[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0643821B2 - Fuel supply device for internal combustion engine - Google Patents

Fuel supply device for internal combustion engine

Info

Publication number
JPH0643821B2
JPH0643821B2 JP62172963A JP17296387A JPH0643821B2 JP H0643821 B2 JPH0643821 B2 JP H0643821B2 JP 62172963 A JP62172963 A JP 62172963A JP 17296387 A JP17296387 A JP 17296387A JP H0643821 B2 JPH0643821 B2 JP H0643821B2
Authority
JP
Japan
Prior art keywords
engine
fuel supply
blunting
load
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62172963A
Other languages
Japanese (ja)
Other versions
JPS6419137A (en
Inventor
伸平 中庭
昭彦 荒木
行男 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd, Unisia Jecs Corp filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP62172963A priority Critical patent/JPH0643821B2/en
Priority to GB8816552A priority patent/GB2208250B/en
Priority to US07/217,861 priority patent/US4951635A/en
Priority to DE3823608A priority patent/DE3823608C2/en
Publication of JPS6419137A publication Critical patent/JPS6419137A/en
Publication of JPH0643821B2 publication Critical patent/JPH0643821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の燃料供給装置に関し、特に加速性能
の改善に関する。
TECHNICAL FIELD The present invention relates to a fuel supply device for an internal combustion engine, and more particularly to improvement of acceleration performance.

〈従来の技術〉 内燃機関の燃料供給装置の従来例として以下のようなも
のがある(実開昭61−183440号公報参照)。
<Prior Art> The following is a conventional example of a fuel supply device for an internal combustion engine (see Japanese Utility Model Laid-Open No. 61-183440).

すなわち、エアフローメータにより検出された吸入空気
流量Qと機関回転速度Nとから基本噴射量T=K×Q
/N(Kは定数)を演算すると共に、主として水温に応
じた各種補正係数COEFと空燃比フィードバック補正
係数αとバッテリ電圧による補正係数Tとを演算した
後、燃料噴射量T=T×COEF×α+Tを演算
する。
That is, the basic injection amount T P = K × Q is calculated from the intake air flow rate Q detected by the air flow meter and the engine rotation speed N.
/ N (K is a constant) and various correction factors COEF mainly according to the water temperature, the air-fuel ratio feedback correction factor α, and the correction factor T S due to the battery voltage are calculated, and then the fuel injection amount T i = T P Calculate × COEF × α + T S.

そして、機関回転に同期して燃料噴射弁に対し前記燃料
噴射量Tに対応するパルス巾の噴射パルス信号を出力
し機関に燃料を供給する。
Then, in synchronization with the engine rotation, an injection pulse signal having a pulse width corresponding to the fuel injection amount T i is output to the fuel injection valve to supply fuel to the engine.

さらに加速運転時には吸気絞弁開度の変化率を主とする
データから加速増量補正係数或いは加速時増量燃料噴射
量を算出し該増量燃料噴射量を前記燃料噴射量Tに加
算することにより、燃料の加速増量を図り機関出力を増
大させる。
Further, during acceleration operation, an acceleration increase correction coefficient or an acceleration increase fuel injection amount is calculated from data mainly including the rate of change of the intake throttle opening, and the increase fuel injection amount is added to the fuel injection amount T i . The engine output is increased by increasing the fuel acceleration.

尚、加速時増量は通常の噴射パルス信号の間に加速時の
噴射パルスを割り込ませて行う割込み噴射によっても行
われる。
The acceleration increase is also performed by interrupt injection that is performed by interrupting the injection pulse during acceleration during the normal injection pulse signal.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の燃料供給装置において
は、吸気絞弁上流に設けられたエアフローメータの検出
吸入空気量Qに基づいて基本噴射量Tを演算するよう
にしているので、加速運転時に以下の不具合があった。
<Problems to be Solved by the Invention> However, in such a conventional fuel supply device, the basic injection amount T P is calculated based on the detected intake air amount Q of the air flow meter provided upstream of the intake throttle valve. Therefore, there were the following problems during acceleration operation.

すなわち、エアフローメータが吸気絞弁上流に設けられ
ているので、第6図に示すように吸気絞弁が加速中の開
弁動作を終了した後にもエアフローメータは吸気絞弁下
流のコレクタ部に導入される吸気空気流量或いは吸気慣
性分を余計に検出する。このため、エアフローメータの
検出吸入空気流量は第6図に示すように機関に導入され
る吸入空気流量を大巾に上回る。したがって、エアフロ
ーメータの検出吸入空気流量に基づいて基本噴射量T
(燃料噴射量)を演算すると、この演算量は機関の要求
燃料量を大巾に上回り、第6図に示すように空燃比がオ
ーバリッチ化すると共にCO及びHCの排出量が増大し
加速性能及び燃費を悪化させるという不具合がある。ま
た、前回と今回との燃料噴射量演算時の負荷(例えば吸
入空気流量,基本噴射量)を常時一定の重みづけ係数に
て加重平均し、この値に基づいて燃料噴射量を演算する
ものがある。又前記重みづけ係数を加減速時に一定の負
荷をよぎった時にステップ的に変化させるものがある。
That is, since the air flow meter is provided upstream of the intake throttle valve, the air flow meter is introduced into the collector section downstream of the intake throttle valve even after the valve opening operation during acceleration of the intake throttle valve is completed as shown in FIG. The detected intake air flow rate or intake inertia component is additionally detected. Therefore, the detected intake air flow rate of the air flow meter greatly exceeds the intake air flow rate introduced into the engine as shown in FIG. Therefore, the basic injection amount T P is calculated based on the detected intake air flow rate of the air flow meter.
When the (fuel injection amount) is calculated, this calculated amount greatly exceeds the required fuel amount of the engine, and as shown in FIG. 6, the air-fuel ratio becomes overrich and the CO and HC emissions increase, resulting in acceleration performance. Also, there is a problem that fuel efficiency is deteriorated. In addition, the load (for example, intake air flow rate, basic injection amount) at the time of calculating the fuel injection amount of the previous time and this time is always weighted and averaged by a constant weighting coefficient, and the fuel injection amount is calculated based on this value. is there. There is also a method in which the weighting coefficient is changed stepwise when a certain load is crossed during acceleration / deceleration.

しかし、このものでは前記検出吸入空気流量のオーバシ
ュート分を抑制できるが、加速運転初期にも燃料噴射量
が抑制され、この初期にオーバリーンとなり加速性能の
向上を充分に図れない。又、重みづけ係数をステップ的
に変化させるものについては一定の負荷に達する直前迄
の加速等でオーバーシユート分を抑制できず、10モード
等で代表される通常加速でオーバーシュートによりオー
バーリッチ化が防止できなくなる。
However, with this type, although the amount of overshoot of the detected intake air flow rate can be suppressed, the fuel injection amount is suppressed even in the initial stage of acceleration operation, and over lean occurs in this initial stage, and acceleration performance cannot be sufficiently improved. Also, for those that change the weighting coefficient in steps, it is not possible to suppress the overshoot amount by acceleration etc. just before reaching a certain load, and overcharging due to overshoot in normal acceleration represented by 10 modes etc. Cannot be prevented.

本発明は、このような実状に鑑みてなされたもので、空
燃比を最適に維持し加速運転時の排気特性及び加速性能
の向上を図れる内燃機関の燃料供給装置を提供すること
を目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fuel supply device for an internal combustion engine, which can maintain the air-fuel ratio optimally and improve exhaust characteristics and acceleration performance during acceleration operation. .

〈問題点を解決するための手段〉 このため、本発明は第1図に示すように、機関の吸気絞
弁と機関との間の吸気通路に所定の容積室を備えると共
に燃料供給手段Hを燃焼室近傍の吸気ポート部に備え、
機関の吸気絞弁上流の吸入空気流量を検出する吸入空気
流量検出手段Aと、検出された吸入空気流量に基づいて
燃料供給量を設定する燃料供給量設定手段Bと、を備え
る内燃機関の燃料供給装置において、 機関負荷を検出する負荷検出手段Cと、機関の加速状態
を検出する機関加速状態検出手段Dと、機関の加速状態
が検出されたときに、検出された今回の機関負荷と、前
回の機関負荷もしくは鈍し処理された前回の機関負荷と
から、鈍し処理係数に基づいて新たな機関負荷を設定す
る負荷設定手段Eと、加速開始時からの機関負荷が高く
なるに従って徐々に鈍し度合いが大きくなるように前記
検出された機関負荷もしくは鈍し処理された機関負荷に
応じて、前記鈍し処理係数を設定する係数設定手段F
と、前記設定された新たな機関負荷に基づいて前記設定
された燃料供給量を補正する燃料供給量補正手段Gと、
補正された燃料供給量に基づいて燃料供給手段Hを駆動
制御する駆動制御手段Iと、を備えるようにした。
<Means for Solving Problems> Therefore, according to the present invention, as shown in FIG. 1, a predetermined volume chamber is provided in the intake passage between the intake throttle valve of the engine and the engine, and the fuel supply means H is provided. Prepared for the intake port near the combustion chamber,
Fuel for an internal combustion engine including intake air flow rate detection means A for detecting an intake air flow rate upstream of an intake throttle valve of the engine, and fuel supply amount setting means B for setting a fuel supply amount based on the detected intake air flow rate. In the supply device, load detecting means C for detecting an engine load, engine acceleration state detecting means D for detecting an acceleration state of the engine, current engine load detected when the acceleration state of the engine is detected, A load setting means E for setting a new engine load based on the blunting processing coefficient from the previous engine load or the previous engine load subjected to the blunting process, and gradually as the engine load from the start of acceleration increases. Coefficient setting means F for setting the blunting processing coefficient in accordance with the detected engine load or the blunted engine load so that the degree of blunting becomes large.
And a fuel supply amount correcting means G for correcting the set fuel supply amount based on the set new engine load,
Drive control means I for controlling the drive of the fuel supply means H based on the corrected fuel supply amount.

また、加速開始時からの機関回転数が高くなるに従って
徐々に鈍し度合いが小さくなるように、前記機関回転数
に応じて第2の鈍し処理係数を設定し、係数設定手段F
が、前記鈍し処理係数と当該第2の鈍し処理係数とのう
ち小さい方を鈍し処理係数として選択して設定するよう
にしてもよい。
Further, a second blunting processing coefficient is set according to the engine speed so that the degree of blunting gradually decreases as the engine speed increases from the start of acceleration, and the coefficient setting means F is set.
However, the smaller one of the blunting processing coefficient and the second blunting processing coefficient may be selected and set as the blunting processing coefficient.

〈作用〉 かかる構成によれば、係数設定手段Fが、検出された機
関負荷もしくは鈍し処理された機関負荷に応じて、加速
開始時からの機関負荷が高くなるに従って徐々に鈍し度
合が大きくなるような鈍し処理係数を設定する。
<Operation> According to this configuration, the coefficient setting means F gradually increases the degree of blunting as the engine load increases from the start of acceleration in accordance with the detected engine load or the blunted engine load. The blunting processing coefficient is set as follows.

即ち、加速運転初期の低負荷時においては、小さい値の
鈍し処理係数が設定されることとなる。
That is, when the load is low at the beginning of the acceleration operation, a small value of the blunting processing coefficient is set.

そして機関の加速状態が検出されたときには、負荷設定
手段Eが今回の機関負荷と前回の機関負荷から鈍し処理
係数に基づいて新たな機関負荷を設定し、燃料供給量補
正手段Gが前記設定された新たな機関負荷に基づいて燃
料供給量を補正している。
When the acceleration state of the engine is detected, the load setting means E sets a new engine load based on the blunting processing coefficient from the current engine load and the previous engine load, and the fuel supply amount correction means G sets the above-mentioned setting. The fuel supply amount is corrected based on the new engine load.

従って、加速運転初期の低負荷時においては、鈍し処理
係数が小さく、鈍し処理された機関負荷も小さくなるの
で、新たな機関負荷としては、今回の負荷に大きく依存
したものが設定されることとなる。もって、燃料供給量
補正手段Gは今回の負荷に大きく依存した機関負荷に基
づいて燃料供給量を補正することとなり、加速運転をす
べく負荷の増大に合わせて、即ち吸入空気流量が上昇し
ていくのに合わせて、燃料供給量を応答性良く追従させ
て上昇させることが可能となる。
Therefore, at the time of low load in the initial stage of acceleration operation, the blunting treatment coefficient is small and the blunted engine load is also small. Therefore, a new engine load that is largely dependent on the current load is set. It will be. Therefore, the fuel supply amount correcting means G corrects the fuel supply amount based on the engine load that largely depends on the present load, and the intake air flow rate increases in accordance with the increase in the load for accelerating operation. It is possible to follow up the fuel supply amount with good responsiveness and increase the fuel supply amount.

一方、加速運転終了時にあっては、負荷が高く、若干大
きい値の鈍し処理係数が設定されることとなる。
On the other hand, at the end of the acceleration operation, the load is high and a slightly larger value for the blunting coefficient is set.

従って、加速運転終了時の高負荷時には、鈍し処理係数
が若干大きく、鈍し処理された機関負荷も大きくなるの
で、新たな機関負荷としては、前回の負荷に依存したも
のが設定されることとなる。もって、燃料供給量補正手
段Gは前回の負荷に依存した機関負荷に基づいて燃料供
給量を補正することとなり、加速運転が終了して負荷の
増大も終了したことに合わせて、即ち吸入空気流量の上
昇も終了したことに合わせて、燃料供給量の上昇をも抑
えることが可能となり、もって、オーバーシュート量を
抑制することが可能となる。
Therefore, at the time of high load at the end of acceleration operation, the blunting treatment coefficient is slightly large, and the blunted engine load also becomes large.Therefore, a new engine load that depends on the previous load must be set. Becomes Therefore, the fuel supply amount correcting means G corrects the fuel supply amount based on the engine load that depends on the previous load, and in accordance with the end of the acceleration operation and the end of the increase of the load, that is, the intake air flow rate. It is also possible to suppress the increase in the fuel supply amount in accordance with the end of the increase in the fuel injection amount, and thus it is possible to suppress the overshoot amount.

即ち、加速運転終了時におけるオーバーリッチ化が防止
でき、加速運転終了時の負荷によらず常に一定の空燃比
にすることが可能となる。
In other words, it is possible to prevent over-riching at the end of the acceleration operation, and it is possible to always have a constant air-fuel ratio regardless of the load at the end of the acceleration operation.

次に、加速開始時からの機関回転数が高くなるに従って
徐々に鈍し度合いが小さくなるように、前記機関回転数
に応じて第2の鈍し処理係数を設定し、係数設定手段F
が、前記鈍し処理係数と当該第2の鈍し処理係数とのう
ち小さい方を鈍し処理係数として選択して設定するよう
にした場合に係る作用を説明する。
Next, the second blunting processing coefficient is set according to the engine speed so that the degree of blunting gradually decreases as the engine speed increases from the start of acceleration, and the coefficient setting means F is set.
However, the operation of the case where the smaller one of the blunting processing coefficient and the second blunting processing coefficient is selected and set as the blunting processing coefficient will be described.

この場合は、加速運転により機関回転数が上昇した後に
は、第2の鈍し処理係数が機関回転数が高くなるに従っ
て徐々に鈍し度合いが小さくなるように設定されるの
で、該第2の鈍し処理係数が鈍し処理係数として設定さ
れる。
In this case, after the engine speed increases due to the acceleration operation, the second blunting treatment coefficient is set so that the degree of blunting gradually decreases as the engine speed increases. The blunting processing coefficient is set as the blunting processing coefficient.

即ち、オーバーシュート量が更に小さい中〜高速回転域
にあっては、鈍し処理された機関負荷も小さくなるの
で、新たな機関負荷として今回の負荷に大きく依存した
ものが設定される。もって、燃料供給量補正手段Gは今
回の負荷に大きく依存した機関負荷に基づいて燃料供給
量を補正することとなる。ここで、加速運転により機関
回転数が上昇した後であるので吸入空気流量も上昇が終
了しているので、該補正は前述の加速運転による燃料供
給量の補正の影響を殆ど受けることなく行われることと
なり、即ち今回の負荷に対する燃料供給量が設定される
こととなる。
That is, in the medium to high speed rotation range where the amount of overshoot is smaller, the engine load subjected to the blunting process also becomes smaller, so that a new engine load that largely depends on the current load is set. Therefore, the fuel supply amount correction means G corrects the fuel supply amount based on the engine load that largely depends on the current load. Since the intake air flow rate has also finished increasing since the engine speed has increased due to the acceleration operation, the correction is performed with almost no influence of the above-described correction of the fuel supply amount due to the acceleration operation. That is, the fuel supply amount for the current load is set.

従って、加速時のオーバーリッチ化が防止でき、加速運
転終了時の負荷によらず常に空燃比のフラット化が図れ
ることとなる。
Therefore, overriching at the time of acceleration can be prevented, and the air-fuel ratio can always be flattened regardless of the load at the end of the acceleration operation.

〈実施例〉 以下に、本発明の一実施例を第2図〜第5図に基づいて
説明する。
<Embodiment> An embodiment of the present invention will be described below with reference to FIGS.

第2図において、例えばマイクロコンピュータからなる
制御装置1には、回転速度センサ2から出力される回転
速度信号,吸入空気流量検出手段としてのエアフローメ
ータ3から出力される吸入空気流量信号,水温センサ4
から出力される冷却水温度信号が入力されている。
In FIG. 2, the control device 1 including, for example, a microcomputer includes a rotation speed signal output from a rotation speed sensor 2, an intake air flow rate signal output from an air flow meter 3 as an intake air flow rate detecting means, and a water temperature sensor 4.
The cooling water temperature signal output from is input.

制御装置1は第3図及び第4図に示すフローチャートに
従って作動し、燃料供給手段としての燃料噴射弁5に駆
動回路6を介して噴射パルス信号を出力する。また、機
関の吸気絞弁と機関との間の吸気通路に所定の容積室と
してのコレクタ部を備えると共に前記燃料噴射弁5を燃
焼室近傍の吸気ポート部に備えている。
The control device 1 operates according to the flowcharts shown in FIGS. 3 and 4, and outputs an injection pulse signal to the fuel injection valve 5 as a fuel supply means via the drive circuit 6. Further, a collector portion as a predetermined volume chamber is provided in an intake passage between the intake throttle valve of the engine and the engine, and the fuel injection valve 5 is provided in an intake port portion near the combustion chamber.

ここでは、制御装置1が燃料供給量設定手段と負荷検出
手段と負荷設定手段と係数設定手段と燃料供給量補正手
段を構成する。また、制御装置1と駆動回路6とが駆動
制御手段を構成する。
Here, the control device 1 constitutes fuel supply amount setting means, load detecting means, load setting means, coefficient setting means, and fuel supply amount correcting means. Further, the control device 1 and the drive circuit 6 constitute drive control means.

次に作用を第3図のフローチャートに従って説明する。
このルーチンは10msec毎に時間同期で実行される。
Next, the operation will be described with reference to the flowchart of FIG.
This routine is executed in time synchronization every 10 msec.

S1では、各センサによって検出される回転速度N,吸
入空気流量Q,冷却水温度T等の各種検出を読込む。
In S1, the rotational speed N detected by the sensors, the intake air flow rate Q, reads the various detection such as cooling water temperature T W.

S2では、検出された回転速度Nと吸入空気流量Qとに
基づいて基本噴射量T(=K・Q/N;Kは定数)を
演算する。
In S2, the basic injection amount T P (= K · Q / N; K is a constant) is calculated based on the detected rotation speed N and the intake air flow rate Q.

S3では、演算された基本噴射量T(機関負荷)に基
づいてマップから鈍し処理係数としての第1重みづけ係
数Xを検索する。この第1重みづけ係数Xは第4図
に示すように基本噴射量Tが増大するに従って前回の
ルーチンのデータに大きく依存すべく大きくなるように
設定されている。
In S3, the first weighting coefficient X 1 as the blunting processing coefficient is searched from the map based on the calculated basic injection amount T P (engine load). As shown in FIG. 4, the first weighting coefficient X 1 is set to increase as the basic injection amount T P increases so as to largely depend on the data of the previous routine.

S4では、検出された機関回転速度Nに基づいてマップ
から第2重みづけ係数Xを検索する。この第2重みづ
け係数Xは第5図に示すように機関回転速度Nが増大
するに従って今回のルーチンのデータに大きく依存すべ
く小さくなるように設定されている。これは、単位時間
当たりに燃焼室が吸入する吸入空気流量は同一負荷にお
いては高回転になるに従って大きくなる。また、高回転
域ではコレクタ部の吸入する吸入空気流量Qcと、燃焼
室の吸入する吸入空気流量Qeとの比Qc/Qeが小さ
くなり、低回転域では前記比Qc/Qeが大きくなる。
従って、高回転になるほど小さくなるように第2重みづ
け係数X2を設定するのである。即ち、当該第2重みづ
け係数X2は特許請求の範囲第2項に記載の第2の鈍し
処理係数に相当するものである。
In S4, the second weighting coefficient X 2 is searched from the map based on the detected engine speed N. As shown in FIG. 5, the second weighting coefficient X 2 is set so that as the engine speed N increases, the second weighting coefficient X 2 greatly decreases depending on the data of this routine. This is because the flow rate of intake air taken into the combustion chamber per unit time increases as the rotation speed increases at the same load. Further, the ratio Qc / Qe between the intake air flow rate Qc drawn into the collector portion and the intake air flow rate Qe drawn into the combustion chamber becomes small in the high rotation speed range, and the ratio Qc / Qe becomes large in the low rotation speed range.
Therefore, the second weighting coefficient X2 is set so that it becomes smaller as the rotation speed becomes higher. That is, the second weighting coefficient X2 corresponds to the second blunting processing coefficient described in claim 2.

S5では、第1重みづけ係数Xが第2重みづけ係数X
以下か否かを判定し、YESのときにはS6に進みN
OのときにはS7に進む。
In S5, the first weighting factor X 1 is the second weighting factor X 1 .
It is determined whether it is 2 or less, and if YES, the process proceeds to S6
When it is O, the process proceeds to S7.

S6では第1重みづけ係数Xを重みづけ係数Xとして
設定する一方、S7では第2重みづけ係数Xを重みづ
け係数として設定する。したがって、第1及び第2重み
づけ係数X,Xのうち小さな方が重みづけ係数Xと
して選択されるようになっている。
In S6, the first weighting coefficient X 1 is set as the weighting coefficient X, while in S7, the second weighting coefficient X 2 is set as the weighting coefficient. Therefore, the smaller one of the first and second weighting factors X 1 and X 2 is selected as the weighting factor X.

S8では、設定された重みづけ係数Xと今回演算された
基本噴射量TPNに基づいて基本噴射量TPAVEを次の加
重平均式により演算する。
In S8, the basic injection amount T PAVE is calculated by the following weighted average formula based on the set weighting coefficient X and the basic injection amount T PN calculated this time.

PAVE={T′PAVE(2−1)+TPN}/2 T′PAVEは前回のルーチンで加重平均された基本噴射量
である。
T PAVE = {T ′ PAVE (2 X −1) + T PN } / 2 X T ′ PAVE is the weighted average basic injection amount in the previous routine.

S9では、新たに加重平均された基本噴射量TPAVEに基
づいて燃料噴射量Tを次式により演算する。
In S9, the fuel injection amount T i is calculated by the following equation based on the newly weighted average basic injection amount T PAVE .

=TPAVE×α×COEF+T αは空燃比フィードバック補正係数,COEFは水温を
主とする各種補正係数,Tはバッテリ電圧による補正
係数である。
T i = T PAVE × α × COEF + T S α is an air-fuel ratio feedback correction coefficient, COEF is various correction coefficients mainly for water temperature, and T S is a correction coefficient based on the battery voltage.

このようにして演算された燃料噴射量Tに対応する噴
射パルス信号を駆動回路6を介して燃料噴射弁5に出力
し、燃料噴射を行う。
An injection pulse signal corresponding to the fuel injection amount T i calculated in this manner is output to the fuel injection valve 5 via the drive circuit 6 to perform fuel injection.

以上説明したように、機関負荷が高くなるに従って加重
平均重みづけ係数を大きくするように設定された第1重
みづけ係数Xに基づいて基本噴射量を加重平均した
後、燃料噴射量Tを演算するようしているので、加速
運転時に以下の効果があった。
As described above, after the weighted average of the basic injection amount based on the first weighting coefficient X 1 which is set so as to increase the weighted average weighting coefficient as the engine load increases, the fuel injection amount T i is calculated. Since the calculation is performed, the following effects were obtained during acceleration operation.

すなわち、加速運転初期には負荷(基本噴射量)が小さ
く前記第1重みづけ係数Xが小さいため、今回加重平
均された基本噴射量TPAVEは今回演算された基本噴射量
PNに前回のルーチンのデータより大きく依存する。こ
のため、加速運転初期においては、今回加重平均された
基本噴射量TPAVEは第6図中破線示の如く吸気絞弁開度
すなわち吸入空気流量の立上りに応答性良く追従して立
上る。したがって、加速運転初期には、機関に吸入され
る実際の吸入空気流量に対応する燃料噴射量を機関に供
給できるため、空燃比を最適に制御でき、加速性能及び
排気特性を従来例と同様に良好に維持できる。
That is, since the load (basic injection amount) is small at the initial stage of the acceleration operation and the first weighting coefficient X 1 is small, the weighted average basic injection amount T PAVE is the same as the previously calculated basic injection amount T PN . Depends more heavily on routine data. Therefore, in the initial stage of the acceleration operation, the weighted average basic injection amount T PAVE rises following the intake throttle valve opening, that is, the rise of the intake air flow rate with good responsiveness, as shown by the broken line in FIG. Therefore, at the initial stage of the acceleration operation, the fuel injection amount corresponding to the actual intake air flow rate sucked into the engine can be supplied to the engine, so that the air-fuel ratio can be optimally controlled, and the acceleration performance and the exhaust characteristic are the same as those of the conventional example. Can be maintained well.

一方、加速運転後期には負荷が高く前記第1重みづけ係
数Xが大きいため、今回加重平均された基本噴射量T
PAVEは前回加重平均された基本噴射量T′PAVEに今回ル
ーチンのデータより大きく依存する。このため、加速運
転後期においては、今回加重平均された基本噴射量T
PAVEは、前回の基本噴射量T′PAVEにより抑制され、第
6図中破線示の如く前記オーバシュートによる増大分を
なくすことができる。したがって、加速運転後期には、
エアフローメータ3により検出された吸入空気流量が第
6図に示すようにオーバシュートしても加重平均された
基本噴射量TPAVEにはその分が含まれないので、機関に
吸入される実際の吸入空気流量に略対応する燃料噴射量
を機関に供給できるため、空燃比を第6図中破線示の如
く最適に維持でき、もってCO及びHC排出量を第6図
中破線示の如く大巾に抑制できると共に加速性能を向上
できる。
On the other hand, since the load is high and the first weighting coefficient X 1 is large in the latter period of the acceleration operation, the weighted average basic injection amount T
PAVE is largely dependent than routine data current to the previous weighted averaged basic injection quantity T 'PAVE. Therefore, in the latter half of the acceleration operation, the weighted average basic injection amount T
PAVE is suppressed by the previous basic injection amount T'PAVE , and the increase due to the overshoot can be eliminated as shown by the broken line in FIG. Therefore, in the latter half of accelerated operation,
Even if the intake air flow rate detected by the air flow meter 3 overshoots as shown in FIG. 6, the weighted average basic injection amount T PAVE does not include that amount. Since the fuel injection amount substantially corresponding to the air flow rate can be supplied to the engine, the air-fuel ratio can be optimally maintained as shown by the broken line in FIG. 6, and thus the CO and HC emission amount can be made wide as shown by the broken line in FIG. It can be suppressed and the acceleration performance can be improved.

また、前記第1重みづけ係数Xと回転速度に依存する
第2重みづけ係数Xとの小さな方を選択して加重平均
を行なうようにしたので、エアフローメータ3により検
出された吸入空気流量のオーバシュートが小さな高回転
域では、高回転になるほど小さく設定された第2重みづ
け係数Xにより加重平均される。このため、中〜高回
転域での加速運転時には、今回の基本噴射料TPNに大き
く依存するので、加速性能を大巾に向上できる。
Further, the smaller one of the first weighting coefficient X 1 and the second weighting coefficient X 2 depending on the rotation speed is selected to perform the weighted average, so that the intake air flow rate detected by the air flow meter 3 is selected. In the high rotation range where the overshoot is small, the weighting average is performed by the second weighting coefficient X 2 set to be smaller as the rotation becomes higher. For this reason, during the acceleration operation in the medium to high rotation speed range, the basic injection material T PN of this time largely depends on the acceleration operation, so that the acceleration performance can be greatly improved.

尚、エアフローメータ3により検出された吸入空気流量
に基づいて燃料噴射料を演算した後、この量を補正する
ようにしてもよい。また、機関負荷としては、基本噴射
量T,吸気負圧,吸入空気流量,機関トルク,吸気絞
弁とバイパス通路との総開口面積,若しくは前記総開口
面積を回転速度で徐したもの等が挙げられる。
The fuel injection amount may be calculated based on the intake air flow rate detected by the air flow meter 3, and then this amount may be corrected. As the engine load, the basic injection amount T P , the intake negative pressure, the intake air flow rate, the engine torque, the total opening area between the intake throttle valve and the bypass passage, or the total opening area reduced by the rotational speed, etc. Can be mentioned.

また、本実施例では燃料噴射量演算を10msec毎に行なう
ようにしたので回転速度に依存する第2重みづけ係数X
を使用したが、燃料噴射量演算を機関回転速度に同期
して行なう場合には第2重みづけ係数Xを使用せず第
1重みづけ係数Xのみにより加重平均してもよい。こ
の場合には、エアフローメータ3により検出された吸入
空気流量Qを加重平均した後燃料噴射量を演算してもよ
い(Q={前回の加重平均Q(2−1)+今回Q}/
)。
Further, in this embodiment, the fuel injection amount calculation is performed every 10 msec, so the second weighting coefficient X depending on the rotation speed is used.
Although 2 is used, when the fuel injection amount calculation is performed in synchronization with the engine speed, the weighting average may be performed only by the first weighting coefficient X 1 without using the second weighting coefficient X 2 . In this case, the fuel injection amount may be calculated after performing a weighted average of the intake air flow rate Q detected by the air flow meter 3 (Q = {previous weighted average Q (2 X −1) + this time Q} /
2 X ).

また、加重平均は以下の式によって行なってもよい。The weighted average may be calculated by the following formula.

AVE={今回のT(256−X) +前回の加重平均TAVE・X}/256 〈発明の効果〉 本発明は、以上説明したように、高負荷になるほど前回
のデータに大きく依存する鈍し処理係数によって新たな
負荷を設定して、燃料噴射量を補正するようにしたの
で、加速運転初期の加速性能を従来例と同様に良好に維
持しつつ、加速運転後期に吸入空気流量検出手段により
検出された吸入空気流量がオーバシュートしてもその分
を抑制でき、もって空燃比を最適に維持して排気特性,
加速性能及び燃費を大巾に向上できる。
T AVE = {This time T P (256-X) + Last weighted average T AVE · X} / 256 <Effect of the invention> As described above, the present invention largely depends on the previous data as the load increases. Since a new load is set by the blunting processing coefficient to correct the fuel injection amount, while maintaining the acceleration performance in the initial stage of the acceleration operation as good as the conventional example, the intake air flow rate is increased in the latter half of the acceleration operation. Even if the intake air flow rate detected by the detection means overshoots, it is possible to suppress the overshoot, thereby maintaining the air-fuel ratio at an optimum level, and exhaust characteristics,
Acceleration performance and fuel efficiency can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図は同上のフローチャート、
第4図及び第5図は夫々同上の特性図、第6図は従来の
欠点及び実施例の作用を説明するための図である。 1……制御装置、2……回転速度センサ、3……エアフ
ローメータ、5……燃料噴射弁、6……駆動回路
FIG. 1 is a diagram corresponding to the claims of the present invention, FIG. 2 is a configuration diagram showing an embodiment of the present invention, FIG.
FIG. 4 and FIG. 5 are characteristic diagrams of the same as above, and FIG. 6 is a diagram for explaining the conventional defects and the operation of the embodiment. 1 ... Control device, 2 ... Rotational speed sensor, 3 ... Air flow meter, 5 ... Fuel injection valve, 6 ... Drive circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】機関の吸気絞弁と機関との間の吸気通路に
所定の容積室を備えると共に燃料供給手段を燃焼室近傍
の吸気ポート部に備え、機関の吸気絞弁上流の吸入空気
流量を検出する吸入空気流量検出手段と、検出された吸
入空気流量に基づいて燃料供給量を設定する燃料供給量
設定手段と、を備える内燃機関の燃料供給装置におい
て、 機関負荷を検出する負荷検出手段と、 機関の加速状態を検出する機関加速状態検出手段と、 機関の加速状態が検出されたときに、検出された今回の
機関負荷と、前回の機関負荷もしくは鈍し処理された前
回の機関負荷とから、鈍し処理係数に基づいて新たな機
関負荷を設定する負荷設定手段と、 加速開始時からの機関負荷が高くなるに従って徐々に鈍
し度合いが大きくなるように前記検出された機関負荷も
しくは鈍し処理された機関負荷に応じて、前記鈍し処理
係数を設定する係数設定手段と、 前記設定された新たな機関負荷に基づいて前記設定され
た燃料供給量を補正する燃料供給量補正手段と、 補正された燃料供給量に基づいて燃料供給手段を駆動制
御する駆動制御手段と、を備えたことを特徴とする内燃
機関の燃料供給装置。
1. An intake air flow rate upstream of an intake throttle valve of an engine, wherein a predetermined volume chamber is provided in an intake passage between the intake throttle valve of the engine and the engine, and fuel supply means is provided in an intake port portion near the combustion chamber. In a fuel supply device for an internal combustion engine, the load detection means for detecting an engine load, the intake air flow rate detection means for detecting an engine load, and the fuel supply amount setting means for setting a fuel supply amount based on the detected intake air flow rate. And the engine acceleration state detection means for detecting the acceleration state of the engine, the current engine load detected when the acceleration state of the engine is detected, the previous engine load or the previous engine load subjected to the blunting process. Therefore, load setting means for setting a new engine load based on the blunting processing coefficient, and the detected engine load so that the degree of blunting gradually increases as the engine load increases from the start of acceleration. Alternatively, a coefficient setting means for setting the blunting processing coefficient according to the engine load subjected to the blunting process, and a fuel supply amount correction for correcting the set fuel supply amount based on the set new engine load A fuel supply device for an internal combustion engine, comprising: a means and a drive control means for driving and controlling the fuel supply means based on the corrected fuel supply amount.
【請求項2】加速開始時からの機関回転数が高くなるに
従って徐々に鈍し度合いが小さくなるように、前記機関
回転数に応じて第2の鈍し処理係数を設定し、係数設定
手段が、前記鈍し処理係数と当該第2の鈍し処理係数と
のうち小さい方を鈍し処理係数として選択して設定する
ようにした特許請求の範囲第1項に記載の内燃機関の燃
料供給装置。
2. A second blunting processing coefficient is set in accordance with the engine speed so that the degree of blunting gradually decreases as the engine speed increases from the start of acceleration. 2. The fuel supply device for an internal combustion engine according to claim 1, wherein a smaller one of the blunting treatment coefficient and the second blunting treatment coefficient is selected and set as a blunting treatment coefficient. .
JP62172963A 1987-07-13 1987-07-13 Fuel supply device for internal combustion engine Expired - Lifetime JPH0643821B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62172963A JPH0643821B2 (en) 1987-07-13 1987-07-13 Fuel supply device for internal combustion engine
GB8816552A GB2208250B (en) 1987-07-13 1988-07-12 Fuel injection control system for internal combustion engine with compensation of overshooting in monitoring of engine load
US07/217,861 US4951635A (en) 1987-07-13 1988-07-12 Fuel injection control system for internal combustion engine with compensation of overshooting in monitoring of engine load
DE3823608A DE3823608C2 (en) 1987-07-13 1988-07-12 Method and device for calculating the fuel injection quantity for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62172963A JPH0643821B2 (en) 1987-07-13 1987-07-13 Fuel supply device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6419137A JPS6419137A (en) 1989-01-23
JPH0643821B2 true JPH0643821B2 (en) 1994-06-08

Family

ID=15951605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62172963A Expired - Lifetime JPH0643821B2 (en) 1987-07-13 1987-07-13 Fuel supply device for internal combustion engine

Country Status (4)

Country Link
US (1) US4951635A (en)
JP (1) JPH0643821B2 (en)
DE (1) DE3823608C2 (en)
GB (1) GB2208250B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069187A (en) * 1989-09-05 1991-12-03 Honda Giken Kogyo K.K. Fuel supply control system for internal combustion engines
JPH04194341A (en) * 1990-11-27 1992-07-14 Mazda Motor Corp Fuel controller f0r engine
JPH06264793A (en) * 1993-03-12 1994-09-20 Mazda Motor Corp Fuel control device of engine
US6076510A (en) * 1998-05-22 2000-06-20 Hyundai Motor Co. Method and apparatus for correcting air-flow sensor output and adapting data map used to control engine operating parameters
US6314359B1 (en) 2000-05-30 2001-11-06 Cummins Engine Company, Inc. System for modifying a load bias function based on transient engine operation
KR100941714B1 (en) * 2007-11-07 2010-02-12 현대자동차주식회사 System for torque control of engine and method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010717A (en) * 1975-02-03 1977-03-08 The Bendix Corporation Fuel control system having an auxiliary circuit for correcting the signals generated by the pressure sensor during transient operating conditions
JPS5465222A (en) * 1977-11-04 1979-05-25 Nissan Motor Co Ltd Electronic control fuel injector for internal combustion engine
DE2903799A1 (en) * 1979-02-01 1980-08-14 Bosch Gmbh Robert DEVICE FOR COMPLEMENTARY FUEL MEASUREMENT IN AN INTERNAL COMBUSTION ENGINE
JPS6024296B2 (en) * 1979-04-23 1985-06-12 三菱自動車工業株式会社 Engine fuel supply system
JPS588239A (en) * 1981-07-06 1983-01-18 Toyota Motor Corp Control method of fuel injection amount for fuel injection engine
JPS58167836A (en) * 1982-03-29 1983-10-04 Toyota Motor Corp Control method of fuel injection in internal-combustion engine
US4562814A (en) * 1983-02-04 1986-01-07 Nissan Motor Company, Limited System and method for controlling fuel supply to an internal combustion engine
DE3415214A1 (en) * 1984-04-21 1985-10-24 Robert Bosch Gmbh, 7000 Stuttgart Method and device for the analysis of a signal indicating the load state of an internal combustion engine
JPS60249646A (en) * 1984-05-23 1985-12-10 Honda Motor Co Ltd Fuel feed control in internal-combustion engine
JPS60249651A (en) * 1984-05-25 1985-12-10 Nippon Denso Co Ltd Electronic control type fuel injector
JPS6143234A (en) * 1984-08-06 1986-03-01 Toyota Motor Corp Control device of fuel injection quantity in internal-combustion engine
JPS61152935A (en) * 1984-12-26 1986-07-11 Fuji Heavy Ind Ltd Air-fuel ratio controlling device
JPS6260960A (en) * 1985-09-11 1987-03-17 Nippon Denso Co Ltd Fuel feed quantity controlling apparatus for internal combustion engine
JPS62153535A (en) * 1985-12-26 1987-07-08 Toyota Motor Corp Fuel injection controller for internal combustion engine
JPS62265438A (en) * 1986-05-09 1987-11-18 Mitsubishi Electric Corp Fuel controlling device for internal combustion engine
JPH06143234A (en) * 1992-11-10 1994-05-24 Yamada Kogyo Kk Form for concrete side ditch

Also Published As

Publication number Publication date
DE3823608A1 (en) 1989-01-26
GB8816552D0 (en) 1988-08-17
JPS6419137A (en) 1989-01-23
US4951635A (en) 1990-08-28
GB2208250A (en) 1989-03-15
GB2208250B (en) 1992-03-18
DE3823608C2 (en) 1996-01-11

Similar Documents

Publication Publication Date Title
JPS6155607B2 (en)
JPH0643821B2 (en) Fuel supply device for internal combustion engine
JP2532872B2 (en) Fuel control device for internal combustion engine
JPH0765527B2 (en) Fuel control method
JP2577211B2 (en) Basic fuel injection amount setting device for internal combustion engine
JP3938670B2 (en) Fuel injection control device
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2650034B2 (en) Internal combustion engine deceleration control device
JPH01125532A (en) Controller for internal combustion engine
JP2521039B2 (en) Engine air-fuel ratio control device
JPH02104942A (en) Device for feeding mixed fuel of internal combustion engine
JP2528279B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2520608B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0696996B2 (en) Fuel injection control device for internal combustion engine for vehicle
JPH0710050Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS5949346A (en) Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type
JP3105082B2 (en) Engine intake air control system
JPH01294933A (en) Auxiliary air control device for internal combustion engine
JPH0447399Y2 (en)
JP2940916B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0612087B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0646013B2 (en) Air-fuel ratio control method for fuel supply device for internal combustion engine
JPH0374538A (en) Fuel supply device for internal combustion engine with supercharger
JPS6394045A (en) Electronically controlled fuel injection device for internal combustion engine
JPS6220646A (en) Air-fuel ratio controller for engine