JPH0639952B2 - Scroll gas compressor - Google Patents
Scroll gas compressorInfo
- Publication number
- JPH0639952B2 JPH0639952B2 JP18718287A JP18718287A JPH0639952B2 JP H0639952 B2 JPH0639952 B2 JP H0639952B2 JP 18718287 A JP18718287 A JP 18718287A JP 18718287 A JP18718287 A JP 18718287A JP H0639952 B2 JPH0639952 B2 JP H0639952B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- compression
- oil
- discharge
- discharge chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は圧縮機の高圧側で圧縮気体から分離した潤滑油
を圧縮室に戻す装置を有するスクロール気体圧縮機に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll gas compressor having a device for returning lubricating oil separated from compressed gas on the high pressure side of a compressor to a compression chamber.
従来の技術 低振動、低騒音特性を備えたスクロール圧縮機は、吸入
室が外周部にあり、吐出ポートがうず巻きの中心部に設
けられ、圧縮流体の流れが一方向で往復動式圧縮機や回
転式圧縮機のような流体を圧縮するための吐出弁を必要
とせず吐出脈動が比較的小さくて大きな吐出空間を必要
としないこがよく知られている。2. Description of the Related Art Scroll compressors with low vibration and low noise characteristics have a suction chamber on the outer periphery and a discharge port at the center of the spiral winding. It is well known that a discharge valve for compressing fluid such as a rotary compressor is not required, discharge pulsation is relatively small, and a large discharge space is not required.
しかし、特に気体を圧縮する場合などは圧縮部の漏れ隙
間を小さくするためにうず巻き部の寸法精度を極めて高
くする必要があるが部品形状の複雑さ、寸法バラツキな
どによりスクロール圧縮機のコストが高く性能バラツキ
も大きいという問題があった。However, especially in the case of compressing gas, it is necessary to make the dimensional accuracy of the eddy coil extremely high in order to reduce the leakage gap of the compression part, but the cost of the scroll compressor is high due to the complexity of the part shape and the dimensional variation. There was a problem that there were large variations in performance.
そこで、この種の問題解決のための方策として、圧縮途
中の圧縮室間隙間の気体漏れ防止のために潤滑油膜を利
用したシール効果により渦巻き部寸法精度の適正化と圧
縮機性能の安定化を期待して第8図に示すように潤滑油
を圧縮途中の圧縮室に直接流入させる構成が知られてい
る。同図に示す構成は、密閉容器701内の上部にモー
タ703を配置し下部に圧縮部を配置して密閉容器内空
間702を吐出室とした構造で、吐出室底部の油溜71
0の潤滑油を固定スクロール705の鏡板705aに挿
入固定した絞り通路を有する油吸い込み管722を介し
て圧縮途中の圧縮室723に、直接流入させる構成であ
った。Therefore, as a measure for solving this type of problem, the dimensional accuracy of the spiral part is optimized and the compressor performance is stabilized by the sealing effect using a lubricating oil film to prevent gas leakage between the compression chambers during compression. As expected, a configuration is known in which the lubricating oil is caused to directly flow into the compression chamber during compression as shown in FIG. The structure shown in the figure has a structure in which a motor 703 is arranged in the upper part of a closed container 701 and a compression part is arranged in the lower part to use a space 702 inside the closed container as a discharge chamber.
The lubricating oil of No. 0 is directly introduced into the compression chamber 723 in the middle of compression through the oil suction pipe 722 having the throttle passage inserted and fixed in the end plate 705a of the fixed scroll 705.
発明が解決しようとする問題点 しかしながら上記の第8図のような圧縮室723と油溜
710とが常時連通する構成では、スクロール式圧縮機
構において流体圧縮のための吐出弁を必要とせず圧縮比
が一定なために、閉サイクル配管系に接続して運転する
圧縮機の冷時起動後しばらくの間は圧縮室723よりも
密閉容器内空間702の油溜710の方が低圧力の状態
が続き、圧縮室723の圧縮途上気体が油溜710に逆
流し、油溜710の潤滑油が逆流気体によって拡散され
吐出気体と共に圧縮機の外部配管系に流出して無くな
る。このため、圧縮機起動後しばらくして密閉容器内空
間702の圧力が上昇して圧縮室723の圧力よりも高
い状態になった場合でも、潤滑油が再び油溜710に収
集されるまでは圧縮室723への油流入による圧縮室間
隙間の密封効果もなく、逆に密閉容器内空間702の圧
縮気体が圧縮室723に流入して圧縮効率の著しく低下
や異常温度上昇による摺動部耐久性の低下を招くなどの
問題があった。Problems to be Solved by the Invention However, in the configuration in which the compression chamber 723 and the oil sump 710 are always in communication as shown in FIG. 8 described above, a discharge valve for fluid compression is not required in the scroll compression mechanism, and the compression ratio is reduced. Is constant, the oil reservoir 710 in the airtight space 702 remains in a lower pressure state than the compression chamber 723 for a while after the cold start of the compressor that is operated by connecting to the closed cycle piping system. During the compression of the compression chamber 723, the gas flows back into the oil sump 710, and the lubricating oil in the oil sump 710 is diffused by the backflow gas and flows out to the external piping system of the compressor together with the discharge gas, and disappears. Therefore, even when the pressure in the closed container internal space 702 rises and becomes higher than the pressure in the compression chamber 723 some time after the compressor is started, the lubricating oil is compressed until it is collected in the oil sump 710 again. There is no sealing effect between the compression chamber gaps due to the oil inflow into the chamber 723, and conversely, the compressed gas in the space 702 inside the closed container flows into the compression chamber 723, and the sliding part durability due to a significant decrease in compression efficiency and an abnormal temperature rise. There was a problem such as a decrease in.
そこで、本発明は給油通路の途中に微細な気体漏洩通路
を有した逆止弁装置を設けて、圧縮室から油溜への圧縮
気体の逆流を防止して潤滑油の有効利用による圧縮効率
や耐久性に優れたスクロール気体圧縮機を提供するもの
である。Therefore, in the present invention, a check valve device having a fine gas leakage passage is provided in the middle of the oil supply passage to prevent the reverse flow of the compressed gas from the compression chamber to the oil reservoir, thereby improving the compression efficiency by effectively utilizing the lubricating oil. A scroll gas compressor having excellent durability is provided.
問題点を解決するための手段 上記問題を解決するために本発明のスクロール気体圧縮
機は、吐出口に逆流防止弁装置を備え、吐出室の油溜ま
たは吐出室に通じる油溜を上流側とし、油溜よりも圧力
が低く吐出室に通じない第1圧縮室または吸入室に通じ
る第2圧縮室を下流側とする絞り通路を有する給油通路
を設け、給油通路の途中には薄板を弁体とした逆止弁装
置を吐出室に接し油溜よりも上部の固定スクロールの鏡
板上に設け、弁体の弁押えと弁体および鏡板とで弁体よ
りも下流側となる給油通路の一部を形成し、微細に連通
する多孔質から成る焼結成形部材とした構成である。Means for Solving the Problems In order to solve the above problems, the scroll gas compressor of the present invention is provided with a backflow prevention valve device at the discharge port, and the oil reservoir of the discharge chamber or the oil reservoir communicating with the discharge chamber is on the upstream side. An oil supply passage having a throttle passage having a first compression chamber that is lower in pressure than the oil reservoir and does not communicate with the discharge chamber or a second compression chamber that communicates with the suction chamber on the downstream side is provided, and a thin plate is provided in the middle of the oil supply passage as a valve body. A non-return valve device is provided on the end plate of the fixed scroll that is in contact with the discharge chamber and above the oil reservoir, and the valve retainer of the valve body and part of the oil supply passage that is on the downstream side of the valve body due to the valve body and the end plate. Is formed, and the sintered molded member is made of a porous material that communicates finely.
作 用 本発明は上記構成によって、圧縮機が冷時始動し、圧縮
機に流入し吸入通路途中で潤滑油を混入された吸入気体
は吸入室と圧縮室を経て吐出室に吐出され、潤滑油の一
部を分離すると共に吐出室圧力を次第に上昇させる。Operation According to the present invention, with the above configuration, the compressor is started at the cold time, the intake gas flowing into the compressor and mixed with the lubricating oil in the middle of the suction passage is discharged to the discharge chamber through the suction chamber and the compression chamber, and the lubricating oil Is partially separated and the discharge chamber pressure is gradually increased.
しかし、給油通路の開口する圧縮室(第1圧縮室または
第2圧縮室)の圧力が吐出室圧力よりも高い間は、逆止
弁装置の作動によって給油通路が閉じており、圧縮途中
気体が吐出室の油溜へバイパスせずに順次圧縮されて圧
縮完了後に吐出室へ吐出する。However, while the pressure of the compression chamber (first compression chamber or second compression chamber) that opens in the oil supply passage is higher than the discharge chamber pressure, the check valve device operates to close the oil supply passage, and The oil is sequentially compressed into the oil reservoir of the discharge chamber without being bypassed, and is discharged to the discharge chamber after the compression is completed.
その後、吐出室圧力が給油通路の開口する圧縮室圧力よ
りも高くなると給油通路が開いて吐出室の油溜(または
吐出室に通じる油溜)に溜まった潤滑油が圧縮室に流入
し、圧縮室間の微少隙間を油膜で密封して圧縮気体漏れ
を防ぐ。After that, when the pressure of the discharge chamber becomes higher than the pressure of the compression chamber opening in the oil supply passage, the oil supply passage opens and the lubricating oil accumulated in the oil reservoir of the discharge chamber (or the oil reservoir leading to the discharge chamber) flows into the compression chamber and is compressed. The minute gaps between the chambers are sealed with an oil film to prevent compressed gas leakage.
圧縮機停止後は、逆流防止弁装置が吐出ポートを塞いで
圧縮室は吸入側圧力になり、潤滑油が吐出室の油溜(ま
たは吐出室に通じる油溜)から圧縮室しに流入するが、
吐出室に接する弁押えの微細通路を通じて少しずつ吐出
気体が減圧されながら圧縮室に流入し、吐出室と圧縮室
との間の差圧が設定値以下になって潤滑油の圧縮室流入
が停止すべく作用し、圧縮機運転中は油膜利用によるり
圧縮効率の向上と圧縮部冷却効果による摺動部耐久性の
向上を図り、運転停止後は圧縮室への潤滑油流入を早期
に阻止して無駄な潤滑油流出と圧縮機再起動時の負荷を
低減するものである。After the compressor is stopped, the check valve device closes the discharge port and the compression chamber becomes the suction side pressure, and the lubricating oil flows into the compression chamber from the oil reservoir of the discharge chamber (or the oil reservoir leading to the discharge chamber). ,
The discharge gas gradually decreases in pressure through the fine passage of the valve retainer in contact with the discharge chamber and flows into the compression chamber, and the differential pressure between the discharge chamber and the compression chamber falls below the set value, and the inflow of lubricating oil into the compression chamber stops. The compressor works to improve the compression efficiency by using an oil film during the operation of the compressor and the durability of the sliding part by the effect of cooling the compression part, and prevents the inflow of lubricating oil into the compression chamber early after the operation is stopped. This reduces unnecessary oil leakage and load when the compressor is restarted.
実施例 以下本発明の実施例のスクロール気体圧縮機について、
図面を参照しながら説明する。Examples Hereinafter, for the scroll gas compressor of the embodiment of the present invention,
A description will be given with reference to the drawings.
第1図は本発明の第1の実施例におけるスクロール気体
圧縮機の縦断面図、第2図は第1図のA−A線における
圧縮部の横断面図、第3図は吸引行程から吐出行程まで
の気体の圧力変化を示す特性図、第4図は各圧縮室にお
ける定点の圧力変化を示す特性図、第5図は第1図にお
ける逆止弁装置取り付け部の部分断面図、第6図は第5
図の部分外観図を示す。FIG. 1 is a vertical sectional view of a scroll gas compressor according to a first embodiment of the present invention, FIG. 2 is a lateral sectional view of a compression section taken along the line AA in FIG. 1, and FIG. FIG. 4 is a characteristic view showing a pressure change of the gas up to the stroke, FIG. 4 is a characteristic view showing a pressure change at a fixed point in each compression chamber, FIG. 5 is a partial cross-sectional view of the check valve device mounting portion in FIG. The figure is the fifth
The partial external view of a figure is shown.
第1図において、1,2は鉄製の密閉ケース、3は鉄製
のフレームでその外周面部で密閉ケース1,2と共に単
一の溶接ビート4によって溶接密封され密閉ケース1,
2内を上側の吐出室5と下側の駆動室6(低圧側)とに
仕切っている。In FIG. 1, reference numerals 1 and 2 denote an iron-made hermetically sealed case, 3 denotes an iron-made frame whose outer peripheral surface is welded and hermetically sealed together with the hermetically sealed cases 1 and 2 by a single welding beat 4.
The inside of 2 is divided into an upper discharge chamber 5 and a lower drive chamber 6 (low pressure side).
フレーム3に支承されインバータ電源(図示なし)によ
って運転制御されるモータ7により回転駆動される駆動
軸8の上端部の偏心穴9には旋回スクール10の旋回軸
11がはめ込まれ、旋回スクロール10の自転阻止部品
12が旋回スクロール10とフレーム3に係合し、旋回
スクロール10に噛み合う固定スクロール13がフレー
ム3にボルト固定され、固定スクロール13の鏡板14
には吐出ポート15が設けられ、鏡板14の上面には吐
出ポート15の開口端を塞ぐリードバルブ型の逆流防止
装置16と逆止弁装置17が取り付けられている。吐出
室5の底部は吐出室油溜18で、その上部には多数の小
穴を有して傘状のパンチングメタル19が密閉ケース1
に取り付けられ、密閉ケース1とバンチングメタル19
との間には細金属線材から成るフィルター20が詰めら
れ、吐出室5は密閉ケース1の上面に設けられた吐出管
21を通じて外部の冷凍サイクル配管系を経て密閉ケー
ス2の側面に設けられた吸入管22を通じて低圧側の駆
動室6に連通し、駆動室6の底部にはモータ室油溜23
が設けられている。The orbiting shaft 11 of the orbiting school 10 is fitted into the eccentric hole 9 at the upper end of the drive shaft 8 which is rotatably driven by the motor 7 which is supported by the frame 3 and is controlled by an inverter power supply (not shown). The rotation preventing component 12 engages with the orbiting scroll 10 and the frame 3, and the fixed scroll 13 meshing with the orbiting scroll 10 is bolted to the frame 3, and the end plate 14 of the fixed scroll 13 is fixed.
A discharge port 15 is provided on the upper end of the end plate 14, and a reed valve type backflow prevention device 16 and a check valve device 17 that close the opening end of the discharge port 15 are attached to the upper surface of the end plate 14. The bottom of the discharge chamber 5 is a discharge chamber oil sump 18, and an umbrella-shaped punching metal 19 having a large number of small holes in the upper part thereof is a closed case 1.
Attached to the closed case 1 and bunching metal 19
A filter 20 made of a fine metal wire is packed between and, and the discharge chamber 5 is provided on the side surface of the closed case 2 via an external refrigeration cycle piping system through a discharge pipe 21 provided on the upper surface of the closed case 1. It communicates with the low-pressure side drive chamber 6 through the suction pipe 22, and the motor chamber oil sump 23 is provided at the bottom of the drive chamber 6.
Is provided.
第1図、第2図、第5図、第6図において、吐出室5に
も吸入室33にも連通しない第1圧縮室39bと吐出室
油溜18との間は、鏡板14に設けられた油吸い込み穴
41、鏡板14に吐出室仕切り板を兼ねた薄鋼板製の弁
板42と共に取り付けられた逆止弁装置17の弁押え4
3と鏡板14との間に形成された弁空間44、弁板42
の打ち抜き溝45、鏡板14に設けられた極細通路のイ
ンジェクション穴30bとから成る絞り通路を有した第
1給油通路によって連通し、第1圧縮室39aと吐出室
油溜18との間は、インジェクション穴30bから分岐
して鏡板14に設けられたインジェクション連通穴5
9、インジェクション穴20aとから成る絞り通路を有
する第2給油通路によって連通している。In FIG. 1, FIG. 2, FIG. 5, and FIG. 6, the end plate 14 is provided between the first compression chamber 39b and the discharge chamber oil sump 18, which do not communicate with the discharge chamber 5 or the suction chamber 33. The valve retainer 4 of the check valve device 17 attached to the oil suction hole 41 and the end plate 14 together with the valve plate 42 made of a thin steel plate also serving as the discharge chamber partition plate.
3 and the end plate 14 are formed with a valve space 44 and a valve plate 42.
Of the first compression chamber 39a and the oil reservoir 18 of the discharge chamber are communicated with each other by a first oil supply passage having a throttle passage composed of a punched groove 45 of the above, and an injection hole 30b of an ultrafine passage provided in the end plate 14. Injection communication hole 5 provided on the end plate 14 branched from the hole 30b
9, a second oil supply passage having a throttle passage formed by the injection hole 20a.
吐出室油溜18と低圧側の駆動室6との間は、第1給油
通路の途中から分岐して弁空間44、弁板42の打ち抜
き溝45、鏡板14に設けられた油穴46、フレーム3
に設けられた極細通路の油穴47、駆動軸8を支承しフ
レーム3に設けられた上部軸受穴48、上部軸受49の
軸受隙間、旋回軸11と偏心穴9との隙間、駆動軸8に
設けられた偏心油穴24と横油穴50、駆動軸8を支承
しフレーム3の下端の設けられた下部軸受51と上部軸
受49との間の軸受油溜52、下部軸受51の軸受隙間
とから成る絞り通路を有した第3給油通路によって連通
している。Between the discharge chamber oil sump 18 and the low pressure side drive chamber 6, the valve space 44, the punching groove 45 of the valve plate 42, the oil hole 46 provided in the end plate 14, and the frame are branched from the middle of the first oil supply passage. Three
The oil hole 47 of the ultrafine passage, the upper bearing hole 48 that supports the drive shaft 8 and is provided in the frame 3, the bearing gap of the upper bearing 49, the gap between the swivel shaft 11 and the eccentric hole 9, and the drive shaft 8. The eccentric oil hole 24, the lateral oil hole 50, the bearing oil sump 52 between the lower bearing 51 and the upper bearing 49, which support the drive shaft 8 and are provided at the lower end of the frame 3, and the bearing gap of the lower bearing 51, Is connected by a third oil supply passage having a throttle passage consisting of.
逆止弁装置17のリード弁53と逆流防止弁装置16の
リード弁54とは弁板42の一部を打ち抜いて構成さ
れ、逆止弁装置17の弁押え43はわずかに気体を通過
させ得る多孔質の焼結合金成型品から成り、その一部が
逆流防止弁装置16の弁押え55を兼ねており、弁押え
43の上面には油溜を兼ねた浅い穴56,57が設けら
れている。The reed valve 53 of the check valve device 17 and the reed valve 54 of the check valve device 16 are configured by punching out a part of the valve plate 42, and the valve retainer 43 of the check valve device 17 can slightly pass gas. It is made of a porous sintered alloy molded product, a part of which also serves as the valve retainer 55 of the check valve device 16, and shallow holes 56 and 57 which also serve as oil reservoirs are provided on the upper surface of the valve retainer 43. There is.
第3図において、横軸は駆動軸8の回転角度を表し、縦
軸は冷媒圧力を表し、吸入・圧縮・吐出過程における冷
媒ガスの圧力変化状態を表す。In FIG. 3, the horizontal axis represents the rotation angle of the drive shaft 8, the vertical axis represents the refrigerant pressure, and the pressure change state of the refrigerant gas in the intake, compression, and discharge processes.
第4図において、横軸は駆動軸8の回転角度を表し、縦
軸は冷媒圧力を表し、実線60は吐出室5にも吸入室3
3にも連通しない第1圧縮室39a,39bのインジェ
クション穴30a,30bの開口位置における圧力変化
を表し、点線61は吸入室33に連通する第2圧縮室4
0a,40b(第2図参照)の定点における圧力変化を
表し、一点鎖線62は逆流防止弁装置16を介して吐出
室5に連通する第3圧縮室63a,63b(第2図参
照)の定点における圧力変化を表し、二点鎖線64は第
1圧縮室39a,39bと第2圧縮室40a,40bと
の間の定点における圧力変化を表す。In FIG. 4, the horizontal axis represents the rotation angle of the drive shaft 8, the vertical axis represents the refrigerant pressure, and the solid line 60 represents the discharge chamber 5 as well as the suction chamber 3.
3 shows the pressure change at the opening positions of the injection holes 30a, 30b of the first compression chambers 39a, 39b that also do not communicate with 3, and the dotted line 61 indicates the second compression chamber 4 communicating with the suction chamber 33.
0a, 40b (refer to FIG. 2) represents pressure change at a fixed point, and an alternate long and short dash line 62 indicates a fixed point of the third compression chamber 63a, 63b (refer to FIG. 2) communicating with the discharge chamber 5 via the check valve device 16. And the two-dot chain line 64 represents the pressure change at a fixed point between the first compression chambers 39a, 39b and the second compression chambers 40a, 40b.
以上のように構成されたスクロール気体圧縮機につい
て、その動作を説明する。The operation of the scroll gas compressor configured as above will be described.
第1図〜第6図において、モータ7によって駆動軸8が
回転駆動を始めると旋回スクロール10が旋回運動を
し、圧縮機に接続した冷凍サイクルから吸入冷媒ガスが
吸入管22を通して駆動室6に流入し、その中に含まれ
る潤滑油の一部が分離された後に吸入室33に吸入さ
れ、この吸入冷媒ガスは旋回スクロール10と固定スク
ロール13との間に形成された第2圧縮室40a(40
b)を経て圧縮室内に閉じこめられ、旋回スクロール1
0の旋回運動に伴って第1圧縮室39a(39b)、第
3圧縮室63a(63b)へと順次移送圧縮され中央部
の吐出ポート15、逆流防止弁装置16を経て吐出室5
へ吐出され、吐出冷媒ガス中に含まれる潤滑油の一部は
その自重およびパンチングメタル19の小穴や細金属線
から成るフィルター20を通過する際にその表面に付着
などして吐出冷媒ガスから分離して吐出室油溜18や弁
押え43の浅穴56,57に収集され、残りの潤滑油は
吐出冷媒ガスと共に吐出管21を経て外部の冷凍サイク
ルへ搬出され、再び吸入冷媒ガスと共に吸入管22を通
して圧縮機内に帰還する。In FIG. 1 to FIG. 6, when the drive shaft 8 starts to rotate by the motor 7, the orbiting scroll 10 orbits, and the refrigerant gas sucked from the refrigeration cycle connected to the compressor enters the driving chamber 6 through the suction pipe 22. After flowing in and separating a part of the lubricating oil contained therein, the lubricating oil is sucked into the suction chamber 33, and this suction refrigerant gas is formed in the second compression chamber 40a (formed between the orbiting scroll 10 and the fixed scroll 13). 40
Orbiting scroll 1 confined in the compression chamber via b)
With the swirling motion of 0, the transfer chamber 5 is transferred to the first compression chamber 39a (39b) and the third compression chamber 63a (63b) in order and compressed, and then discharged through the discharge port 15 and the backflow prevention valve device 16 at the central portion.
A part of the lubricating oil discharged into the discharge refrigerant gas is separated from the discharge refrigerant gas by adhering to its own weight and the surface thereof when passing through the small holes of the punching metal 19 or the filter 20 composed of a fine metal wire. Then, it is collected in the discharge chamber oil sump 18 and the shallow holes 56, 57 of the valve retainer 43, and the remaining lubricating oil is discharged to the external refrigeration cycle through the discharge pipe 21 together with the discharge refrigerant gas, and is again sucked into the suction pipe together with the suction refrigerant gas. Return to the compressor through 22.
圧縮機の冷時始動後しばらくの間は、第3図に示すよう
に吐出室5の圧力が第1圧縮室39a(39b)の圧力
よりも低いので、吐出室油溜18の潤滑油は第1給油通
路を通して差圧給油されず、また、逆止弁装置の効果に
よって第1圧縮室39a(39b)から圧縮途中気体か
吐出室油溜18に逆流することがない。For a while after the cold start of the compressor, the pressure in the discharge chamber 5 is lower than the pressure in the first compression chamber 39a (39b) as shown in FIG. No differential pressure oil is supplied through the first oil supply passage, and the gas in the middle of compression does not flow back into the discharge chamber oil sump 18 from the first compression chamber 39a (39b) due to the effect of the check valve device.
圧縮機の冷時始動後しばらくの後、吐出室5の圧力が第
1圧縮室39a(39b)の圧力以上に上昇の後、吐出
室油溜18の潤滑油は逆止弁装置17(17a)のリー
ド弁53の付勢力に抗して第1給油通路(第2給油通
路)を経て漸次減圧され第1圧縮室39a(39b)に
差圧給油されると共に、第1給油通路の途中から分岐し
て構成される第3給油通路の打ち抜き穴45,油穴4
6,47を経て漸次減圧され吐出側圧力と吸入側圧力と
の中間圧力に調整されて旋回スクロール10の反圧縮室
側の上部軸受穴48にも差圧給油される。Some time after the cold start of the compressor, the pressure in the discharge chamber 5 rises above the pressure in the first compression chamber 39a (39b), and then the lubricating oil in the discharge chamber oil sump 18 contains the check valve device 17 (17a). Against the urging force of the reed valve 53, the pressure is gradually reduced through the first oil supply passage (second oil supply passage), the differential pressure oil is supplied to the first compression chamber 39a (39b), and the oil is branched from the middle of the first oil supply passage. Punching hole 45 and oil hole 4 of the third oil supply passage configured as
The pressure is gradually reduced through 6 and 47, adjusted to an intermediate pressure between the discharge side pressure and the suction side pressure, and differential pressure oil is also supplied to the upper bearing hole 48 on the side opposite to the compression chamber of the orbiting scroll 10.
第1圧縮室39a(39b)に差圧給油された潤滑油
は、吸入冷媒ガスと共に圧縮室に流入した潤滑油と合流
して隣接する圧縮空間の微少隙間を油膜により密封して
圧縮気体漏れを防ぎ、圧縮室間の摺動面を潤滑しながら
圧縮気体と共に吐出室5に再び吐出される。The lubricating oil differentially supplied to the first compression chamber 39a (39b) merges with the lubricating oil that has flowed into the compression chamber together with the suction refrigerant gas and seals a minute gap in the adjacent compression space with an oil film to prevent compressed gas leakage. It is prevented and is discharged again to the discharge chamber 5 together with the compressed gas while lubricating the sliding surface between the compression chambers.
一方、上部軸受穴48に差圧給油された潤滑油の一部
は、旋回スクロール10に作用するスラスト荷重を支持
するフレーム3との摺動面部や自転阻止部品12の摺動
面を潤滑して吸入冷媒ガスに混入し再び圧縮室へ流入す
る。また、残りの潤滑油は旋回軸11と偏心穴9との隙
間、偏心穴9、偏心油穴24、横油穴50を通る給油通
路と上部軸受49の隙間とを経て軸受油溜52に流入
し、下部軸受51の微少隙間を通して最終減圧されて駆
動室6に流入し、その一部は吸入冷媒ガスに混入して再
び圧縮室へ流入するのが残りの潤滑油はモータ室油溜2
3に収集される。On the other hand, part of the lubricating oil differentially supplied to the upper bearing hole 48 lubricates the sliding surface portion with the frame 3 supporting the thrust load acting on the orbiting scroll 10 and the sliding surface of the rotation preventing component 12. It is mixed with the suction refrigerant gas and flows into the compression chamber again. The remaining lubricating oil flows into the bearing oil sump 52 through the gap between the swivel shaft 11 and the eccentric hole 9, the eccentric hole 9, the eccentric oil hole 24, the oil passage passing through the lateral oil hole 50 and the gap of the upper bearing 49. Then, the pressure is finally reduced through the minute gap of the lower bearing 51 and flows into the drive chamber 6, a part of which is mixed with the suction refrigerant gas and flows into the compression chamber again. The remaining lubricating oil is the motor chamber oil sump 2
Collected in 3.
モータ室油溜23の潤滑油は、その油面がある程度高く
成るとモータ7の回転子の下端部に拡散されて駆動質6
内の吸入冷媒ガスに混入して再び圧縮室へ流入し、最終
的には吐出室油溜18に収集する。The lubricating oil in the motor chamber oil sump 23 is diffused to the lower end portion of the rotor of the motor 7 when the oil level rises to some extent, and the driving quality 6
It is mixed with the suctioned refrigerant gas inside and again flows into the compression chamber, and is finally collected in the discharge chamber oil sump 18.
圧縮機停止後は、逆流防止弁装置16のリード弁54が
吐出ポート15を塞ぎ、吐出ポート15から第2圧縮室
40a(40b)までの圧縮空間の圧力は圧縮室間の隙
間を通じて吸入室33の圧力に等しくなる。そこで圧縮
機停止直後の吐出室油溜18の潤滑油は、第1給油通
路、第2給油通路、第3給油通路を通じて第1圧縮室3
9a(39b)や上部軸受穴48に少し流入するが、焼
結合金材質から成る弁押え43の微細粒子間を通して圧
縮気体が弁空間44に少しずつ流入し、吐出室5と弁空
間44の圧力差が縮まる潤滑油の流入が停止する。ま
た、第1圧縮室39a(39b)や上部軸受穴48の圧
力は、インジェクション穴30a(30b)の通路や油
穴47の通路が狭く通路途中の潤滑油の密封効果により
弁空間44に流入した圧縮気体の流入量が少ないのであ
まり昇圧しない。After the compressor is stopped, the reed valve 54 of the check valve device 16 closes the discharge port 15, and the pressure of the compression space from the discharge port 15 to the second compression chamber 40a (40b) passes through the gap between the compression chambers and the suction chamber 33. Equal to the pressure of. Therefore, the lubricating oil in the discharge chamber oil sump 18 immediately after the compressor is stopped passes through the first oil supply passage, the second oil supply passage, and the third oil supply passage to the first compression chamber 3
9a (39b) and the upper bearing hole 48 slightly, but compressed gas gradually flows into the valve space 44 through the fine particles of the valve retainer 43 made of a sintered alloy material, and the pressure in the discharge chamber 5 and the valve space 44 is increased. The inflow of lubricating oil is stopped. The pressure in the first compression chamber 39a (39b) and the upper bearing hole 48 flows into the valve space 44 due to the sealing effect of the lubricating oil in the middle of the passage because the passage of the injection hole 30a (30b) and the passage of the oil hole 47 are narrow. Since the inflow of compressed gas is small, the pressure is not increased.
また、弁板42は吐出室油溜18の潤滑油面が吐出気体
により拡散されるのを防ぐ。Further, the valve plate 42 prevents the lubricating oil surface of the discharge chamber oil sump 18 from being diffused by the discharge gas.
以上のように上記実施例によれば吐出ポート15を塞ぐ
逆流防止弁装置16を備えたスクロール式圧縮機におい
て、吐出室油溜18を上流側とし、吐出室油溜18より
も圧力が低く吐出室5に通じない第1圧縮室39a(3
9b)を下流側とする油吸い込み穴41、弁空間44、
弁板42の打ち抜き溝45、極細通路のインジェクショ
ン穴30bで構成される第1給油通路およびインジェク
ション穴30bの途中から分岐してインジェクション連
通穴59、極細通路のインジェクション穴30aで構成
される第2給油通路を設け、第1給油通路の途中の固定
スクロール13の鏡板14の上面に開口する油吸い込み
穴41を塞ぐリード弁型の逆止装置17を鏡板14の上
面に設け、リード弁53の弁押え43とリード弁53お
よび鏡板14とでリード弁53よりも下流側となる第1
給油通路の一部を形成し、弁押え43を微細に連通する
多孔質からなる焼結成形部材とすることにより、圧縮機
冷時始動後や緩時再始動後のばらくの間、吐出室5の圧
力よりも第1給油通路と第2給油通路が開口する第1圧
縮室39a,39bの圧力の方が高くとも圧縮途中の気
体は逆止弁装置17の逆止弁作用によって吐出室油溜1
8に逆流せず、圧縮完了後に吐出室5に吐出されて吐出
室5の圧力上昇を早めると共に、逆流気体により吐出室
油溜18の潤滑油が拡散して圧縮機外部の冷凍サイクル
へ流出するのを防ぐことが出来るので、吐出室圧力上昇
後の第1圧縮室39a,39bへの油インジェクション
を早く開始させて油膜による圧縮室間隙間の密封により
圧縮効率向上の早期効果を図ることが出来る。As described above, according to the above-described embodiment, in the scroll compressor having the check valve device 16 for closing the discharge port 15, the discharge chamber oil sump 18 is on the upstream side, and the discharge pressure is lower than that of the discharge chamber oil sump 18. The first compression chamber 39a (3
9b) on the downstream side, the oil suction hole 41, the valve space 44,
The first oil supply passage formed by the punching groove 45 of the valve plate 42, the injection hole 30b of the ultrafine passage and the second oil supply constituted by the injection communication hole 59 branched from the middle of the injection hole 30b and the injection hole 30a of the ultrafine passage. A reed valve type check device 17 is provided on the upper surface of the end plate 14 to close the oil suction hole 41 that opens to the upper surface of the end plate 14 of the fixed scroll 13 in the middle of the first oil supply passage. 43, the reed valve 53, and the end plate 14, which are on the downstream side of the reed valve 53.
By forming a part of the oil supply passage and forming the valve retainer 43 as a finely communicated porous sintered molded member, the discharge chamber can be used during a loose period after the cold start of the compressor or after a slow restart. Even if the pressures of the first compression chambers 39a and 39b in which the first and second oil supply passages are open are higher than the pressure of 5, the gas in the middle of compression is discharged by the check valve action of the check valve device 17. Pool 1
8 does not flow back to 8, but is discharged to the discharge chamber 5 after completion of compression to accelerate the pressure rise in the discharge chamber 5, and the lubricating oil in the discharge chamber oil reservoir 18 is diffused by the backflow gas and flows out to the refrigeration cycle outside the compressor. Since it is possible to prevent this, the oil injection into the first compression chambers 39a, 39b after the pressure in the discharge chamber has risen can be started earlier, and the gap between the compression chambers can be sealed by the oil film to achieve an early effect of improving the compression efficiency. .
また、圧縮機停止後は、逆流防止弁装置17が吐出ポー
ト15を塞いで吐出ポート15から吸入室33までの空
間が吸入側圧力になり、極くわずかの間、潤滑油が吐出
室油溜18から第1圧縮室39a,39bに流入する
が、吐出気体を吐出室5に接する弁押え43の微細通路
を通じて少しづつ減圧されながら第1圧縮室39a,3
9bに流入し、吐出室5と第1圧縮室39a,39bと
の間の差圧がリード弁53の付勢力に相当する設定値以
下になって潤滑油の第1圧縮室39a,39b流入が停
止するので、第1圧縮室への潤滑油流入を早期に阻止し
て無駄な潤滑油流出と圧縮機再起動時の液圧縮を防止し
て起動負荷を軽減することが出来る。After the compressor is stopped, the check valve device 17 closes the discharge port 15 and the space from the discharge port 15 to the suction chamber 33 becomes the suction side pressure, so that the lubricating oil is kept in the discharge chamber oil reservoir for a very short time. Although it flows into the first compression chambers 39a, 39b from 18, the discharge gas is gradually depressurized through the fine passages of the valve retainer 43 which is in contact with the discharge chamber 5, and the first compression chambers 39a, 39b.
9b, the differential pressure between the discharge chamber 5 and the first compression chambers 39a, 39b becomes equal to or lower than a set value corresponding to the biasing force of the reed valve 53, and the first compression chambers 39a, 39b of the lubricating oil flow in. Since the engine is stopped, it is possible to prevent the lubricating oil from flowing into the first compression chamber at an early stage, prevent wasteful lubricating oil outflow, and prevent liquid compression when the compressor is restarted, thereby reducing the starting load.
また、圧縮機運転中は、給油通路を構成する弁押え43
の内壁表面を通過する潤滑油の浸透作用によって弁押え
43の微細粒子間隙間は油膜密封されるので吐出気体流
入による圧縮損失もなく圧縮効率と耐久性に優れたスク
ロール気体圧縮機を提供するものである。Further, during operation of the compressor, the valve retainer 43 forming the oil supply passage is
The fine interparticle gaps of the valve retainer 43 are sealed with an oil film by the permeating action of the lubricating oil passing through the inner wall surface of the scroll gas compressor, which provides a scroll gas compressor excellent in compression efficiency and durability without compression loss due to discharge gas inflow. Is.
なお、上記実施例では第1給油通路と第2給油通路の下
流側を第1圧縮室39a,39bとしたが、吸入室33
に通じる第2圧縮室40a,40bにした場合でもその
作用、効果は同様であり、また吐出室15内の吐出室油
溜18の代りに圧縮機外の高圧側に油溜を設けて密閉シ
ェル1を貫通する給油配管によって上記の圧縮室内に給
油させてもよい。In the above embodiment, the first compression chambers 39a and 39b are provided on the downstream side of the first oil supply passage and the second oil supply passage.
Even when the second compression chambers 40a and 40b communicating with the above are used, the same operation and effect are obtained, and instead of the discharge chamber oil sump 18 in the discharge chamber 15, an oil sump is provided on the high pressure side outside the compressor to provide a closed shell. Oil may be supplied to the compression chamber by an oil supply pipe penetrating through 1.
また、上記実施例では冷媒圧縮機について動作を説明し
たが、潤滑油を使用する酸素、窒素、ヘリウムなどの他
の気体圧縮機の場合も同様の作用効果を期待できる。Further, although the operation of the refrigerant compressor has been described in the above-mentioned embodiment, the same operational effect can be expected in the case of other gas compressors such as oxygen, nitrogen, and helium that use lubricating oil.
発明の効果 以上のように本発明は、固定スクロールに設けた吐出ポ
ートおよび吐出ポートを塞ぐ逆流防止弁装置を介して吐
出室に吐出するスクロール式圧縮機構を形成し、吐出室
の油溜または吐出室に通じる油溜を上流側とし、油溜よ
りも圧力が低い吐出室に通じない第1圧縮室または吸入
室に通じる第2圧縮室を下流側とする絞り通路を有する
給油通路を設け、給油通路の途中に薄板を弁体とした逆
止弁装置を吐出室に接し油溜よりも上部の固定スクロー
ルの鏡板上に設け、薄板の弁体の弁押えと弁体および鏡
板とで弁体よりも下流側となる給油通路の一部を形成
し、弁押えを微細に連通する多孔質からなる焼結成形部
材としたことにより、スクロール式圧縮機構の圧縮比が
一定で吐出質に連通しない圧縮室の圧力が吐出室圧力の
影響をあまり受けず、圧縮機冷時始動後や緩時再始動後
のしばらくの間、吐出室の圧力よりも給油通路が開口す
る第1圧縮室または第2圧縮室の圧力の方が高い場合で
も圧縮途中の気体は逆止弁装置の逆止弁作用によって吐
出室油溜(または吐出室に通じる油溜)に逆流せず、圧
縮完了後に吐出室に吐出されて吐出室の圧力上昇を早
め、さらには逆流気体により吐出室油溜(または吐出室
に通じる油溜)の潤滑油が拡散して圧縮機外部の配管系
へ流出するのを防ぐことが出来るので、吐出室圧力上昇
後の第1圧縮室また第2圧縮室への油インジェクション
を早く開始させて油膜による圧縮室間まの隙間密封によ
り圧縮効率向上の早期効果開始を図ることが出来る。EFFECTS OF THE INVENTION As described above, the present invention forms the scroll type compression mechanism that discharges to the discharge chamber through the discharge port provided in the fixed scroll and the check valve device that closes the discharge port, and the oil reservoir or discharge of the discharge chamber is formed. The oil reservoir communicating with the chamber is provided on the upstream side, and the oil supply passage having the throttle passage having the downstream side of the first compression chamber not communicating with the discharge chamber whose pressure is lower than that of the oil reservoir or the second compression chamber communicating with the suction chamber is provided. A check valve device using a thin plate as a valve element is provided in the middle of the passage on the end plate of the fixed scroll that is in contact with the discharge chamber and above the oil reservoir, and the valve retainer of the thin plate valve element and the valve element and end plate Also, by forming a part of the oil supply passage on the downstream side and using a porous sintered molded member that finely communicates the valve retainer, the compression ratio of the scroll type compression mechanism is constant and compression does not communicate with the discharge quality. The chamber pressure affects the discharge chamber pressure. For a while after the cold start of the compressor or the restart of the compressor when the compressor is cold, even if the pressure of the first compression chamber or the second compression chamber where the oil supply passage opens is higher than the pressure of the discharge chamber, compression is performed. The gas in the middle does not flow back into the discharge chamber oil sump (or the oil sump leading to the discharge chamber) due to the check valve action of the check valve device, but is discharged to the discharge chamber after the completion of compression to accelerate the pressure rise in the discharge chamber, and Can prevent the lubricating oil in the discharge chamber oil sump (or the oil sump leading to the discharge chamber) from diffusing by the backflow gas and flowing out to the piping system outside the compressor, so that the first compression after the discharge chamber pressure rises It is possible to start the oil injection into the chamber or the second compression chamber early and to seal the gap between the compression chambers with the oil film to start the early effect of improving the compression efficiency.
また、圧縮機停止後は、逆流防止弁装置が吐出ポートを
塞いで吐出ポートと圧縮室が吸入側圧力になり、極くわ
ずかの間、潤滑油が吐出室の油溜(または吐出室に通じ
る油溜)から圧縮室に流入するが、吐出室の気体が弁押
えの微細粒子間を通じて少しずつ減圧されながら圧縮室
に流入し、吐出室と圧縮室との間の差圧が弁体の付勢力
に相当する設定値以下になって潤滑油の圧縮室流入が停
止するので、圧縮室への潤滑油流入を早期に遮断して無
駄な潤滑油流出と圧縮機再起動時の液圧縮の発生を防止
して起動負荷を軽減することが出来る。In addition, after the compressor is stopped, the check valve device closes the discharge port, and the discharge port and the compression chamber become the suction side pressure, and the lubricating oil flows to the oil reservoir (or the discharge chamber) of the discharge chamber for a very short time. Gas from the oil reservoir) into the compression chamber, but the gas in the discharge chamber flows into the compression chamber while gradually depressurizing through the fine particles of the valve retainer, and the differential pressure between the discharge chamber and the compression chamber causes Since the inflow of lubricating oil to the compression chamber is stopped when the pressure falls below the set value corresponding to the power, the inflow of lubricating oil to the compression chamber is blocked early, resulting in wasteful lubricating oil outflow and liquid compression when the compressor is restarted. Can be prevented and the starting load can be reduced.
また、圧縮機運転中は、給油通路を構成する弁押えの内
壁表面を通過する潤滑油の浸透作用によって弁押えの微
細粒子間隙間が油膜密封されるので、弁押えが気体の逆
流防止機能を備えており圧縮室への吐出気体流入による
圧縮損失もないなど数多くの優れた効果を奏するもので
ある。Further, during operation of the compressor, the gap between the fine particles of the valve retainer is sealed with an oil film by the permeating action of the lubricating oil that passes through the inner wall surface of the valve retainer that constitutes the oil supply passage, so the valve retainer functions to prevent backflow of gas. It is equipped with many excellent effects such as no compression loss due to inflow of discharge gas into the compression chamber.
第1図は本発明の第1の実施例における気体圧縮機の縦
断面図、第2図は第1図のA−A線における圧縮部の横
断面図、第3図は吸入行程から吐出行程までの気体の圧
力変化を示す特性図、第4図は各圧縮室における定点の
圧力変化を示す特性図、第5図は第1図における逆止弁
装置取り付け部の部分断面図、第6図は第5図の部分外
観図、第7図は従来の給油通路を備えたスクロール気体
圧縮機の断面図を示す。 1,2……密閉ケース、5……吐出室、6……駆動室、
7……モータ、10……旋回スクロール、13……固定
スクロール、14……鏡板、15……吐出ポート、16
……逆流防止弁装置、17……逆止弁装置、18……吐
出室油溜、21……吐出管、22……吸入管、23……
モータ室油溜、30a,30b……インジェクション
穴、33……吸入室、39a,39b……第1圧縮室、
40a,40b……第2圧縮室、41……油吸い込み
穴、43……弁押さえ、45……打ち抜き穴、53,5
4……リード弁、55……弁押さえ、59……インジェ
クション連通穴。FIG. 1 is a vertical cross-sectional view of a gas compressor according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a compression section taken along the line AA in FIG. 1, and FIG. 3 is a suction stroke to a discharge stroke. 4 is a characteristic diagram showing the pressure change of the gas up to, FIG. 4 is a characteristic diagram showing the pressure change at a fixed point in each compression chamber, FIG. 5 is a partial cross-sectional view of the check valve device mounting portion in FIG. 1, and FIG. 5 is a partial external view of FIG. 5, and FIG. 7 is a sectional view of a scroll gas compressor having a conventional oil supply passage. 1, 2 ... sealed case, 5 ... discharge chamber, 6 ... drive chamber,
7 ... Motor, 10 ... Orbiting scroll, 13 ... Fixed scroll, 14 ... End plate, 15 ... Discharge port, 16
...... Check valve device, 17 ...... Check valve device, 18 ...... Discharge chamber oil sump, 21 ...... Discharge pipe, 22 ...... Suction pipe, 23 ......
Motor chamber oil sump, 30a, 30b ... Injection hole, 33 ... Suction chamber, 39a, 39b ... First compression chamber,
40a, 40b ... second compression chamber, 41 ... oil suction hole, 43 ... valve retainer, 45 ... punching hole, 53,5
4 ... Reed valve, 55 ... Valve retainer, 59 ... Injection communication hole.
Claims (1)
揺動自在に噛み合わせ、両スクロール間に渦巻き形の圧
縮空間を形成し、前記圧縮空間は吸入側より吐出側に向
けて連続移行する複数個の圧縮室に区画されて流体を圧
縮し、前記固定スクロールに設けた吐出ポートおよび前
記吐出ポートを塞ぐ逆流防止弁装置を介して吐出室に吐
出するスクロール圧縮機構を形成し、吐出室の油溜また
は吐出室に通じる油溜を上流側とし、前記油溜よりも圧
力が低く前記吐出室に通じない第1圧縮室または吸入室
に通じる第2圧縮室を下流側とする絞り通路を有する給
油通路を設け、前記給油通路の途中に薄板を弁体とした
逆止弁装置を前記吐出室に接し前記油溜よりも上部の前
記固定スクロールの鏡板上に設け、前記弁体の弁押えと
前記弁体および前記鏡板とで前記弁体よりも下流側とな
る前記給油通路の一部を形成し、前記弁押えを微細に連
通する多孔質から成る焼結成形部材としたスクロール気
体圧縮機。1. A plurality of orbiting scrolls are oscillatably meshed with a fixed scroll to form a spiral compression space between the scrolls, and the compression spaces continuously move from the suction side toward the discharge side. Is formed in the compression chamber of the fixed scroll to discharge the fluid to the discharge chamber through a discharge port provided in the fixed scroll and a check valve device that closes the discharge port. Alternatively, an oil supply passage having a throttle passage in which an oil reservoir communicating with the discharge chamber is on the upstream side and a pressure lower than the oil reservoir is lower than the first compression chamber communicating with the discharge chamber or the second compression chamber communicating with the suction chamber is the downstream side A check valve device having a thin plate as a valve element is provided in the middle of the oil supply passage on the end plate of the fixed scroll that is in contact with the discharge chamber and above the oil reservoir, and the valve retainer of the valve element and the valve Body and front Than the valve body and the end plate forming part of said oil supply passage on the downstream side, scroll gas compressor which was sintered molded member formed of a porous communicating fine said valve retainer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18718287A JPH0639952B2 (en) | 1987-07-27 | 1987-07-27 | Scroll gas compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18718287A JPH0639952B2 (en) | 1987-07-27 | 1987-07-27 | Scroll gas compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6432091A JPS6432091A (en) | 1989-02-02 |
JPH0639952B2 true JPH0639952B2 (en) | 1994-05-25 |
Family
ID=16201543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18718287A Expired - Lifetime JPH0639952B2 (en) | 1987-07-27 | 1987-07-27 | Scroll gas compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0639952B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000179460A (en) * | 1998-12-15 | 2000-06-27 | Denso Corp | Compressor |
CN103032320B (en) * | 2011-09-30 | 2015-09-23 | 思科涡旋科技(杭州)有限公司 | There is the scroll fluid displacement device of steady pressure back pressure chamber |
CN103032319B (en) * | 2011-09-30 | 2017-03-29 | 思科涡旋科技(杭州)有限公司 | Oil-free and micro-oil scroll fluid displacement device |
-
1987
- 1987-07-27 JP JP18718287A patent/JPH0639952B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6432091A (en) | 1989-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2782858B2 (en) | Scroll gas compressor | |
JP3635794B2 (en) | Scroll gas compressor | |
JP3263386B2 (en) | Scroll compressor | |
JP4104047B2 (en) | Scroll compressor | |
JP3028054B2 (en) | Scroll gas compressor | |
JPH09170574A (en) | Scroll gas compressor | |
JP4529118B2 (en) | Scroll compressor for helium | |
JPH07109195B2 (en) | Scroll gas compressor | |
JPH06317271A (en) | Closed type scroll compressor | |
JPH0639952B2 (en) | Scroll gas compressor | |
JPS61218792A (en) | Scroll compressor | |
JP3584533B2 (en) | Scroll compressor | |
JPH0633788B2 (en) | Scroll gas compressor | |
JP2870488B2 (en) | Scroll gas compressor | |
JP2674562B2 (en) | Scroll refrigerant compressor with refueling control means | |
JPH0631631B2 (en) | Scroll gas compressor | |
JPH09158856A (en) | Scroll gas compressor | |
JPH02227583A (en) | Scroll compressor | |
JPH0733827B2 (en) | Gas scroll compressor | |
JPH0633787B2 (en) | Scroll gas compressor | |
JPH0637877B2 (en) | Scroll gas compressor with check valve device for differential pressure lubrication | |
JPH073229B2 (en) | Scroll gas compressor | |
JPH077589Y2 (en) | Fixing device for oil supply pipe of scroll gas compressor | |
JPH0742945B2 (en) | Scroll gas compressor | |
JP3635826B2 (en) | Scroll compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080525 Year of fee payment: 14 |