[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0639601B2 - Method for producing Nd-Fe based plastic magnet material - Google Patents

Method for producing Nd-Fe based plastic magnet material

Info

Publication number
JPH0639601B2
JPH0639601B2 JP61265632A JP26563286A JPH0639601B2 JP H0639601 B2 JPH0639601 B2 JP H0639601B2 JP 61265632 A JP61265632 A JP 61265632A JP 26563286 A JP26563286 A JP 26563286A JP H0639601 B2 JPH0639601 B2 JP H0639601B2
Authority
JP
Japan
Prior art keywords
alloy
plastic
magnet material
plastic magnet
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61265632A
Other languages
Japanese (ja)
Other versions
JPS63121601A (en
Inventor
嵩司 古谷
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61265632A priority Critical patent/JPH0639601B2/en
Publication of JPS63121601A publication Critical patent/JPS63121601A/en
Publication of JPH0639601B2 publication Critical patent/JPH0639601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、Nd−Fe系異方性プラスチック磁石材料の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an Nd—Fe based anisotropic plastic magnet material.

従来の技術 永久磁石材料は、一般家庭電気製品から精密機器、自動
車部品に至るまで、広い分野にわたって使用されてお
り、電子機器の小型化、高効率化の要求に伴い、その磁
気特性の向上が益々求められるようになっている。
2. Description of the Related Art Permanent magnet materials are used in a wide range of fields from general household electric appliances to precision equipment and automobile parts. With the demand for miniaturization and high efficiency of electronic equipment, their magnetic properties have been improved. Increasingly demanding.

従来、異方性プラスチック磁石材料としては、Sm−C
o系プラスチック磁石材料が知られている。即ち、Sm
−Co合金インゴットを熱処理し、粉砕し、プラスチッ
クバインダーと混合し、圧縮成形又は射出成形すること
によって製造するものである。しかしながら、この異方
性プラスチック磁石材料は、最大エネルギー積が低い。
Conventionally, as an anisotropic plastic magnet material, Sm-C
O-based plastic magnet materials are known. That is, Sm
It is manufactured by heat treating a Co alloy ingot, crushing, mixing with a plastic binder, and compression molding or injection molding. However, this anisotropic plastic magnet material has a low maximum energy product.

一方、Nd−Fe系磁石材料に就いても、種々の提案が
なされており、プラスチック磁石材料については、合金
を急冷凝固させてリボンとし、それを200μ程度の粒
子サイズに粉砕し、プラスチックと混合し、成形して、
等方性のプラスチック磁石材料を製造する方法と、合金
インゴットを溶製し、それを熱処理し、機械的に粉砕
し、得られた微粉末をプラスチックと混合して圧縮成形
又は射出成形することによってプラスチック磁石材料を
製造する方法とが知られている。
On the other hand, various proposals have been made for Nd-Fe based magnet materials as well. For plastic magnet materials, alloys are rapidly cooled and solidified into ribbons, which are pulverized to a particle size of about 200 μ and mixed with plastic. And then mold it
A method for producing an isotropic plastic magnet material, and by melting an alloy ingot, heat treating it, mechanically crushing it, and mixing the resulting fine powder with a plastic for compression molding or injection molding. Methods for producing plastic magnet materials are known.

発明が解決しようとする問題点 しかしながら、上記Sm−Co系異方性プラスチック磁
石材料を製造する方法によってNd−Fe系プラスチッ
ク磁石材料を製造すると、得られる磁石材料は、保磁力
が著しく低いものになり、実用に供することができな
い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, when an Nd—Fe plastic magnetic material is produced by the method for producing an Sm—Co anisotropic plastic magnetic material, the obtained magnetic material has a remarkably low coercive force. And cannot be put to practical use.

以上のように従来の技術では、Nd−Fe系プラスチッ
ク磁石材料については、充分な磁気特性を有する異方性
のものを製造することができなかった。
As described above, with the conventional technique, it was not possible to manufacture an anisotropic Nd-Fe plastic magnet material having sufficient magnetic characteristics.

本発明は、このような従来技術の問題点に鑑みてなされ
たものである。したがって、本発明の目的は、Nd−F
e系の異方性プラスチック磁石材料を製造する方法を提
供することにある。
The present invention has been made in view of such problems of the conventional technology. Therefore, the object of the present invention is to provide Nd-F.
An object of the present invention is to provide a method for producing an e-type anisotropic plastic magnet material.

問題点を解決するための手段 本発明者等は、検討の結果、Nd−Fe合金を急冷凝固
して作成された合金リボンを粉砕して得た合金粉末を、
プレスによって塑性変形させ、得られた成形体を粉砕す
ると、その粉末を用いて作成されたプラスチック磁石材
料は優れた特性を有する異方性のものになるということ
を見出だし、本発明を完成するに至った。
Means for Solving the Problems As a result of investigations, the present inventors have found that alloy powder obtained by crushing an alloy ribbon produced by rapidly solidifying an Nd—Fe alloy is
It was found that when a plastic body is plastically deformed by pressing and the obtained molded body is crushed, a plastic magnet material produced by using the powder becomes anisotropic having excellent properties, and the present invention is completed. Came to.

すなわち、本発明のNd−Fe系異方性プラスチック磁
石材料の製造方法は、Nd−Fe系合金を急冷凝固して
作製された合金リボンを粉砕して得た合金粉末又はその
成形体を、真空中又は不活性ガス中、600℃〜800
℃の温度でプレスによって塑性変形させ、得られた成形
体を粉砕し、プラスチックバインダーと混合し、磁場中
で圧縮成形又は射出成形することを特徴とする。
That is, the method for producing an Nd-Fe-based anisotropic plastic magnet material of the present invention is a method in which an alloy powder obtained by crushing an alloy ribbon produced by rapid solidification of an Nd-Fe-based alloy or a compact thereof is vacuum Medium or in inert gas, 600 ℃ ~ 800
It is characterized in that it is plastically deformed by pressing at a temperature of ° C, the obtained molded body is crushed, mixed with a plastic binder, and compression-molded or injection-molded in a magnetic field.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明において用いるNd−Fe系合金としては、次の
一般式で示されるものが有利に使用できる。
As the Nd-Fe alloy used in the present invention, those represented by the following general formula can be advantageously used.

NdFe1−x−y (式中、0.05≦x≦0.30、0.01≦y≦0.
1(モル比)) 上記一般式中、Ndは、その一部が他の希土類元素によ
って置換されていてもよく、又、Bは、その一部がC、
N、Si、PおよびAlから選択された1種又はそれ以
上の元素で置換されていてもよい。また、Feは、その
20重量%までをCo、Mn、Ni、Ti、Zr、H
f、V、Nb、Cr、Ta、Mo及びWから選択された
1種又はそれ以上の元素によって置換されていてもよ
い。
Nd x B y Fe 1-x -y ( wherein, 0.05 ≦ x ≦ 0.30,0.01 ≦ y ≦ 0.
1 (molar ratio)) In the above general formula, part of Nd may be substituted with another rare earth element, and part of B may be part of C,
It may be substituted with one or more elements selected from N, Si, P and Al. Further, Fe contains Co, Mn, Ni, Ti, Zr and H up to 20% by weight.
It may be substituted with one or more elements selected from f, V, Nb, Cr, Ta, Mo and W.

本発明は、まず、上記Ne−Fe系合金を溶製し、それ
を、例えば、回転する片ロール上で急冷凝固させて合金
リボンを製造し、それを150μ前後の粒径にまで粉砕
してNd−Fe系合金の粉末を得る。
In the present invention, first, the Ne—Fe alloy is melted and rapidly solidified, for example, on a rotating single roll to manufacture an alloy ribbon, and the alloy ribbon is crushed to a particle size of about 150 μm. A powder of Nd-Fe alloy is obtained.

次に、この合金粉末を、そのままの状態で、又はプレス
によって成形した成形体の状態で、真空中、又は不活性
ガス中において、600〜800℃の温度まで加熱し、
その後、その温度でプレスによって塑性変形させる。又
は、上記合金粉末又はその成形体を、真空中、又は不活
性ガス中、600〜800℃の温度まで加熱しながら、
プレスによって塑性変形させる。塑性変形は、例えば、
ステンレス鋼の容器の中に上記粉末又は成形体を真空中
又は不活性ガス中で封じ込め、プレスによって圧縮する
ことによって行う。この場合、加工率20%以上になる
ように行うのが好ましい。
Next, this alloy powder is heated to a temperature of 600 to 800 ° C. in a vacuum or in an inert gas in the state as it is or in the state of a molded body formed by pressing,
After that, it is plastically deformed by pressing at that temperature. Alternatively, while heating the alloy powder or the molded body thereof in vacuum or in an inert gas to a temperature of 600 to 800 ° C.,
Plastically deform by pressing. Plastic deformation is, for example,
It is carried out by confining the above powder or compact in a stainless steel container in a vacuum or in an inert gas and compressing it with a press. In this case, the processing rate is preferably 20% or more.

塑性変形によって形成された成形体は、平均粒径150
μ程度に粉砕し、得られた粉末にバインダーとしてプラ
スチックを添加し、混合する。混合物は、常法により磁
界中で圧縮成形又は射出成形され、所定の形状のNe−
Fe系プラスチック磁石材料が得られる。この場合に使
用するプラスチックとしては、公知のものならば、いず
れのものでも使用できるが、例えば、圧縮成形の場合に
は、エポキシ樹脂、フェノール樹脂等の硬化性樹脂が有
利に使用され、又、射出成形の場合にはナイロン等のポ
リアミド、プロピレン等のポリオレフィン、ポリエチレ
ンテレフタレート等のポリエステルが有利に使用され
る。
The molded body formed by plastic deformation has an average particle size of 150.
It is pulverized to about μ, and plastic is added as a binder to the obtained powder and mixed. The mixture is compression-molded or injection-molded in a magnetic field by a conventional method, and Ne-
An Fe-based plastic magnet material is obtained. As the plastic used in this case, any known plastic can be used, but for example, in the case of compression molding, a curable resin such as an epoxy resin or a phenol resin is advantageously used, and, In the case of injection molding, polyamide such as nylon, polyolefin such as propylene and polyester such as polyethylene terephthalate are advantageously used.

作用 本発明においては、Nd−Fe系合金の超急冷により作
成した合金リボンを粉砕して得られた合金粉末又はその
成形体を、真空中又は不活性ガス中、600〜800℃
の温度において塑性変形させると、急冷凝固によって形
成された微結晶が一方向に揃って成長し、異方性の出や
すい形態のものとなる。したがって、このような微結晶
粒子を持つ微粉末をプラスチックバインダーと混合し、
磁場中で圧縮成形又は射出成形すると、優れた磁気特性
を有する異方性のプラスチック磁石材料が得られる。
Action In the present invention, the alloy powder obtained by crushing the alloy ribbon prepared by the ultra-quick cooling of the Nd-Fe alloy, or the molded product thereof, is heated in vacuum or in an inert gas at 600 to 800 ° C.
When it is plastically deformed at the temperature of, the crystallites formed by the rapid solidification grow in one direction in a uniform manner and have an anisotropic form. Therefore, mixing a fine powder with such microcrystalline particles with a plastic binder,
Compression molding or injection molding in a magnetic field gives anisotropic plastic magnet materials with excellent magnetic properties.

実施例 以下、実施例によって本発明を説明する。EXAMPLES Hereinafter, the present invention will be described with reference to examples.

Nd13Fe71.9Co100.1なる組成を
有する合金をアルゴン雰囲気中でボタンアーク炉によっ
て作成した。更に、この合金を超急冷装置で合金リボン
とし、その後、平均粒径150μmになるように粉砕し
て、合金粉末を得た。この合金粉末を金型中で成形圧力
5ton/cm2をかけて成形した。得られた成形体をステン
レス鋼の容器の中に入れ、真空中で封じ込めた。この封
じ込められた成形体を、プレスにより下記の温度で加工
率70%になるように塑性変形させた。
An alloy having a composition of Nd 13 Fe 71.9 Co 5 B 10 N 0.1 was prepared by a button arc furnace in an argon atmosphere. Further, this alloy was formed into an alloy ribbon by an ultra-quenching device, and then pulverized to an average particle size of 150 μm to obtain an alloy powder. This alloy powder was molded in a mold under a molding pressure of 5 ton / cm 2 . The obtained molded body was placed in a stainless steel container and sealed in a vacuum. The enclosed compact was plastically deformed by a press at the following temperature so that the processing rate was 70%.

a)550℃、b)600℃、c)650℃、d)70
0℃、e)750℃、f)800℃、g)850℃ 上記の条件で作成した成形体を平均粒径150μmにな
るように再粉砕した。得られた粉末にエポキシ樹脂2重
量%を添加し、混合した。得られた混合物を15KOe
の磁場中で圧力7ton/cm2で成形した。又、射出成形す
るために、チタンカップリング剤を0.3重量%添加
し、ナイロン12を8重量%と混合した。得られた混合
物を15KOeの磁場中で、アルゴン雰囲気下で射出成
形した。得られた異方性プラスチック磁石材料の磁気特
性を下記表に示す。
a) 550 ° C, b) 600 ° C, c) 650 ° C, d) 70
0 ° C., e) 750 ° C., f) 800 ° C., g) 850 ° C. The molded body produced under the above conditions was re-ground to an average particle size of 150 μm. 2% by weight of epoxy resin was added to the obtained powder and mixed. The resulting mixture is 15 KOe
Molded at a pressure of 7 ton / cm 2 in a magnetic field of. For injection molding, 0.3% by weight of titanium coupling agent was added and 8% by weight of nylon 12 was mixed. The obtained mixture was injection-molded in a magnetic field of 15 KOe under an argon atmosphere. The magnetic properties of the obtained anisotropic plastic magnet material are shown in the following table.

なお、下記表には、比較のために、プレスによる塑性変
形を行わなかった場合、即ち、超急冷によって形成され
た合金リボンを粉砕して得た合金粉末を、そのままプラ
スチックと混合し、圧縮成形又は射出成形した場合につ
いても、得られたプラスチック磁石材料の磁気特性を比
較例hとして示す。
In the following table, for comparison, when the plastic deformation by the press is not performed, that is, the alloy powder obtained by crushing the alloy ribbon formed by the ultra-quenching is mixed with the plastic as it is, and the compression molding is performed. Alternatively, also in the case of injection molding, the magnetic characteristics of the obtained plastic magnet material are shown as Comparative Example h.

上記表に示された結果からも明らかなように600〜8
00℃の温度において塑性変形を行った場合には、得ら
れた異方性プラスチック磁石材料は優れた磁気特性を有
するものであった。特に、700〜750℃において塑
性変形を行った場合には、磁気特性が特に優れたものと
なった。
As is clear from the results shown in the above table, 600-8
When plastically deformed at a temperature of 00 ° C., the obtained anisotropic plastic magnet material had excellent magnetic properties. Particularly, when the plastic deformation was performed at 700 to 750 ° C., the magnetic characteristics became particularly excellent.

発明の効果 本発明は、上記のように、超急冷によって形成されたN
d−Fe系合金リボンを粉砕して得られた合金粉末又は
その成形体を、真空中又は不活性ガス中で600〜80
0℃の温度において塑性変形させるから、超急冷によっ
て形成された微結晶が一方向に揃って成長し、したがっ
て、このような微結晶粒子を持つ微粉末を用いて得られ
たプラスチック磁石材料は、異方性のもので、優れた磁
気特性を有するものとなる。
EFFECTS OF THE INVENTION As described above, the present invention is based on N formed by ultra-quenching.
The alloy powder obtained by pulverizing the d-Fe alloy ribbon or a compact thereof is 600 to 80 in vacuum or in an inert gas.
Since it is plastically deformed at a temperature of 0 ° C., the microcrystals formed by ultra-quenching grow in one direction, and therefore, the plastic magnet material obtained by using the fine powder having such crystallite particles is It is anisotropic and has excellent magnetic properties.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Nd−Fe系合金の超急冷により作成した
合金リボンを粉砕して得られた合金粉末又はその成形体
を、真空中又は不活性ガス中、600〜800℃の温度
でプレスによって塑性変形させ、得られた成形体を粉砕
し、プラスチックバインダーと混合し、磁場中で圧縮成
形又は射出成形することを特徴とするNd−Fe系異方
性プラスチック磁石材料の製造方法。
1. An alloy powder obtained by pulverizing an alloy ribbon prepared by ultra-quenching an Nd-Fe alloy, or a compact thereof, is pressed in vacuum or in an inert gas at a temperature of 600 to 800 ° C. A method for producing an Nd-Fe-based anisotropic plastic magnet material, which comprises plastically deforming, crushing the obtained molded body, mixing with a plastic binder, and compression molding or injection molding in a magnetic field.
JP61265632A 1986-11-10 1986-11-10 Method for producing Nd-Fe based plastic magnet material Expired - Lifetime JPH0639601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265632A JPH0639601B2 (en) 1986-11-10 1986-11-10 Method for producing Nd-Fe based plastic magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265632A JPH0639601B2 (en) 1986-11-10 1986-11-10 Method for producing Nd-Fe based plastic magnet material

Publications (2)

Publication Number Publication Date
JPS63121601A JPS63121601A (en) 1988-05-25
JPH0639601B2 true JPH0639601B2 (en) 1994-05-25

Family

ID=17419833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265632A Expired - Lifetime JPH0639601B2 (en) 1986-11-10 1986-11-10 Method for producing Nd-Fe based plastic magnet material

Country Status (1)

Country Link
JP (1) JPH0639601B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623731B2 (en) * 1988-07-29 1997-06-25 三菱マテリアル株式会社 Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet

Also Published As

Publication number Publication date
JPS63121601A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
US5049203A (en) Method of making rare earth magnets
US5352301A (en) Hot pressed magnets formed from anisotropic powders
US5125988A (en) Rare earth-iron system permanent magnet and process for producing the same
JPH0447024B2 (en)
US4834812A (en) Method for producing polymer-bonded magnets from rare earth-iron-boron compositions
US5213631A (en) Rare earth-iron system permanent magnet and process for producing the same
JPH0551656B2 (en)
US6001193A (en) Hard magnetic alloy compact and method of producing the same
JPH0320046B2 (en)
JP3277932B2 (en) Magnet powder, method for producing bonded magnet, and bonded magnet
JP3277933B2 (en) Magnet powder, method for producing bonded magnet, and bonded magnet
JPH0639601B2 (en) Method for producing Nd-Fe based plastic magnet material
JPH0680608B2 (en) Rare earth magnet manufacturing method
US5004499A (en) Rare earth-iron-boron compositions for polymer-bonded magnets
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPS62177150A (en) Permanent magnet material and its production
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS58186906A (en) Permanent magnet and preparation thereof
JP2725004B2 (en) Manufacturing method of permanent magnet
JP3779338B2 (en) Method for producing magnetic material powder and method for producing bonded magnet
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPH10135020A (en) Radial anisotropic bond magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term