventional solder bump connection method, it is difficult to increase the number of terminals because the area in which the solder bumps can be arranged is limited to the vicinity of the chip center. Further, since the distance between the element in the chip located in the area beyond the area where the solder bump can be arranged and the solder bump becomes large, the wiring connecting between these becomes long and the wiring delay also increases. Further, as shown in FIG. 3, a gear gap deviation j between the chip and the wiring board due to the warp / waviness of the chip or the wiring board, which increases with the size of the chip (j 1 at the center, j 1 at the end, If the gear tap is j 2 , the gear tap deviation j
= J 2 −j 1 ) is difficult to be absorbed by only one step of the solder bump e, and in an extreme case, as shown in FIG. 4, a part of the terminal may be short-circuited. It was
また、従来の一段はんだバンプ接続では、上記のギャッ
プ偏差の吸収が不十分で、機械的ストレスを十分に吸収
できないため、チップ裏面をヒートシンクに完全に固着
することが出来ず、放熱方法を工夫する必要があり、冷
却構造が複雑になる欠点を有する。Further, in the conventional one-step solder bump connection, the above gap deviation is not sufficiently absorbed and mechanical stress cannot be sufficiently absorbed, so that the back surface of the chip cannot be completely fixed to the heat sink, and a heat dissipation method is devised. It has the drawback of requiring a complicated cooling structure.
このような従来のはんだバンプ接続法の欠点を改良する
方法として、特開法59−996号に示されるような、中継
基板中に設けたスルーホールを介して、チツプと配線板
のはんだ端子を接続する方法が提案されている。すなわ
ち、この方法では第5図に示すように、チツプ電極bを
覆つているはんだバンプeと配線板電極dを覆つている
はんだバンプe′に生ずる剪断歪を低減するため、チツ
プaと配線板bとの中間の熱膨張係数を持つ中継基板h
に、はんだあるいは、はんだに対して濡れ性のあるAg,C
uを充填したスルーホールiを設け、これを介して、チ
ツプaのはんだ端子(電極)bと配線板cのはんだ端子
(電極)dとを接続している。この方法では、第6図
(a)に示すように、中継基板hをチツプaと配線板bの
間に挿入し、はんだeおよびe′を溶融接続する。とこ
ろが、はんだの加熱溶融により、第6図(b)に示すよう
に、上下のはんだe,e′が、はんだ或いははんだに対し
て濡れ性のあるAg,Cuを充填したスルーホール金属i′
に拡散し、上部のはんだeがスルーホールiを貫通して
下部のはんだe′と一体化してしまうという問題が生じ
た。すなわち、上部のはんだバンプe″の高さが低くな
るため、剪断歪が極めて大きくなり、第1図に示した第
一の従来例よりもかえつて接続寿命が短くなつた。ま
た、下部のはんだバンプeの直径が増大し、接続はん
だバンプ同志が電気的に短絡するので、端子間隔を広げ
なければならず、高密度な端子接続ができなかつた。As a method of improving the drawbacks of such a conventional solder bump connection method, as shown in JP-A-59-996, through the through hole provided in the relay board, the solder terminal of the chip and the wiring board A method of connecting is proposed. That is, in this method, as shown in FIG. 5, in order to reduce the shear strain generated in the solder bump e covering the chip electrode b and the solder bump e ′ covering the wiring board electrode d, the chip a and the wiring board are reduced. relay substrate h having a coefficient of thermal expansion intermediate that of b
Solder, or Ag, C that has wettability to solder
A through hole i filled with u is provided, and the solder terminal (electrode) b of the chip a and the solder terminal (electrode) d of the wiring board c are connected via this. In this method,
As shown in (a), the relay board h is inserted between the chip a and the wiring board b, and the solders e and e ′ are fused and connected. However, when the solder is melted by heating, as shown in FIG. 6 (b), the upper and lower solders e, e ′ are solder or through-hole metal i ′ filled with Ag, Cu having wettability with respect to the solder.
There is a problem that the solder e on the upper side penetrates the through hole i and is integrated with the solder e ′ on the lower side. That is, since the height of the upper solder bump e ″ becomes lower, the shear strain becomes extremely large and the connection life becomes shorter than that of the first conventional example shown in FIG. Since the diameter of the bump e increases and the connecting solder bumps are electrically short-circuited with each other, it is necessary to widen the terminal interval, which makes it impossible to perform high-density terminal connection.
発明の目的 本発明の第一の目的は、はんだバンプを配置できる領域
に制限がなく、かつはんだバンプ部の剪断歪が小さい高
信頼性な、大形チツプの基板間接続端子及びその製造法
を提供することにある。Objects of the Invention A first object of the present invention is to provide a highly reliable, large chip inter-board connecting terminal and a method for manufacturing the same, in which there are no restrictions on the area where solder bumps can be placed, and which has a small shear strain in the solder bumps. To provide.
本発明の第二の目的は、チツプや配線板のそり・うねり
にもとづくチツプと配線板間のギヤツプ偏差を十分に吸
収できる大形チツプの基板間接続端子及びその製造法を
提供することにある。A second object of the present invention is to provide a board-to-board connecting terminal of a large chip which can sufficiently absorb the deviation of the gear chip between the chip and the wiring board due to the warp / waviness of the chip or the wiring board, and a manufacturing method thereof. .
本発明の第三の目的は、大形チツプの小形・高密度な多
端子接続法を提供することにある。A third object of the present invention is to provide a small-sized and high-density multi-terminal connection method for large chips.
本発明の第四の目的は、接続部の長さが短く静電容量お
よびインダクタンスの小さい,接続部分の信号遅延時間
が短い大形チツプの接続法を提供することにある。A fourth object of the present invention is to provide a connection method for a large chip, which has a short connecting portion, a small capacitance and inductance, and a short signal delay time at the connecting portion.
発明の構成 発明の特徴と従来の技術との差異の説明 本発明は上記従来技術の問題点を解決するために、はん
だに対して濡れ性がなく拡散防止作用のある金属材料
を、はんだに対して濡れ性のある金属材料で挾み、これ
にはんだを融着した基本仲介層を、複数個、多段状に積
み重ねてチツプと配線板との間に挿入し、これを介して
チツプの電極端子と配線板の電極端子とが接続されてい
ることを最も主要な特徴とする。従来の技術では、チツ
プと配線板の各電極・端子間を一段のはんだバンプで接
続する構造、あるいは、はんだに対して濡れ性のある金
属材料のみを充填したスルーホールを持つ中継基板を用
いて、チツプのはんだバンプと配線板のはんだバンプと
を接続する構造をとつており、本発明の構造は従来の技
術とは異なる。Configuration of the invention Description of the difference between the features of the invention and the prior art In order to solve the above-mentioned problems of the prior art, the present invention provides a metal material that has no wettability with respect to solder and has a diffusion preventing effect to the solder. Of the basic intermediary layer, which is sandwiched between the chips and the wiring board by sandwiching it with a wettable metal material, and then soldering it to the electrode terminals of the chip. The main feature is that the electrode terminals of the wiring board and the wiring board are connected. In the conventional technology, a structure in which the chip and each electrode / terminal of the wiring board are connected by a single-stage solder bump, or a relay board having a through hole filled only with a metal material that is wettable by solder is used. The structure of the present invention is different from the conventional technique because it has a structure for connecting the solder bumps of the chip and the solder bumps of the wiring board.
実施例の説明 一般に、はんだバンプ部の接続寿命Nfは剪断歪、材料定
数および構造寸法と次のような関係にあることが広く知
られている。(例えば、P.Lin“Design Considerations
for a Flip-Chip Joining Technique”,Solid State
Technology,p.48,July 1970) Nf=A/γ2 γ=△α・g′・△T/H こゝに、Aははんだ材料などにより決まる定数、γは剪
断歪、△αはチツプと配線板との熱膨張係数差、g′は
チツプ中心から最も離れた位置のはんだバンプのチツプ
中心からの距離、△Tは各回の熱サイクルの温度差、H
はチツプと配線板との間の高さである。Description of Examples Generally, it is widely known that the connection life Nf of a solder bump portion has the following relationship with shear strain, material constants and structural dimensions. (For example, P. Lin “Design Considerations
for a Flip-Chip Joining Technique ”, Solid State
Technology, p.48, July 1970) Nf = A / γ 2 γ = Δα · g ′ · ΔT / H where A is a constant determined by the solder material, γ is shear strain, and Δα is a chip. Difference in thermal expansion coefficient from the wiring board, g'is the distance from the chip center of the solder bump farthest from the chip center, ΔT is the temperature difference in each heat cycle, and H is
Is the height between the chip and the wiring board.
したがつて、剪断歪を低減するためには、はんだバンプ
の高さを増大させる必要がある。理想的には、幾つかの
はんだバンプを柱状に積み重ねて、その高さを増大させ
るのが好ましい。しかし、はんだバンプとチツプあるい
は配線板とを溶融接続すると、柱状であつたはんだバン
プは表面張力により一つの球になるので、隣接はんだバ
ンプとの間隔をある一定値に維持しつつ、高いはんだバ
ンプを得ることは極めて困難である。そこで、はんだバ
ンプの高さを増大させる方法として、以下のようなはん
だバンプを多段に積み重ねる方法を考案した。Therefore, in order to reduce the shear strain, it is necessary to increase the height of the solder bump. Ideally, several solder bumps should be stacked in a column to increase their height. However, when the solder bump and the chip or the wiring board are fusion-bonded, the pillar-shaped solder bump becomes one sphere due to the surface tension. Therefore, while maintaining the distance between the adjacent solder bumps at a certain constant value, the high solder bumps Is extremely difficult to obtain. Therefore, as a method of increasing the height of the solder bumps, the following method of stacking the solder bumps in multiple stages was devised.
第7図は本発明の第一の実施例を説明する図であつて、
aはチツプ、bは電極、cは配線板、dは端子部(電
極)、eははんだバンプ、lははんだに対して濡れ性の
あるCuなどの金属層、mは金属層lの中間に挾んだ、は
んだに対して濡れ性のないWやMoなどの拡散防止層、j
ははんだに対して濡れ性がなく電気的に導電性のないセ
ラミツクである。多層金属層l−m−l′としては、そ
の表裏両面がはんだと接合できるとともに、溶融により
はんだが多層金属層に拡散貫通して、上下のはんだが一
体化するのを防止できなければならない。このため、本
発明の構造では、第7図に示したように、はんだに対し
て濡れ性がなくかつ拡散防止効果のあるWやMoなどの層
を、はんだに対して濡れ性のあるCu層の中間に挿入した
構造を用いている。FIG. 7 is a diagram for explaining the first embodiment of the present invention.
a is a chip, b is an electrode, c is a wiring board, d is a terminal portion (electrode), e is a solder bump, l is a metal layer such as Cu having wettability to solder, m is an intermediate metal layer l. A diffusion preventive layer such as W or Mo that is not wettable by solder, j
Is a ceramic that has no wettability to solder and is not electrically conductive. The multilayer metal layer l-m-l 'must be capable of joining the front and back surfaces to the solder and preventing the solder from diffusing and penetrating into the multilayer metal layer due to melting and integrating the upper and lower solders. Therefore, in the structure of the present invention, as shown in FIG. 7, a layer such as W or Mo having no wettability with respect to solder and having a diffusion preventing effect is used as a Cu layer having wettability with respect to solder. The structure inserted in the middle of is used.
次に、第7図に示した本発明の第一の実施例について、
その製造法を第8図を用いて順に説明する。第8図(1)
に示すように、厚さ500μm程度のセラミツク・グリー
ンシートjに、パンチングなどの方法で、直径125μm
程度の貫通孔kをあけ、焼成する。次に第8図(2)に示
すように、この貫通孔kの中に、はんだに対して濡れ性
のあるCuペーストなどlを挿入・焼成してその厚さを約
200μmとする。次に第8図(3)に示すように、このCuの
層lの上に、はんだに対して濡れ性のないWペーストな
どmを挿入・焼成してその厚さを約100μmとする。次
に第8図(4)に示すように、このWの層mの上に、はん
だに対して濡れ性のあるCuペーストなどl′を挿入・焼
成してその厚さを約200μmとする。次に第8図(5)に示
すように、上表面のCu(l′)の部分に、開口を持つメタ
ルマスクqを位置合わせし、この開口の中に球状のSmPb
あるいはImPbなどのはんだボールeを入れ、フラツク
スを塗布する。次に、このまま電気炉を通してはんだボ
ールeを溶融し、第8図(6)に示すように、上表面のC
u(l′)とはんだボールeを接合しはんだバンプeとす
る。次に第8図(7)に示すように、別のメタルマスク
q′を下表面のCu(l)に位置合わせし、この部分にはん
だボールe′を入れ、フラツクスを塗布し、第8図
(8)に示すように、下表面のCu(l)とはんだボールe′
を接合しはんだバンプe′とする。3段以上のはんだバ
ンプを得るには、第8図(6)および第8図(8)に示したは
んだバンプを重ねて溶融することにより、第8図(9)に
示すような多段のはんだバンプsを形成する。次に、こ
のようにして作製した多段のはんだバンプsを用いて、
第8図(10)に示すように、チツプの電極bと配線板の端
子dとそれぞれ対応するように位置合わせし、フラツク
スを塗布した後、チツプaと配線板cを接続しフラツク
スを除去する。Next, regarding the first embodiment of the present invention shown in FIG.
The manufacturing method will be described in order with reference to FIG. Fig. 8 (1)
As shown in Fig. 5, a ceramic green sheet j with a thickness of about 500 μm is formed with a diameter of 125 μm by a method such as punching.
A through hole k of a certain degree is opened and firing is performed. Next, as shown in FIG. 8 (2), the thickness of the through hole k is reduced to approximately 1 by inserting and firing Cu paste having wettability to solder.
200 μm. Next, as shown in FIG. 8 (3), m such as W paste having no wettability with respect to solder is inserted and baked on the Cu layer l to have a thickness of about 100 μm. Then, as shown in FIG. 8 (4), Cu paste 1'having a wettability with respect to solder is inserted and burned on the layer m of W so as to have a thickness of about 200 μm. Next, as shown in FIG. 8 (5), a metal mask q having an opening is aligned with the Cu (l ') portion on the upper surface, and a spherical SmPb is placed in the opening.
Alternatively, a solder ball e such as ImPb is put and a flux is applied. Next, the solder ball e is melted in this state through an electric furnace, and as shown in FIG.
u (l ') and solder ball e are joined to form solder bump e. Next, as shown in FIG. 8 (7), another metal mask q ′ is aligned with Cu (l) on the lower surface, solder balls e ′ are put in this portion, and a flux is applied.
As shown in (8), Cu (l) on the lower surface and solder balls e ′
To form a solder bump e ′. In order to obtain solder bumps with three or more steps, the solder bumps shown in FIGS. 8 (6) and 8 (8) are stacked and melted to form a multi-step solder bump as shown in FIG. 8 (9). The bumps s are formed. Next, using the multi-stage solder bumps s thus produced,
As shown in FIG. 8 (10), the electrode b of the chip and the terminal d of the wiring board are aligned so as to correspond to each other, and after applying the flux, the chip a and the wiring board c are connected to remove the flux. .
前記の実施例では、セラミツク支持基板を使用した例に
ついて説明したが、可撓性樹脂支持基板又はポリイミド
支持基板を使用しても同様に基板間接続端子をつくるこ
とができる。またポリイミド支持基板を使用した場合に
は後述の実施例で説明したと同様に最終工程にて、ポリ
イミドフイルムをエツチング除去することが可能であ
る。In the above-mentioned embodiment, the example using the ceramic support substrate has been described, but the inter-substrate connection terminals can be similarly formed by using the flexible resin support substrate or the polyimide support substrate. When a polyimide support substrate is used, the polyimide film can be removed by etching in the final step as described in the examples below.
第9図は、本発明の第二の実施例を説明する図であつ
て、aはチツプ、bは電極、cは配線板、dは端子部
(電極)、eははんだバンプ、l,l′およびl″はは
んだに対して濡れ性のあるCuなどの金属層、mは金属層
lとl′との中間に挾んだはんだに対して濡れ性のない
Tiなどの拡散防止層、mはポリイミドなどの耐熱性樹脂
フイルムである。FIG. 9 is a diagram for explaining the second embodiment of the present invention, in which a is a chip, b is an electrode, c is a wiring board, d is a terminal portion (electrode), e is a solder bump, and l, l. ′ And l ″ are metal layers such as Cu having wettability to solder, m is not wettable to solder sandwiched between metal layers l and l ′
A diffusion prevention layer such as Ti, and m is a heat resistant resin film such as polyimide.
次に、第9図に示した本発明の第二の実施例について、
その製造法を第10図を用いて順に説明する。第10図(1)
に示すように、12.5〜25μm程度のポリイミドフイルム
nを基材として、真空蒸着法などで、その上表面にCu
(約5μm),Ti(約0.2〜1μm),Cu(約5μ
m),Ti(約0.2μm),をこの順l′−m−l−m′
に連続蒸着し、下表面にCu(約2μm)l″を被着す
る。次に第10図(2)に示すように、両面に厚さ50μm程
度のフイルム状のレジスト(ドライフイルム)をラミネ
ートし、これをあらかじめ位置合わせした2枚のマスク
の間に挾み、両面を露光し、トリクロルエタンなどの現
像液を用いて、フイルム状レジストoを現像し、所望の
パタンをうる。次に第10図(3)に示すように、下表面のC
u(l″)をTiに対して選択性のある過硫酸アンモニウム水
溶液などでエツチングする。次に第10図(4)に示すよう
に、上表面のフイルム状レジストoをマスクとして、Cu
に対して選択性のあるフツ酸水溶液などでTi(m′)をエ
ツチングし、過硫酸アンモニウム水溶液などでCu(l)を
エツチングし、最後に再びフツ酸水溶液などでTi(m)を
エツチングする。次に第10図(5)に示すように、アセト
ンなどを用いて、フイルム状レジストoを剥離した後、
下表面のCu(l″)をマスクとしてポリイミドフイルムn
をヒドラジン水溶液などでエツチングし、開口pを得
る。次に第10図(6)に示すように、上表面と下表面にフ
イルム状レジストをラミネート・現像し、開口pをこれ
よりも僅かに大きなパタンo′およびo″を得る。次
に、このフイルム状レジストo′およびo″をマスクと
して、下表面のCu(l″)を過硫酸アンモニウム水溶液な
どでエツチングした後、アセトンなどを用いてフイルム
状レジストを剥離し、第10図(7)に示すように、再度フ
イルム状レジストoをラミネートし、上表面のCu
(l′)を過硫酸アンモニウム水溶液などでエツチングす
る。次に第10図(8)に示すように、フツ酸水溶液などでT
i(m′)をエツチングした後、下表面のフイルム状レジス
トoをアセトンなどを用いて剥離する。次に第10図
(9)に示すように、上表面のCu(l)の部分に、開口を持つ
メタルマスクqを位置合わせし、この開口の中に球状の
SmPbあるいはImPbなどのはんだボールeを入れ、フラ
ツクスを塗布する。次に、このまま電気炉を通してはん
だボールeを溶融し、第10図(10)に示すように、上表
面のCu(l)とはんだボールeを接合しはんだバンプe
とする。次に第10図(11)に示すように、別のメタルマス
クq′をフイルム開口pに位置合わせし、この部分には
んだボールeを入れ、フラツクスを塗布し、第10図(1
2)に示すように、下表面のCu(l′)とはんだボールe
を接合しはんだバンプe′とする。ここで、下表面のCu
(l″)の効果は、はんだバンプe′とポリイミドフイル
ムnとの接着を確実にすることにある。3段以上のはん
だバンプを得るには、第10図(10)および第10図(12)に示
したはんだバンプを重ねて溶融することにより、第10図
(13)に示すような多段のはんだバンプsを形成する。次
に、このようにして作製した多段のはんだバンプsを用
いて、第10図(14)に示すように、チツプの電極bと配線
板の端子(電極)dとそれぞれ対応するように位置合わ
せし、フラツクスを塗布した後、チツプaと配線板cを
接続しフラツクスを除去する。さらに、この後ヒドラジ
ンなどでポリイミドフイルムnをエツチング除去するこ
とも可能であり、この場合には、はんだバンプeが多層
金属層l−m−l′のみを介して接合されている構造と
なる。Next, regarding the second embodiment of the present invention shown in FIG.
The manufacturing method will be described in order with reference to FIG. Fig. 10 (1)
As shown in Fig. 1, using polyimide film n of 12.5 to 25 μm as a base material, a vacuum deposition method or the like is used to deposit Cu on the upper surface.
(About 5 μm), Ti (about 0.2-1 μm), Cu (about 5 μm)
m), Ti (about 0.2 μm), in this order 1′-m−l−m ′
Then, deposit Cu (approximately 2 μm) l ″ on the lower surface. Then, as shown in FIG. 10 (2), a film-like resist (dry film) with a thickness of approximately 50 μm is laminated on both sides. Then, it is sandwiched between two pre-aligned masks, both sides are exposed, and a film-like resist o is developed using a developing solution such as trichloroethane to obtain a desired pattern. 10 As shown in Fig. (3), C on the lower surface
u (l ″) is etched with an aqueous solution of ammonium persulfate, which has selectivity for Ti, etc. Next, as shown in FIG. 10 (4), the film-like resist o on the upper surface is used as a mask to form Cu.
Etching Ti (m ') with an aqueous solution of hydrofluoric acid, etc., which has selectivity for Cu, etching Cu (l) with an aqueous solution of ammonium persulfate, and finally etching Ti (m) with an aqueous solution of hydrofluoric acid. Next, as shown in FIG. 10 (5), after removing the film-shaped resist o with acetone or the like,
Polyimide film using Cu (l ″) on the lower surface as a mask
Is etched with a hydrazine aqueous solution or the like to obtain an opening p. Next, as shown in FIG. 10 (6), a film-like resist is laminated and developed on the upper surface and the lower surface to obtain patterns o'and o "in which the opening p is slightly larger than this. After etching the lower surface Cu (l ″) with an aqueous solution of ammonium persulfate using the film-shaped resists o ′ and o ″ as masks, the film-shaped resist is peeled off using acetone or the like, as shown in FIG. 10 (7). Again, laminating the film-shaped resist o again,
Etch (l ') with an aqueous solution of ammonium persulfate. Next, as shown in Fig. 10 (8), T
After etching i (m '), the film-shaped resist o on the lower surface is removed using acetone or the like. Next, Fig. 10
As shown in (9), a metal mask q having an opening is aligned with the Cu (l) portion on the upper surface, and a spherical mask is formed in the opening.
A solder ball e such as SmPb or ImPb is put and a flux is applied. Next, the solder ball e is melted through an electric furnace as it is, and as shown in FIG. 10 (10), Cu (l) on the upper surface and the solder ball e are bonded to each other to form the solder bump e.
And Next, as shown in FIG. 10 (11), another metal mask q'is aligned with the film opening p, a solder ball e is put in this portion, and a flux is applied to the film opening p.
As shown in 2), Cu (l ′) on the lower surface and solder balls e
To form a solder bump e ′. Where Cu on the lower surface
The effect of (l ″) is to ensure the adhesion between the solder bump e ′ and the polyimide film n. In order to obtain a solder bump having three or more steps, FIG. 10 (10) and FIG. Fig. 10 shows the solder bumps shown in Fig.
Multi-stage solder bumps s as shown in (13) are formed. Next, using the multi-stage solder bumps s thus manufactured, as shown in FIG. 10 (14), the electrodes b of the chip and the terminals (electrodes) d of the wiring board are aligned so as to correspond to each other. Then, after applying the flux, the chip a and the wiring board c are connected to remove the flux. Further, after that, the polyimide film n can be removed by etching with hydrazine or the like. In this case, the solder bumps e are bonded only via the multilayer metal layers l-m-l '.
なお、ここに示した第二の実施例に限定されず、本発明
の請求の範囲で製造方法や寸法などを変えることも可能
である。例えば、多層金属層としては、Cu−Cr−Cu、Cu
−CuCr合金−Cr−CuCr合金−Cu、Cu−CuTi合金−Ti−Cu
Ti合金−Cu、Pd−Ti−Pd、Pd−Cr−Pdあるいはこれらを
たがいに積層させた構造でもよいし、はんだに接するCu
の酸化を防止するために、Cuの表面をAuでおおつてもよ
い。また、各段のはんだバンプ毎に融点の異なる材料を
用いて、この融点の違いを利用して、チツプや配線板と
の溶融接続などを容易にする方法もある。すなわち、各
段のはんだバンプを製作工程順にSn0.05Pb0.95(融点31
4℃),In0.50Pb0.50(融点215℃),Sn0.63Pb0.37(融
点184℃)とすることにより、前の工程で融着したはん
だバンプを溶かさずに必要な部分のみのはんだバンプを
融着することができ、はんだの金属層への不必要な拡散
を防止できるため、接続信頼性の低下を抑制できる。さ
らに、はんだ層の製作法としては、ここに示した方法の
ほかに蒸着法などを用いてもよい。The present invention is not limited to the second embodiment shown here, and it is possible to change the manufacturing method, dimensions, etc. within the scope of the claims of the present invention. For example, as the multilayer metal layer, Cu-Cr-Cu, Cu
-CuCr alloy-Cr-CuCr alloy-Cu, Cu-CuTi alloy-Ti-Cu
Ti alloy-Cu, Pd-Ti-Pd, Pd-Cr-Pd or a structure in which these are laminated on each other, or Cu in contact with solder
In order to prevent the oxidation of Cu, the surface of Cu may be covered with Au. There is also a method in which a material having a different melting point is used for each solder bump in each stage and the difference in the melting points is used to facilitate fusion connection with a chip or a wiring board. That is, the solder bumps of each step are Sn 0.05 Pb 0.95 (melting point 31
4 ° C), In 0.50 Pb 0.50 (melting point 215 ° C), Sn 0.63 Pb 0.37 (melting point 184 ° C), so that the solder bumps only in the necessary parts are melted without melting the solder bumps fused in the previous process. Since it can be attached and unnecessary diffusion of solder to the metal layer can be prevented, deterioration of connection reliability can be suppressed. Further, as a method of manufacturing the solder layer, a vapor deposition method or the like may be used in addition to the method shown here.
第8図(5),(7)および(10)、あるいは第10図(9),(11)
および(14)に示したように、溶融回数は最低3回必要で
ある。第11図に、はんだの溶融回数と溶食発生率(溶融
により、はんだが金属層に拡散・貫通して、上下のはん
だが一体化する率)を示す。これから、Cu層のみの構造
に比較して、WあるいはTi層をCu層の中間に挿入した構
造の方が、溶食の発生がなく優れることがわかる。Figure 8 (5), (7) and (10) or Figure 10 (9), (11)
As shown in (14) and (14), the number of melting times must be at least 3 times. FIG. 11 shows the number of times the solder is melted and the rate of occurrence of corrosion (the rate at which the solder diffuses and penetrates the metal layer due to melting and the upper and lower solders are integrated). From this, it can be seen that the structure in which the W or Ti layer is inserted in the middle of the Cu layer is superior to the structure having only the Cu layer without the occurrence of corrosion.
第12図に積み重ねたはんだバンプの段数とはんだバンプ
部に生ずる剪断歪との関係の解析を示す。はんだバンプ
の段数を増すことにより、剪断歪を低減させることがで
き、前述の関係式から接続信頼性が向上することがわか
る。したがつて、チツプ寸法が増大しても、これに対応
してはんだバンプの段数を増すことにより、剪断歪を許
容しうる値以下に抑えることができるため、はんだバン
プを配置できる領域の制限を緩和し、チツプの任意の位
置にはんだバンプを配置できる。Figure 12 shows an analysis of the relationship between the number of stacked solder bumps and the shear strain generated at the solder bumps. By increasing the number of steps of the solder bumps, it is possible to reduce the shear strain, and it is understood from the above relational expression that the connection reliability is improved. Therefore, even if the chip size increases, by increasing the number of steps of the solder bumps correspondingly, the shear strain can be suppressed to an allowable value or less, so that the area where the solder bumps can be placed is limited. You can relax and place solder bumps anywhere on the chip.
次にこのように、本発明構造で剪断歪を低減することが
できる理由を説明する。Next, the reason why the shear strain can be reduced by the structure of the present invention will be described.
前述のように、一般にはんだバンプ部の剪断歪は、その
高さの増大に伴つて減少する。多層金属層のみの構造で
は、表1に示すように、剪断歪に直接関与するはんだバ
ンプと金属層Cu−Ti−Cuとの熱膨張係数、ヤング率およ
びポアソン比(剛性率に関与する)に差があつても、隣
接しているはんだバンプ同志を中継基板などで連結して
おらず、各列のはんだバンプ各列毎に自由に変形できる
ので、はんだバンプを多段にして接続部の高さを増すこ
とによる剪断歪の低減効果を損なうことは殆どない。As described above, the shear strain of the solder bump portion generally decreases as the height thereof increases. In the structure having only the multilayer metal layer, as shown in Table 1, the coefficient of thermal expansion, the Young's modulus and the Poisson's ratio (related to the rigidity) of the solder bump and the metal layer Cu-Ti-Cu directly related to the shear strain are Even if there is a difference, the adjacent solder bumps are not connected by a relay board, etc., and the solder bumps of each row can be freely deformed, so the solder bumps can be multi-tiered and the height of the connection part can be increased. There is almost no loss of the effect of reducing shear strain due to the increase of
また、中継基板を持つ構造では、金属層Cu−Ti−Cuに薄
いポリイミドフイルムを付加しており、中継基板の熱膨
張係数がチツプおよび配線板よりも大きくても、これら
のヤング率が小さく、すなわち柔らかく、はんだバンプ
との材料定数の差が少ないので、はんだバンプを多段に
して接続部の高さを増すことにより剪断歪を低減するこ
とができる。実際には、剪断歪は熱膨張係数だけでな
く、材料の硬さなどを示すヤング率およびポアソン比
(剛性率に関与する)などにも深く関係している。すな
わち、先行技術に示されているように、チツプと配線板
との中間の熱膨張係数を持つ中継基板を用いても、この
ヤング率が大きく硬いため、剪断歪を低減することがで
きない。しかし、本発明で示した仲介層のみの構造、あ
るいはこれを支持する薄いポリイミドフイルムを付加し
た中継基板構造のように、仲介層や中継基板の熱膨張係
数がチツプおよび配線板よりも大きくても、各列のはん
だバンプが独立に変形できたり、中継基板のヤング率が
小さく柔らかいため、はんだバンプを多段にして接続部
の高さを増すことにより剪断歪を大幅に低減させること
ができる。Further, in the structure having the relay substrate, a thin polyimide film is added to the metal layer Cu-Ti-Cu, and even if the thermal expansion coefficient of the relay substrate is larger than that of the chip and the wiring board, these Young's moduli are small, That is, since it is soft and has a small difference in material constant from the solder bumps, it is possible to reduce shear strain by increasing the height of the connection portion by arranging the solder bumps in multiple stages. Actually, the shear strain is deeply related to not only the coefficient of thermal expansion but also the Young's modulus and the Poisson's ratio (involved in the rigidity) indicating the hardness of the material. That is, as shown in the prior art, even if a relay substrate having an intermediate thermal expansion coefficient between the chip and the wiring board is used, the Young's modulus is large and hard, so that the shear strain cannot be reduced. However, even if the thermal expansion coefficient of the intermediate layer or the intermediate substrate is larger than that of the chip and the wiring board, as in the structure of only the intermediate layer shown in the present invention or the intermediate substrate structure in which a thin polyimide film supporting the intermediate layer is added, Since the solder bumps in each row can be independently deformed and the Young's modulus of the relay board is small and soft, it is possible to significantly reduce the shear strain by increasing the height of the connection portion by arranging the solder bumps in multiple stages.
また、第13図に示すように、チツプの大形化に伴い増大
する、配線板のそり・うねりにもとづくチツプと配線板
間のギヤツプ偏差の吸収性については、1段構造あるい
は柔軟性がない中継基板を用いた2段構造の従来の構造
では、はんだバンプ1段分しか吸収できないが、本発明
の構造では、仲介層のみの構造あるいは、中継基板があ
つても柔軟性のある薄いポリイミドフイルムを用いてい
るため、ほぼはんだバンプの段数分に相当する吸収が可
能である。 Further, as shown in FIG. 13, there is no one-step structure or flexibility in absorbing the gap deviation between the chip and the wiring board due to the warp / waviness of the wiring board, which increases with the size of the chip. In the conventional two-stage structure using the relay substrate, only one solder bump can be absorbed, but in the structure of the present invention, a structure having only the intermediate layer or a thin polyimide film having flexibility even when the relay substrate is present. Therefore, it is possible to absorb almost the same number of steps as the solder bumps.
表2にチツプと配線板との中間の熱膨張係数を持つSiC
などのセラミツクを基材とする中継基板を用いて、はん
だバンプを2段積み重ねる従来の構造と、本発明の構造
との解析による電気的特性および接続長の比較を示す。
本発明の第2の実施例の構造では、接続部の長さが短く
かつ静電容量が小さいため、接続部分のキヤパシタンス
およびインダクタンスは従来構造に比べて非常に小さく
することができ、信号伝搬遅延時間が短く、かつ端子間
漏話量の少ない、すなわち高周波における電気的特性の
優れた端子接続が可能である。Table 2 shows SiC with a coefficient of thermal expansion intermediate between that of the chip and the wiring board.
A comparison of electrical characteristics and connection lengths by analysis between a conventional structure in which solder bumps are stacked in two stages and a structure of the present invention by using a relay substrate having a ceramic as a base material is shown.
In the structure of the second embodiment of the present invention, since the length of the connecting portion is short and the capacitance is small, the capacitance and inductance of the connecting portion can be made very small as compared with the conventional structure, and the signal propagation delay can be reduced. It is possible to connect terminals with a short time and a small amount of crosstalk between terminals, that is, with excellent electrical characteristics at high frequencies.
また、第13図に示すように、本発明の第二の実施例で
は、仲介層のみの構造あるいは柔軟性のある薄いポリイ
ミドフイルムを中継支持基板として用いているため、個
々のはんだバンプの変形が自在であり、チツプの大形化
に伴い増大する、配線板のそり・うねりにもとづくチツ
プと配線板間のギヤツプ偏差の吸収を十分にできる。 Further, as shown in FIG. 13, in the second embodiment of the present invention, since the structure of only the intermediate layer or the flexible thin polyimide film is used as the relay support substrate, the individual solder bumps are not deformed. It is flexible and can sufficiently absorb the deviation of the gear gap between the chip and the wiring board due to the warp / waviness of the wiring board, which increases with the size of the chip.
第14図(a),(b)は、本発明第二の実施例の多段はんだバ
ンプを用い、ヒートシンクを有する構造の集積回路パッ
ケージの一例の断面図を示したものである。第14図にお
いて、(a)はシングルチップ,(b)はマルチチップの場合
をそれぞれ示す。また、aはチップ、bは電極、cは配
線板、dは端子部、eははんだバンプ、l−m−l′は
多層金属層、nはポリイミド樹脂フィルム、tはヒート
シンクの放熱フィン、uは低融点はんだによる固着部
分、vは端子ピンを示している。チップの端子として柔
軟な多段のはんだバンプを用いているので、チップ裏面
をヒートシンクに熱伝導性の良い低融点はんだ等で固着
することができる。その結果、チップから発生した大部
分の熱は、固体中の伝導によって放熱フィンに伝えら
れ、チップから放熱フィンに至るまでの伝熱経路の熱抵
抗が小さい冷却性能に優れた集積回路パッケージを実現
できる。14 (a) and 14 (b) are cross-sectional views of an example of an integrated circuit package having a heat sink using the multi-stage solder bump of the second embodiment of the present invention. In FIG. 14, (a) shows a single chip case, and (b) shows a multi-chip case. Further, a is a chip, b is an electrode, c is a wiring board, d is a terminal portion, e is a solder bump, l-m-l 'is a multi-layer metal layer, n is a polyimide resin film, t is a heat sink fin, and u is a heat sink. Indicates a fixed portion by low melting point solder, and v indicates a terminal pin. Since flexible multi-stage solder bumps are used as the terminals of the chip, the back surface of the chip can be fixed to the heat sink with a low melting point solder or the like having good thermal conductivity. As a result, most of the heat generated from the chip is transferred to the radiating fins by conduction in the solid, and the thermal resistance of the heat transfer path from the chip to the radiating fins is small, realizing an integrated circuit package with excellent cooling performance. it can.
尚、第15図(a),(b)に示すように、前述の集積回路パッ
ケージにおいて放熱フィンを、冷媒が流れる管路を少な
くとも一個以上有するコールドプレートに変えた構造の
集積回路パッケージも実現可能である。また、中継支持
基板の柔軟なポリイミド樹脂フィルムを除去した構造の
多段はんだバンプも用いることができる。さらに、ヒー
トシンクへのチップの固着は、熱伝導の良い接着材等で
も可能である。As shown in FIGS. 15 (a) and 15 (b), it is possible to realize an integrated circuit package having a structure in which the radiation fins in the above-mentioned integrated circuit package are replaced with cold plates having at least one conduit through which a coolant flows. Is. A multi-stage solder bump having a structure in which the flexible polyimide resin film of the relay support substrate is removed can also be used. Further, the chip can be fixed to the heat sink by using an adhesive material having good thermal conductivity.
発明の効果 以上述べたように、本発明によれば、大形チツプの多端
子接続において、はんだバンプを配置できる領域の制限
の緩和、はんだバンプ部の剪断歪の低減、および配線板
のそり・うねりにもとづくチツプと配線板間のギヤツプ
偏差の吸収が可能となる。したがつて、ここに示した実
施例ばかりでなく、チツプに比べて寸法の大きな配線板
同志の接続にも、本発明の接続端子を適用することもで
きる。EFFECTS OF THE INVENTION As described above, according to the present invention, in multi-terminal connection of a large chip, relaxation of the region where solder bumps can be arranged, reduction of shear strain of solder bumps, and warpage of wiring board It is possible to absorb the gap deviation between the chip and the wiring board due to the undulation. Therefore, the connection terminal of the present invention can be applied not only to the embodiment shown here, but also to the connection of wiring boards having a size larger than that of the chip.
また、本発明により高放熱特性を有する集積回路パッケ
ージが実現できる。Further, the present invention can realize an integrated circuit package having high heat dissipation characteristics.
第1図は従来のはんだバンプ接続法(フリツプチツプボ
ンデイング法)の第一の例の断面図、 第2図は第1図に示したような従来のはんだバンプ接続
法における、チツプ寸法と接続寿命との関係、 第3図はチツプ寸法とギヤツプ偏差との関係、 第4図は寸法の大きなチツプにおいてチツプ・配線板の
そり・うねりなどによつて、はんだバンプが短絡するこ
とを示す図、 第5図は第二の従来例であり、中継基板を持つ構造の接
続端子の断面図、 第6図は第5図に示した従来構造を用いた場合、はんだ
溶融により、上部のはんだが下部に移動する問題を示す
図、 第7図は本発明の第一の実施例であり、セラミツクを中
継支持基板とし、上下のはんだバンプを拡散防止層を間
に挾んだ金属層を用いる接続端子の断面図、 第8図は第7図に示した本発明の第一実施例の製造工程
例、 第9図は本発明の第二の実施例であり、ポリイミド樹脂
フイルムを中継支持基板とした接続端子の断面図、 第10図は第9図に示した本発明の第二実施例の製造工程
例、 第11図は拡散防止層挿入による溶食発生率の低減効果を
示す図、 第12図は本発明により、はんだバンプを多段化して、剪
断歪が低減できることをしめす図、 第13図は本発明の第二の実施例構造を用いた場合に、配
線板の表面のそり・うねりが多段のはんだバンプにより
吸収されていることを示す断面図。 第14図(a)は、本発明の第二の実施例を用いた、放熱フ
ィンを有するシングルチップ用集積回路パッケージ、第
14図(b)は、マルチチップ用集積回路パッケージの一例
の断面図、 第15図(a),(b)は、第14図における放熱フィンを冷媒が
流れる管路を少なくとも1つ以上有するコールドプレー
トに変えた構造のシングルチップおよびマルチチップ用
の集積回路パッケージの断面図。 aはチツプ bは電極 cは配線板 dは端子部(電極) eははんだバンプ l−m−l′は多層金属層 lおよびl′ははんだに濡れ性のあるCuなどの金属層 mははんだの拡散防止をするW,Tiなどの金属層 nははんだに濡れ性がなく電気的に導電性のない、セラ
ミツクあるいは柔軟なポリイミド樹脂フイルムからなる
中継支持基板 tは放熱フィンもしくは冷媒の管路を少なくとも1つ以
上有するコールドプレート uは低融点はんだもしくは熱伝導率の高い接着材FIG. 1 is a sectional view of a first example of a conventional solder bump connection method (flip chip bonding), and FIG. 2 is a chip size and connection in the conventional solder bump connection method as shown in FIG. Relationship with life, FIG. 3 is a relationship between chip size and gear deviation, and FIG. 4 is a diagram showing that a solder bump is short-circuited by a chip, a warp or undulation of a wiring board in a chip with a large size. FIG. 5 is a second conventional example, which is a cross-sectional view of a connection terminal having a structure having a relay substrate, and FIG. 6 shows a case where the conventional structure shown in FIG. FIG. 7 is a diagram showing a problem of moving to a substrate, and FIG. 7 is a first embodiment of the present invention, in which a ceramic is used as a relay support substrate and upper and lower solder bumps are formed of a metal layer with a diffusion prevention layer sandwiched therebetween. A cross-sectional view of FIG. 8 is shown in FIG. Manufacturing process example of the first embodiment of the present invention, FIG. 9 is a second embodiment of the present invention, a sectional view of a connection terminal using a polyimide resin film as a relay support substrate, FIG. 10 is shown in FIG. Manufacturing process example of the second embodiment of the present invention shown, FIG. 11 is a diagram showing the effect of reducing the corrosion occurrence rate by the diffusion prevention layer insertion, FIG. 12 is a multi-stage solder bump according to the present invention, shearing FIG. 13 shows that the strain can be reduced, and FIG. 13 is a cross-sectional view showing that the warp / waviness of the surface of the wiring board is absorbed by the multi-step solder bumps when the structure of the second embodiment of the present invention is used. . FIG. 14 (a) is a single-chip integrated circuit package having a radiation fin, which shows the second embodiment of the present invention.
FIG. 14 (b) is a cross-sectional view of an example of an integrated circuit package for a multi-chip, and FIGS. 15 (a) and 15 (b) are cold pipes having at least one conduit through which a coolant flows through the heat radiation fins. Sectional drawing of the integrated circuit package for single chips and multichips of the structure changed into the plate. a is a chip b is an electrode c is a wiring board d is a terminal portion (electrode) e is a solder bump l-m-l 'is a multi-layer metal layer l and l'is a metal layer such as Cu having wettability to solder m is a solder A metal support layer such as W or Ti that prevents the diffusion of n is a relay support substrate t made of ceramic or a flexible polyimide resin film that has no wettability to solder and is not electrically conductive. Cold plate u having at least one or more u is a low melting point solder or an adhesive having high thermal conductivity
Claims (8)
だに対しぬれ性を有する金属からなる第1の電極と、該
第1の電極に対向して配置された第2の基板表面上の第
2の電極相互を、はんだバンプにより接続せしめて電流
経路を形成する基板間接続端子において、 はんだに対し、ぬれ性を有する金属薄層間に、はんだに
対しぬれ性がなく、かつはんだと合金化することのない
金属から成る中間層をはさんだはんだバンプ仲介部と、
上記はんだバンプ仲介部の両側に対向して配置された第
1及び第2のはんだバンプと、から成り、 上記第1のはんだバンプの、上記仲介部と反対側の端部
を上記第1の電極に連接せしめ、上記第2のはんだバン
プの上記仲介部と反対側の端部を上記第2の電極に連接
せしめてなることを特徴とする基板間接続端子。1. A first electrode formed on the surface of a first substrate, the surface of which is made of a metal having wettability to solder, and a surface of a second substrate which is arranged so as to face the first electrode. In a board-to-board connecting terminal that forms a current path by connecting the upper second electrodes to each other with solder bumps, there is no wettability to solder between thin metal layers having wettability to solder, and solder A solder bump intermediary portion sandwiching an intermediate layer made of a metal that does not alloy with
A first and a second solder bump which are arranged on both sides of the solder bump intermediary portion so as to face each other, and an end portion of the first solder bump opposite to the intermediary portion is provided with the first electrode. And an end portion of the second solder bump opposite to the intermediary portion is connected to the second electrode.
はんだバンプの融点が異なることを特徴とする前記特許
請求の範囲第1項記載の基板間接続端子。2. The inter-board connection terminal according to claim 1, wherein in the inter-board terminal, the melting points of the first and second solder bumps are different.
だに対しぬれ性を有する金属からなる第1の電極と、該
第1の電極に対向して配置された第2の基板表面上の第
2の電極相互を、はんだバンプにより接続せしめて電流
経路を形成する基板間接続端子において、 はんだに対し、ぬれ性を有する金属薄層間に、はんだに
対しぬれ性が無く、かつ、はんだと合金化することのな
い金属からなる中間層をはさんだはんだバンプ仲介部
が、該仲介部の主面と垂直方向に所定の間隔をおいて多
段に積層され、 上記はんだバンプ仲介部相互間、及び最下層のはんだバ
ンプ仲介部と上記第1の電極間及び最上層のはんだバン
プ仲介部と上記第2の電極間に同一若しくは異なる融点
のはんだバンプが挿入されていることを特徴とする基板
間接続端子。3. A first electrode formed on the surface of the first substrate, the first electrode being made of a metal having wettability to solder, and a second substrate surface arranged so as to face the first electrode. In the inter-board connecting terminal in which the upper second electrodes are connected by solder bumps to form a current path, there is no wettability to solder between thin metal layers having wettability to solder, and Solder bump intermediary portions sandwiching an intermediate layer made of a metal that is not alloyed with solder are stacked in multiple stages at predetermined intervals in a direction perpendicular to the main surface of the intermediary portion, and between the solder bump intermediary portions described above. And a solder bump having the same or different melting point is inserted between the solder bump intermediary portion of the lowermost layer and the first electrode and between the solder bump intermediary portion of the uppermost layer and the second electrode. Connection terminal.
プ仲介部の主面と平行な面内において、所定の間隔をへ
だてて、離散配置された複数のはんだバンプ仲介部群よ
り成ることを特徴とする特許請求の範囲第1項,第2
項,第3項の何れかに記載の基板間接続端子。4. The solder bump intermediary portion comprises a plurality of solder bump intermediary portion groups which are discretely arranged at predetermined intervals in a plane parallel to the main surface of the solder bump intermediary portion. Claims 1 and 2
The board-to-board connection terminal according to any one of items 1 and 2.
有する支持基板に貫通孔を形成する工程と、 前記貫通孔に、はんだに対しぬれ性を有する第1の金属
を選択的に充てんせしめて第1の金属層を形成する工程
と、 上記第1の金属層の上に、はんだに対しぬれ性が無く、
かつ、はんだと合金化することのない第2の金属からな
る第2の金属層を形成する工程と、 上記第2の金属層の上に、前記第1の金属からなる第3
の金属層を形成する工程と、 上記第1,第2,第3の金属層からなる構成にてはんだ
バンプ仲介部となし、該はんだバンプ仲介部直上に所定
の貫通孔を有するマスクを介して微小はんだ球を配置し
たる後に加熱溶融し、その後冷却し、はんだバンプ仲介
部上面に固着したはんだバンプを形成する工程と、 上記はんだバンプ仲介部直下に、所定の貫通孔を有する
マスクを介して微小はんだ球を配置後、加熱溶融し、そ
の後冷却し、はんだバンプ仲介部の上面及び下面にはん
だバンプが固着した単層基本構造体を形成せしめる工程
と、 上記単層基本構造体,又は該単層基本構造体を複数層積
層したる後はんだバンプを加熱溶融せしめその後固着せ
しめた複層構造体を、第1の電極を有する第1の基板及
び第2の電極を有する第2の基板間に挿入し、はんだバ
ンプを加熱溶融後、冷却せしめて上記第1及び第2の電
極間を連接せしめる工程と、 から成ることを特徴とする基板間接続端子の製造法。5. A step of forming a through-hole in a supporting substrate which is not wettable by solder and has an insulating property, and the through-hole is selectively filled with a first metal having wettability by solder. At least forming a first metal layer, and having no wettability to solder on the first metal layer,
And a step of forming a second metal layer made of a second metal that does not alloy with solder, and a third metal layer made of the first metal on the second metal layer.
And a step of forming a metal layer of the above-described first, second, and third metal layers to form a solder bump intermediary portion, and a solder bump intermediary portion is provided directly above the mask having a through hole. After arranging the minute solder balls, heating and melting, then cooling, to form a solder bump fixed to the upper surface of the solder bump intermediary portion, and directly below the solder bump intermediary portion, through a mask having a predetermined through hole After arranging the fine solder balls, heating and melting, and then cooling to form a single-layer basic structure having solder bumps fixed on the upper and lower surfaces of the solder bump intermediary portion, and the single-layer basic structure or the single-layer basic structure. A multilayer structure in which a plurality of layers of the basic structure are laminated and then the solder bumps are heated and melted and then fixed is provided between the first substrate having the first electrode and the second substrate having the second electrode. Insert After heating and melting the solder bumps, the preparation of inter-board connection terminals, characterized in that it consists of the steps of allowed to connecting between the by allowed to cool first and second electrodes.
に、はんだとぬれ性を有する第1の金属からなる第1金
属層と、はんだとぬれ性が無く、かつはんだと合金化し
ない第2の金属からなる第2金属層と、 第1の金属からなる第3金属層と第2の金属からなる第
4金属層を順に積層し、第2の主面上に第1の金属から
なる第5金属層を形成する工程と、 第4金属層の上にレジストを塗布し、パターン形成後マ
スクとし、該マスクにより第2,第3,第4金属層をエ
ツチングする工程と、 第2の主表面に配した第5金属層にレジストを塗布して
パターン形成後マスクを形成し、上記第2,第3,第4
金属層の残存部分の裏面に、残存部分よりも小面積の開
口部を第5金属層に形成する工程と、 上記第5金属層開口部から支持基板をエツチングし、第
1金属層に至る貫通孔を形成する工程と、 上記第5金属層開口部よりわずかに大きい面積のレジス
ト残存パターンを形成する工程と、 上記レジストパターンをマスクとして第5金属層をエツ
チングする工程と、 前記第4金属層をマスクとして第1金属層をエツチング
する工程と、 第4金属層をエツチング除去する工程と、 レジストを除去する工程と、 第1主表面に存する第1,第2,第3金属層残存部分の
直上にマスクを介して微小はんだ球を配置せしめ、加熱
溶融後冷却固着せしめて、はんだパンプが固着した単層
基本構造体を形成せしめる工程と、 上記単層基本構造体,又は該単層基本構造体を複数層積
層したる後はんだバンプを加熱溶融せしめその後固着せ
しめた複層構造体を、第1の電極を有する第1の基板及
び第2の電極を有する第2の基板間に挿入すると共に上
記単層又は複層構造体の下面に微小はんだ球を配置した
後加熱溶融後冷却せしめて、上記第1及び第2の電極間
を連接せしめる工程と、 から成ることを特徴とする基板間接続端子の製造法。6. A first metal layer made of a first metal having a wettability with solder on a first main surface of a supporting substrate having an insulating property, and an alloy having no wettability with solder and being alloyed with solder. The second metal layer made of the second metal, the third metal layer made of the first metal, and the fourth metal layer made of the second metal are sequentially stacked, and the first metal is placed on the second main surface. A step of forming a fifth metal layer consisting of, a step of applying a resist on the fourth metal layer to form a mask after pattern formation, and etching the second, third, and fourth metal layers with the mask, The resist is applied to the fifth metal layer provided on the second main surface to form a mask after patterning, and the second, third, fourth
A step of forming an opening having a smaller area than that of the remaining portion in the fifth metal layer on the back surface of the remaining portion of the metal layer, and etching the support substrate from the opening of the fifth metal layer to reach the first metal layer. Forming a hole, forming a resist residual pattern having an area slightly larger than the opening of the fifth metal layer, etching the fifth metal layer using the resist pattern as a mask, and the fourth metal layer With the mask as a mask, etching the first metal layer, removing the fourth metal layer, removing the resist, and removing the remaining portions of the first, second, and third metal layers on the first main surface. A step of arranging a minute solder sphere directly above a mask, heating and melting, and then cooling and fixing to form a single-layer basic structure with the solder pump fixed, and the single-layer basic structure or the single-layer basic structure. After laminating a plurality of layers of the structure, the solder bumps are melted by heating and then fixed, and the multilayer structure is inserted between the first substrate having the first electrode and the second substrate having the second electrode. And a step of disposing fine solder balls on the lower surface of the single-layer or multi-layer structure, heating and melting, and then cooling to connect the first and second electrodes to each other. Method for manufacturing inter-connection terminals.
イミドフイルム又は可撓性絶縁板である前記特許請求の
範囲第5項,第6項の何れか1項に記載の基板間接続端
子の製造法。7. The method for manufacturing an inter-board connection terminal according to claim 5, wherein the support substrate is a ceramic thin plate, a polyimide film, or a flexible insulating plate. .
る第1金属層と、はんだとぬれ性が無く、かつはんだと
合金化することのない第2の金属からなる第2金属層
と、上記第1の金属からなる第3金属層が順に積層され
て3層構造体を準備する工程と、 前記3層構造体をポリイミド支持基板に離散配置する工
程と、 前記支持基板の両面を研磨し、上記第1及び第3の金属
層を露出する工程と、 上記第1,第2,第3の金属層をもってはんだバンプ仲
介部となし、上記はんだバンプ仲介部直上に所定の貫通
孔を有するマスクを介して微小はんだ球を配置したる後
に加熱溶融しその後冷却し、はんだバンプ仲介部上面に
はんだバンプを形成する工程と、 上記はんだバンプ仲介部直下に、所定の貫通孔を有する
マスクを介して微小はんだ球を配置後加熱溶融し、その
後冷却し、はんだバンプが固着した単層基本構造体を形
成せしめる工程と、 上記単層基本構造体,又は該単層基本構造体を複数層積
層したる後はんだバンプを加熱溶融せしめ、その後冷却
し固着せしめた複数構造体を、第1の電極を有する第1
の基板及び第2の電極を有する第2の基板間に挿入し、
はんだバンプを加熱溶融後冷却せしめて上記第1及び第
2の電極間を連接せしめる工程と、 前記構造物をヒドラジン水溶液に浸透させることにより
ポリイミドフイルムを溶解除去し、はんだバンプ及びは
んだバンプ仲介部のみから成る積層構造を残存せしめる
工程と、 を具備することを特徴とする基板間接続端子の製造法。8. A first metal layer made of a first metal having wettability with solder, and a second metal layer made of a second metal having no wettability with solder and not alloying with solder. A step of preparing a three-layer structure by sequentially stacking a third metal layer made of the first metal, a step of discretely arranging the three-layer structure on a polyimide support substrate, and polishing both surfaces of the support substrate. The step of exposing the first and third metal layers, the first, second, and third metal layers are used as a solder bump intermediary portion, and a predetermined through hole is provided directly above the solder bump intermediary portion. After arranging the minute solder balls through the mask, heating and melting, and then cooling, forming a solder bump on the upper surface of the solder bump intermediary portion, and immediately below the solder bump intermediary portion, through a mask having a predetermined through hole And place a small solder ball A step of heating and melting after placing, and then cooling to form a single-layer basic structure to which the solder bumps are fixed, and the above-mentioned single-layer basic structure, or a solder bump after laminating a plurality of layers of the single-layer basic structure. A plurality of structures, which are heated and melted, and then cooled and fixed, are attached to a first electrode having a first electrode.
The second substrate having the second electrode and the second electrode,
A step of connecting the first and second electrodes by heating and melting the solder bumps to cool the solder bumps, and dissolving and removing the polyimide film by permeating the structure into an aqueous hydrazine solution, and only the solder bumps and solder bump intermediary parts And a step of allowing the laminated structure consisting of to remain, and a method for manufacturing an inter-board connecting terminal.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60156621A JPH0644583B2 (en) | 1985-07-16 | 1985-07-16 | Board-to-board connection terminal and manufacturing method thereof |
PCT/JP1986/000364 WO1987000686A1 (en) | 1985-07-16 | 1986-07-16 | Connection terminals between substrates and method of producing the same |
DE8686904381T DE3685647T2 (en) | 1985-07-16 | 1986-07-16 | CONNECTING CONTACTS BETWEEN SUBSTRATES AND METHOD FOR PRODUCING THE SAME. |
US07/023,552 US4783722A (en) | 1985-07-16 | 1986-07-16 | Interboard connection terminal and method of manufacturing the same |
EP86904381A EP0229850B1 (en) | 1985-07-16 | 1986-07-16 | Connection terminals between substrates and method of producing the same |
US07/173,745 US4897918A (en) | 1985-07-16 | 1988-03-25 | Method of manufacturing an interboard connection terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60156621A JPH0644583B2 (en) | 1985-07-16 | 1985-07-16 | Board-to-board connection terminal and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6218049A JPS6218049A (en) | 1987-01-27 |
JPH0644583B2 true JPH0644583B2 (en) | 1994-06-08 |
Family
ID=15631714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60156621A Expired - Lifetime JPH0644583B2 (en) | 1985-07-16 | 1985-07-16 | Board-to-board connection terminal and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0644583B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0817860A (en) * | 1994-06-30 | 1996-01-19 | Oki Electric Ind Co Ltd | Manufacture of electronic part |
JP3681542B2 (en) | 1998-07-01 | 2005-08-10 | 富士通株式会社 | Printed circuit boards and relay boards for multistage bumps |
-
1985
- 1985-07-16 JP JP60156621A patent/JPH0644583B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6218049A (en) | 1987-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4897918A (en) | Method of manufacturing an interboard connection terminal | |
US6858941B2 (en) | Multi-chip stack and method of fabrication utilizing self-aligning electrical contact array | |
EP0863548B1 (en) | Mounting assembly of integrated circuit device and method for production thereof | |
US7911805B2 (en) | Multilayer wiring element having pin interface | |
US6136047A (en) | Solder bump transfer plate | |
EP1372193B1 (en) | Method of manufacturing a semiconductor device having a stacked configuration | |
EP0997942A2 (en) | Chip Size Semiconductor Package and process for producing it | |
TW200302529A (en) | Flip chip type semiconductor device and method of manufacturing the same | |
CN106206488A (en) | Heat radiation gain type face-to-face semiconductor assembly with built-in heat radiation seat and manufacturing method thereof | |
JPS5839048A (en) | Flexible region adhesive tape | |
US7183493B2 (en) | Electronic assembly having multi-material interconnects | |
JP3285919B2 (en) | Semiconductor device | |
JPH10135613A (en) | Wiring board | |
JP3015436B2 (en) | Semiconductor device and connection method thereof | |
JPH06291165A (en) | Flip chip connecting construction | |
JP2001298046A (en) | Semiconductor device and its manufacturing method, circuit board, and electronic equipment | |
JP3243684B2 (en) | Device mounting structure | |
JPH0644583B2 (en) | Board-to-board connection terminal and manufacturing method thereof | |
JPH09232376A (en) | Surface mount structure using protruding electrodes and intermediate substrate | |
JPH10256428A (en) | Semiconductor package | |
JP2847949B2 (en) | Semiconductor device | |
JP2004071698A (en) | Semiconductor package | |
JP2915186B2 (en) | Semiconductor device mounting structure and mounting method | |
JP3024513B2 (en) | Mounting substrate, mounting method of electronic circuit component, and electronic circuit device | |
JP2007317715A (en) | Interposer substrate and its manufacturing method, and electronic device package using the same |