[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0638961B2 - Shape control method for rolled material - Google Patents

Shape control method for rolled material

Info

Publication number
JPH0638961B2
JPH0638961B2 JP59254018A JP25401884A JPH0638961B2 JP H0638961 B2 JPH0638961 B2 JP H0638961B2 JP 59254018 A JP59254018 A JP 59254018A JP 25401884 A JP25401884 A JP 25401884A JP H0638961 B2 JPH0638961 B2 JP H0638961B2
Authority
JP
Japan
Prior art keywords
shape
rolled material
component
parameters
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59254018A
Other languages
Japanese (ja)
Other versions
JPS61132213A (en
Inventor
哲夫 万中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59254018A priority Critical patent/JPH0638961B2/en
Priority to KR1019850008790A priority patent/KR930001222B1/en
Priority to BR8506006A priority patent/BR8506006A/en
Priority to CN85109707A priority patent/CN1030693C/en
Priority to US06/803,642 priority patent/US4726213A/en
Priority to ZA859253A priority patent/ZA859253B/en
Publication of JPS61132213A publication Critical patent/JPS61132213A/en
Publication of JPH0638961B2 publication Critical patent/JPH0638961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/42Control of flatness or profile during rolling of strip, sheets or plates using a combination of roll bending and axial shifting of the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/04Flatness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、圧延材の形状制御方法に関する。TECHNICAL FIELD The present invention relates to a shape control method for rolled material.

〔発明の背景〕[Background of the Invention]

形状制御を行うためには、圧延材の形状をパターン認識
する必要がある。従来の形状制御システムでは、4次の
べき級数で形状を定着化されていた。
In order to control the shape, it is necessary to recognize the pattern of the shape of the rolled material. In the conventional shape control system, the shape is fixed by a quartic power series.

しかしながら、圧延材の形状に影響を与える要因は、板
幅方向に、なだらかな分布をしているとは限らず、例え
ば、第2図に示す様なロールのヒートクラウンや、圧延
前の材料の幅方向板厚分布あるいは、同方向硬度分布等
は、板端部より若干内側で急激に変化する事からより高
次のべき級数で形状を認識する必要があり、(1)式の様
な6次のべき級数で最小自乗近似する事が、例えば、特
公昭50−38395号に記載されている。
However, the factors that influence the shape of the rolled material are not always the smooth distribution in the strip width direction. For example, the heat crown of a roll as shown in FIG. Since the width-direction plate thickness distribution or the same-direction hardness distribution changes abruptly slightly inside the plate edge, it is necessary to recognize the shape with a higher power series. Least squares approximation with the following power series is described in, for example, Japanese Examined Patent Publication No. 50-38395.

y=λx+λ+λ+λ+λ
+λ ……(1) y:急崚度 x:板幅方向座標 λ〜λ:形状パラメータ このとき、制御モデルを簡略化のために(1)式を対称
成分と非対称成分に分離することができる。
y = λ 1 x + λ 2 x 2 + λ 3 x 3 + λ 4 x 4 + λ 5 x 5
+ Λ 6 x 6 ...... (1 ) y: rapid崚度x: plate width direction coordinates λ~λ 6: shape parameter this time, separating the symmetric component and asymmetrical component (1) in order to simplify the control model can do.

つまり、対称成分は、 y=λ+λ+λ で表され、非対称成分は、 y=λx+λ+λ で表せる。That is, the symmetric component is represented by y s = λ 2 x 2 + λ 4 x 4 + λ 6 x 6 , and the asymmetric component is represented by y n = λ 1 x + λ 3 x 3 + λ 5 x 5 .

そして、対称成分と非対称成分は独立に扱うことが可能
なため以下非対称成分について記述する。
Since the symmetric component and the asymmetric component can be treated independently, the asymmetric component will be described below.

ここで、λ、λ、λを非対称成分形状パラメータ
と定義する。非対称成分形状パラメータと操作端との関
係は微小変化分において線形化され次ぎの(2)式で表
せる。
Here, λ 1 , λ 3 , and λ 5 are defined as asymmetric component shape parameters. The relationship between the asymmetric component shape parameter and the operation end is linearized in the minute change amount and can be expressed by the following equation (2).

この(2)式においてa11,a21,a31は制御ゲ
インでありそれぞれ非対称操作端DMを単独に微小量
だけ変化させたときの形状パラメータλ,λ,λ
の変化量を意味し、a12,a22,a32はそれぞ
れ、非対称操作端DMを単独に微小量だけ変化させた
ときの形状パラメータλ,λ,λの変化量を意味
し、a13,a23,a33は、それぞれ非対称操作端
DMを単独に微小量だけ変化させたときの形状パラメ
ータλ,λ,λの変化量を意味しており、これら
の値は、実験的もしくは、圧延機の特徴を示す数式モデ
ルによつて計算できる。
In this equation (2), a 11 , a 21 , and a 31 are control gains, which are shape parameters λ 1 , λ 3 , and λ 5 when the asymmetrical operating end DM 1 is individually changed by a small amount.
Means the amount of change, a 12, a 22, a 32 , respectively, the shape parameter lambda 1 when alone varied by a very small amount of an asymmetric operating end DM 2, lambda 3, means a variation of lambda 5 , A 13 , a 23 , a 33 mean the amount of change in the shape parameters λ 1 , λ 3 , λ 5 when the asymmetrical operating end DM 3 is independently changed by a small amount, and these values Can be calculated experimentally or by a mathematical model showing the characteristics of the rolling mill.

したがつて、目標形状と実績形状の偏差Δλ,Δ
λ,Δλが求まれば、その偏差を修正する操作補正
量ΔDM,ΔDM,ΔDMが(2)式より得られ
る。
Therefore, the deviation between the target shape and the actual shape Δλ 1 , Δ
When λ 3 and Δλ 5 are obtained, operation correction amounts ΔDM 1 , ΔDM 2 and ΔDM 3 for correcting the deviations are obtained from the equation (2).

しかしながら、(2)式の一例でわかる様に形状不良を高
次まで認識し制御しようとすると、操作端と、形状パラ
メータを関係付ける制御ゲインの数が多く成り、調整が
難かしくなる。また、どれか1つの操作端が、操作能力
の限界に達した場合、(2)式の制御システムでは各操作
端が相互に干渉するため他の操作端の操作能力に余裕が
あつても有効に制御できなくなる。この時、形状不良の
うち一次関数で最小自乗近似で認識される非対称形状不
良が存在すると、形状不良が存在するのみならず、板の
蛇行の発生原因となり、圧延操業上好ましくない現象が
発生する。
However, as shown in the example of the equation (2), if the shape defect is recognized and controlled to a higher order, the number of control gains that relate the operation end and the shape parameter increases, and the adjustment becomes difficult. In addition, when any one of the operating ends reaches the limit of operating capacity, the operating system of formula (2) interferes with each other, so it is effective even if the operating capacity of other operating ends has a margin. Out of control. At this time, if there is an asymmetrical shape defect that is recognized by the least-squares approximation by a linear function among the shape defects, not only the shape defect is present but also the meandering of the plate is caused, which causes an unfavorable phenomenon in the rolling operation. .

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記欠点を解消し、圧延材の形状を良
好に修正し、形状パラメーターと操作端とを関係付ける
制御ゲインの数を減らすことにより調整の容易な形状制
御方法を提供することにある。
An object of the present invention is to provide a shape control method which eliminates the above-mentioned drawbacks, satisfactorily corrects the shape of a rolled material, and reduces the number of control gains that relate the shape parameter and the operating end to each other. It is in.

〔発明の概要〕[Outline of Invention]

本願発明は圧延材の形状を、圧延材の蛇行の原因である
非対称形状不良の基本成分を認識するパラメータと、該
形状の内、該基本成分を取り除いた、残りの高次形状不
良を表わすパラメータを定義し、非対称基本形状成分パ
ラメータを制御する操作端として圧下レベリング装置を
用い、形状高次成分パラメータを制御する操作端とし
て、上記レベリング装置以外の操作端を用いることに特
徴がある。
The invention of the present application, the shape of the rolled material, a parameter for recognizing the basic component of the asymmetric shape defect that causes the meandering of the rolled material, and a parameter representing the remaining higher-order shape defect of the shape from which the basic component is removed Is defined, and a reduction leveling device is used as an operating end for controlling the asymmetric basic shape component parameter, and an operating end other than the leveling device is used as an operating end for controlling the higher-order shape component parameter.

〔発明の実施例〕Example of Invention

次に、本発明の実施例を図を用いて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

6段圧延機を用いた、形状制御システムの構成例を第1
図に示す。圧延機1により圧延された鋼板2は、デフロ
ール3を介して、テンシヨンリール4に巻き取られる。
鋼板の形状は、形状検出器5により検出され、形状認識
装置10により形状パラメータが検出される。操作補正
量算出装置12は、目標形状発生器11と、形状認識装
置10から得られた実績形状パラメーターとの偏差か
ら、操作補正量を、作業ロールベンデイング装置15、
中間ロールベンデイング装置16、中間ロールシフト装
置14、圧下装置13に与える。
First example of configuration of shape control system using 6-high rolling mill
Shown in the figure. The steel plate 2 rolled by the rolling mill 1 is wound around the tension reel 4 via the deroll 3.
The shape of the steel sheet is detected by the shape detector 5, and the shape recognition device 10 detects the shape parameter. The operation correction amount calculation device 12 calculates the operation correction amount from the deviation between the target shape generator 11 and the actual shape parameter obtained from the shape recognition device 10, and the work roll bending device 15,
It is given to the intermediate roll bending device 16, the intermediate roll shift device 14, and the rolling down device 13.

形状検出器から得られた、板幅方向に関する数10点の
信号は、板幅方向の両板端を±1にする様に正規化され
た座標について、6次関数で最小自乗近似し、該近似関
数の6つの形状パラメータに圧縮される。
The signals of several tens points in the plate width direction obtained from the shape detector are subjected to least squares approximation with a 6th order function with respect to the coordinates normalized so that both plate ends in the plate width direction are ± 1. It is compressed into 6 shape parameters of the approximation function.

形状は、急峻度,伸び率,応力,板厚等の幅方向分布で
表される、本実施例では、圧延材中央からの板厚分布Δ
hにより認識する。
The shape is represented by a widthwise distribution of steepness, elongation, stress, strip thickness, etc. In the present embodiment, the strip thickness distribution Δ from the center of the rolled material
Recognize by h.

第3図は、形状yと非対称基本成分yとの関係を表し
た概念図である。この非対称基本成分Dは、形状を1
次関数で最小自乗近似した時の1次の係数で定義され
(3),(4)式で表される。
FIG. 3 is a conceptual diagram showing the relationship between the shape y and the asymmetric basic component y B. This asymmetric basic component D L has a shape of 1
It is defined by the first-order coefficient when the least-squares approximation is performed with the following function.
It is expressed by Eqs. (3) and (4).

=λB1X+λB0 …………(3) D=λB1 …………(4) ここで、xは圧延材の幅方向座標を表し、幅方向の中央
をx=0とし、板の両端をそれぞれx=±1と定義する
と考え易い。
y B = λ B1 X + λ B0 ............ (3) D L = λ B1 ............ (4) wherein, x represents a width-direction coordinate of the rolled material, and the center in the width direction with x = 0, It is easy to think that defining both ends of the plate as x = ± 1.

第4図は、圧延材の形状から非対称基本形状成分を除却
した形状高次成分と非対称形状高次成分パラメータ
D.,Dとの関係を表した概念図である。第4図から
わかる様に、D.は−x.からx.までの形状の傾きを
表わす変数、Dは−xからxまでの形状の傾きを
表わす変数と定義され(5),(6)式で示される。
Fig. 4 shows the shape higher-order component obtained by removing the asymmetric basic shape component from the shape of the rolled material and the asymmetric shape higher-order component parameter D. , D q is a conceptual diagram showing a relationship with D q . As can be seen from FIG. Is -x. To x. Variable representing the tilt of the shape up, D q is defined as a variable representing the tilt of the shape from -x q to x q (5), represented by equation (6).

これらの形状パラメータD,D.,Dは6次近似関
数の係数より次式で算出される。
These shape parameters D L , D. , D q is calculated by the following equation from the coefficient of the 6th approximation function.

=λB1=αλ+αλ+αλ ……
……(7) α=1,α=3/5,α=3/7 これは、y=λx+λ+λ,y=λ
B1xとするとき、 を最小にするλB1を決定する。
D L = λ B1 = α 1 λ 1 + α 2 λ 3 + α 2 λ 5
(7) α 1 = 1, α 2 = 3/5, α 3 = 3/7 This is y = λ 1 x + λ 3 x 3 + λ 5 x 5 , y B = λ
When B1 x, Λ B1 that minimizes

∂J/∂λB1=Oとおくと、 (D)=λB1=λ+(3/5)λ+(3/7)λ となり、上記した(7)式におけるα,α,α
求まる。
If ∂J / ∂λ B1 = O, then (D L ) = λ B1 = λ 1 + (3/5) λ 3 + (3/7) λ 5 and α 1 in the above equation (7), α 2 and α 3 are obtained.

ここで、α11〜α23は板幅方向座標x,xによ
り決定される定数である。
Here, α 11 to α 23 are constants determined by the plate width direction coordinates x e and x q .

また、高次形状成分の対称成分は、第5図に示される様
に、板中央からxまでの板厚分布の傾きをC、板中
心からxまでの板厚分布の傾きをC、xからx
までの板厚分布の傾きをCと定義し、次式の線形変換
により算出される。
As shown in FIG. 5, the symmetric component of the higher-order shape component has a slope of the plate thickness distribution from the plate center to x q as C q , and a slope of the plate thickness distribution from the plate center as x n to C c. n , x q to x e
The slope of the plate thickness distribution up to is defined as C e, and is calculated by the linear conversion of the following equation.

β11〜β33はx,x,xにより決まる定数で
ある。
β 11 to β 33 are constants determined by x e , x q , and x n .

以上の処理の流れを第6図に示す。すなわちステツプ6
1では形状検出器5で検出された形状信号51から板形
状の6次関数近似をおこなう。それは例えば(1)式で表
わされるような形状である。
The flow of the above processing is shown in FIG. That is, step 6
In 1, the 6th-order function approximation of the plate shape is performed from the shape signal 51 detected by the shape detector 5. For example, it has a shape represented by equation (1).

ステツプ62では非対称基本形状パラメータ、すなわち
第3図に示したように一次関数の基本成分を1次の係数
で定義する。
In step 62, the asymmetric basic shape parameter, that is, the basic component of the linear function as shown in FIG. 3, is defined by the linear coefficient D L.

ステツプ63では非対象の一次成分を除く非対称高次成
分パラメータD,Dを算出する(第4図参照)。さ
らにステツプ64では高次の対称成分パラメータC
,Cを第5図に基づいて定義する。
Asymmetric high-order component parameters D e excluding non-target primary component in step 63, calculates the D q (see FIG. 4). Further, in step 64, the higher-order symmetric component parameter C e ,
C q and C n are defined based on FIG.

上記では、高次形状を認識するのに、板幅方向のある点
からある点までの傾きとして定義したが、フーリエ級数
等を用いたパターン認識をおこなうことも可能である。
In the above description, in order to recognize a higher-order shape, it is defined as the inclination from a certain point to a certain point in the plate width direction, but it is also possible to perform pattern recognition using a Fourier series or the like.

次に本発明にかかる非対象形状制御について説明する。Next, the non-target shape control according to the present invention will be described.

は、第7図に示す様に、形状に一次関数的に影響す
る、圧下レベリングDSで制御し、Dは、作業ロ
ールベンデイング圧差DF、中間ロールベンデイング
圧差DFの組み合せにより制御する。第8図は、対称
成分ロールベンデイング圧下とロールベンデイング圧差
DFとの関係を示す。
As shown in FIG. 7, D L is controlled by the reduction leveling DS that linearly affects the shape, and D e D q is the work roll bending pressure difference DF W and the intermediate roll bending pressure difference DF I. Control by combination. FIG. 8 shows the relationship between the symmetric component roll bending pressure reduction and the roll bending pressure difference DF.

以上定義した形状パラメータD,D,Dと各操作
端DS,DF,DFとの関係は次式で表現できる。
Above the defined shape parameters D L, D e, D q and each operation ends DS, DF W, the relationship between the DF I can be expressed by the following equation.

ここで、b11〜b33は(2)式により説明した制御ゲ
インである。
Here, b 11 ~b 33 is a control gain that described by equation (2).

ここで、目標形状と、実績形状との偏差ΔD,Δ
,ΔDが認識された時操作補正量算出装置は、(1
1)式より偏差を修正する補正量ΔDS,ΔDF,ΔD
を算出し、各操作端に出力される。
Here, the deviations ΔD L , Δ between the target shape and the actual shape
D e, the operation correction amount calculating device when the [Delta] D q is recognized, (1
Correction amount ΔDS, ΔDF W , ΔD that corrects the deviation from equation 1)
Calculating a F I, it is output to the operation end.

本事例では、レベリング差以外の操作端として作業ロー
ルベンデイング装置,中間ロールベンデイング装置を用
いたが、中間ロールシフトを高次成分修正用の操作端と
しても良い。
In this example, the work roll bending device and the intermediate roll bending device are used as the operating end other than the leveling difference, but the intermediate roll shift may be used as the operating end for correcting the higher order component.

この方法により、非対称基本形状不良修正と、高次形状
不良修正とは非干渉となり、ロールベンデイング圧等の
操作端が限界値に達した時でも、レベリング差による非
対称基本成分修正は、自由に制御可能であり鋼板の蛇行
の発生防止機能を充実すると共に、操作量と形状パラメ
ータを関係付ける、制御ゲインの数が少なくなり数式モ
デルを作成することが容易になる。また、操作量と形状
パラメータの関係を適応性を有した数式モデルで表現す
ることにより制御系を最適な状態に維持する方法が容易
にとれること等、高精度で安定な形状制御を行なうため
に既述のごとく多くの利点をもたらすことができる。
By this method, the asymmetric basic shape defect correction and the higher-order shape defect correction do not interfere with each other, and even when the operation end such as roll bending pressure reaches the limit value, the asymmetric basic component correction by the leveling difference can be freely performed. The function is controllable and the function of preventing the meandering of the steel sheet is enhanced, and the number of control gains that relate the operation amount and the shape parameter is reduced, which facilitates the creation of a mathematical model. In addition, in order to perform highly accurate and stable shape control, it is possible to easily take a method of maintaining the control system in an optimal state by expressing the relationship between the manipulated variable and the shape parameter with an adaptive mathematical model. As already mentioned, many advantages can be brought.

以上説明した実施例においては、板形状を6次関数近似
を行い圧延材の形状パターンNを6個のパラメータ(λ
,λ,λ,λ,λ,λ)で認識し、該認識
された圧延材の形状パターンを1次関数で近似し、該1
次関数の係数を1つのパラメータ(Dとし、該1次関
数成分を除く高次形状成分Mを5個のパラメータ(C
e,Cq,Cn,De,Dq)で認識し、該パラメータ
を圧下レベリング装置以外の5個の操作端、すなわち作
業ロールベンデイング装置、中間ロールベンデイング装
置、中間ロールシフト装置、作業ロールベンデイング圧
差及び中間ロールベンデイング圧差で分担制御するもの
である。
In the embodiment described above, the plate shape is approximated by a six-dimensional function, and the shape pattern N of the rolled material is calculated using six parameters (λ
1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ), and the recognized shape pattern of the rolled material is approximated by a linear function.
The coefficients of the following functions as one of the parameters (D L, the higher order shape components M except the primary function component five parameters (C
e, Cq, Cn, De, Dq), and the parameters are recognized by five operating ends other than the reduction leveling device, that is, a work roll bending device, an intermediate roll bending device, an intermediate roll shift device, a work roll bending device. The shared control is performed by the pressure difference and the intermediate roll bending pressure difference.

尚、本実施例においては、上記の場合についてのみ説明
したが、圧延材の形状をn次のべき級数で最小自乗近似
すれば、圧延材の形状パターンをN個のパラメータで認
識し、該認識された圧延材の形状パターンを1次関数で
近似し、該1次関数成分を除く高次形状成分をM個
((N−1)M1)のパラメータで認識し、該パラ
メータを圧下レベリング装置以外のM個の操作端で分担
制御することができるものである。
In the present embodiment, only the above case has been described. However, if the shape of the rolled material is approximated to the least squares with an n-th power series, the shape pattern of the rolled material is recognized by N parameters, and the recognition is performed. The shape pattern of the rolled material thus obtained is approximated by a linear function, and the higher-order shape components excluding the linear function component are recognized by M ((N-1) M1) parameters, and the parameters other than the reduction leveling device. It is possible to perform sharing control with M operation ends of.

本発明によれば、圧下装置のレベリング差による形状制
御と、他の操作端による形状制御とを、非干渉にできる
ので、鋼板の形状を良好に修正すると共に圧延材の蛇行
を積極的に防止する事が可能となり、さらに形状パラメ
ータと操作端とを関係付ける制御ゲインの数を減らすこ
とにより簡潔かつ調整の容易な実効ある形状制御方法の
提供が可能となる。
According to the present invention, the shape control by the leveling difference of the reduction device and the shape control by the other operating end can be made non-interfering, so that the shape of the steel sheet can be satisfactorily corrected and the meandering of the rolled material is positively prevented. Further, it is possible to provide an effective shape control method that is simple and easy to adjust by reducing the number of control gains that relate the shape parameter to the operation end.

尚、第2図に示す部品番号10〜16の装置は、マイコ
ン,制御用計算機等の処理手段へ置換することは容易に
類推可能であり、又本発明の本質を損なうものではな
い。さらに第2図は圧延機1の特定方向についてのみ示
したが可逆圧延機の出入側又は、連続圧延機の任意のス
タンド出入側に設置された形状検出器5においても同様
の効果が得られることも自明である。
It should be noted that it is possible to easily infer that the devices of part numbers 10 to 16 shown in FIG. 2 are replaced with processing means such as a microcomputer and a control computer, and the essence of the present invention is not impaired. Further, FIG. 2 shows only the specific direction of the rolling mill 1, but the same effect can be obtained also in the shape detector 5 installed on the entrance / exit side of the reversible rolling mill or on the stand entrance / exit side of the continuous rolling mill. Is also obvious.

〔発明の効果〕〔The invention's effect〕

本発明によると圧下装置のレベリング差による形状制御
を他の操作端の操作による形状制御とを非干渉に制御す
ることができる。
According to the present invention, the shape control due to the leveling difference of the reduction device can be controlled so as not to interfere with the shape control due to the operation of the other operation end.

【図面の簡単な説明】[Brief description of drawings]

第1図は、6段圧延機の形状制御システムの概要を示す
図、第2図は、作業ロールにヒートクラウンが発生した
状況を表わす正面図、第3図は、鋼板の形状と、非対称
基本成分を示す図、第4図は、鋼板の高次形状と、非対
称形状パラメータを示す図、第5図は、対称形状パラメ
ータを示す図、第7図は、圧下装置のレベリング差を示
す図、第8図は、ベンデイング圧差を示す図である。第
6図は、形状認識装置の処理内容を示すフローチヤート
である。 1…6段圧延機、2…圧延材、3…デフロール、4…テ
ンシヨンリール、5…形状検出器、6…中間ロール、7
…作業ロール、9…補強ロール、10…形状認識装置、
11…目標形状発生器、12…操作補正量算出装置、1
3…圧下装置、14…中間ロールシフト装置、15…作
業ロールベンデイング装置、16…中間ロールベンデイ
ング装置、17…ヒートクラウンの発生した作業ロー
ル、18…圧延材。
FIG. 1 is a view showing an outline of a shape control system of a 6-high rolling mill, FIG. 2 is a front view showing a situation where a heat crown is generated on a work roll, and FIG. 3 is a shape of a steel plate and an asymmetric basic Fig. 4 is a diagram showing components, Fig. 4 is a diagram showing higher-order shapes of steel plates and asymmetrical shape parameters, Fig. 5 is a diagram showing symmetrical shape parameters, and Fig. 7 is a diagram showing leveling difference of a reduction device. FIG. 8 is a diagram showing a bending pressure difference. FIG. 6 is a flow chart showing the processing contents of the shape recognition apparatus. 1 ... 6-high rolling mill, 2 ... Rolled material, 3 ... Deflour, 4 ... Tension reel, 5 ... Shape detector, 6 ... Intermediate roll, 7
… Work roll, 9… Reinforcing roll, 10… Shape recognition device,
11 ... Target shape generator, 12 ... Operation correction amount calculation device, 1
3 ... Reduction device, 14 ... Intermediate roll shift device, 15 ... Work roll bending device, 16 ... Intermediate roll bending device, 17 ... Work roll with heat crown, 18 ... Rolled material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧延材の形状パターンを、N(N1)個
のパラメータで認識し、圧延材の形状を制御する操作端
として、少なくとも圧下レベリング装置を含む複数の操
作端を備えた圧延機の形状制御方法において、検出され
た板形状のパターンを1次関数で近似し、該1次関数の
係数を1つのパラメータとするとともに、該パラメータ
を圧下レベリング装置で制御し、該検出された板形状か
ら、該1次関数成分を除く高次形状成分をM((N−
1)M1)個のパラメータで形状認識し、該パラメ
ータを該圧下レベリング装置以外のM個の操作端で分担
制御することを特徴とする圧延機の形状制御方法。
1. A rolling mill having a plurality of operating ends including at least a reduction leveling device as operating ends for recognizing a shape pattern of a rolled material by N (N1) parameters and controlling the shape of the rolled material. In the shape control method, the detected plate shape pattern is approximated by a linear function, the coefficient of the linear function is used as one parameter, and the parameter is controlled by a reduction leveling device to detect the detected plate shape. From the higher-order shape component excluding the linear function component from M ((N-
1) A shape control method for a rolling mill, characterized in that shape recognition is performed by M1) parameters, and the parameters are shared and controlled by M operation ends other than the reduction leveling device.
JP59254018A 1984-12-03 1984-12-03 Shape control method for rolled material Expired - Lifetime JPH0638961B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59254018A JPH0638961B2 (en) 1984-12-03 1984-12-03 Shape control method for rolled material
KR1019850008790A KR930001222B1 (en) 1984-12-03 1985-11-25 Method of controlling a shape of a rolled sheet material
BR8506006A BR8506006A (en) 1984-12-03 1985-11-29 PROCESS OF CONTROLLING THE PROFILE OF A LAMINATED THIN PLATE IN A LAMINATOR
CN85109707A CN1030693C (en) 1984-12-03 1985-12-02 Method for controlling shape of rolled plate-shaped material
US06/803,642 US4726213A (en) 1984-12-03 1985-12-02 Method of controlling a shape of a rolled sheet material
ZA859253A ZA859253B (en) 1984-12-03 1985-12-03 Shape controlling method of rolled sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59254018A JPH0638961B2 (en) 1984-12-03 1984-12-03 Shape control method for rolled material

Publications (2)

Publication Number Publication Date
JPS61132213A JPS61132213A (en) 1986-06-19
JPH0638961B2 true JPH0638961B2 (en) 1994-05-25

Family

ID=17259103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59254018A Expired - Lifetime JPH0638961B2 (en) 1984-12-03 1984-12-03 Shape control method for rolled material

Country Status (6)

Country Link
US (1) US4726213A (en)
JP (1) JPH0638961B2 (en)
KR (1) KR930001222B1 (en)
CN (1) CN1030693C (en)
BR (1) BR8506006A (en)
ZA (1) ZA859253B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140747A1 (en) * 2020-01-09 2021-07-15 パナソニックIpマネジメント株式会社 Roll press device, and control device

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712043C2 (en) * 1987-04-09 1995-04-13 Schloemann Siemag Ag Roll stand with axially displaceable rolls
US5375448A (en) * 1987-08-12 1994-12-27 Hitachi, Ltd. Non-interference control method and device
DE3823202A1 (en) * 1988-07-08 1990-01-11 Betr Forsch Inst Angew Forsch METHOD FOR COLD ROLLING SHEETS AND STRIPS
WO1990000450A1 (en) * 1988-07-11 1990-01-25 DAVID McKEE (POOLE) LIMITED Rolling of strip material
US5653137A (en) * 1989-05-31 1997-08-05 Hitachi, Ltd. Five-high rolling mill
US5239851A (en) * 1989-05-31 1993-08-31 Hitachi, Ltd. Rolling method of multi-high rolling mill for obtaining accurate sheet crown
JPH0523723A (en) * 1991-07-24 1993-02-02 Toshiba Corp Flatness measuring device and controller for continuous rolling mill provided with this flatness measuring device
US5325692A (en) * 1992-09-28 1994-07-05 Sumitomo Light Metal Industries, Ltd. Method of controlling transverse shape of rolled strip, based on tension distribution
FR2710145B1 (en) * 1993-09-17 1995-11-17 Gts Ind Method for measuring the shape and / or the flatness of a moving material, and device for its implementation.
JPH0899109A (en) * 1994-09-30 1996-04-16 Mitsubishi Electric Corp Shape controller for rolling mill
US6216505B1 (en) * 1999-06-25 2001-04-17 Sumitomo Metal Industries, Ltd. Method and apparatus for rolling a strip
IT1310880B1 (en) * 1999-07-20 2002-02-22 Danieli Off Mecc METHOD FOR STATIC AND DYNAMIC CONTROL OF THE PLANARITY OF LAMINATED FLAT PRODUCTS
IT1310879B1 (en) 1999-07-20 2002-02-22 Danieli Off Mecc LAMINATION CAGE FOR FLAT PRODUCTS AND METHOD FOR THE PLANARITY CONTROL OF THESE PRODUCTS
US6314776B1 (en) * 2000-10-03 2001-11-13 Alcoa Inc. Sixth order actuator and mill set-up system for rolling mill profile and flatness control
JP3649208B2 (en) * 2002-05-22 2005-05-18 株式会社日立製作所 Tandem rolling equipment control method and tandem rolling equipment
US6769279B1 (en) 2002-10-16 2004-08-03 Machine Concepts, Inc. Multiroll precision leveler with automatic shape control
JP4227497B2 (en) * 2003-10-15 2009-02-18 株式会社日立製作所 Feed forward thickness control apparatus and control method for rolling mill
JP5439704B2 (en) * 2006-12-18 2014-03-12 Jfeスチール株式会社 Steel strip shape detector
CN101648215B (en) * 2008-08-14 2011-07-20 宝山钢铁股份有限公司 Method for controlling strip-steel edge drop of tandem mills
CN101507977B (en) * 2009-03-20 2012-06-06 燕山大学 System error comprehensive compensation technique of strip-mill strip-shape detection device
US9186710B2 (en) * 2011-06-07 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Method for cooling hot-rolled steel sheet
US9566625B2 (en) 2011-06-07 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Apparatus for cooling hot-rolled steel sheet
US9211574B2 (en) * 2011-07-27 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing steel sheet
US9459086B2 (en) 2014-02-17 2016-10-04 Machine Concepts, Inc. Shape sensor devices, shape error detection systems, and related shape sensing methods
US10363590B2 (en) 2015-03-19 2019-07-30 Machine Concepts, Inc. Shape correction leveler drive systems
JP6074096B1 (en) * 2016-06-02 2017-02-01 Primetals Technologies Japan株式会社 Sheet profile control method for hot finishing tandem rolling mill and hot finishing tandem rolling mill
US10710135B2 (en) 2016-12-21 2020-07-14 Machine Concepts Inc. Dual-stage multi-roll leveler and work roll assembly
US11833562B2 (en) 2016-12-21 2023-12-05 Machine Concepts, Inc. Dual-stage multi-roll leveler and metal strip material flattening method
JP7323037B1 (en) * 2022-10-28 2023-08-08 Jfeスチール株式会社 Cold rolling method, steel plate manufacturing method, cold rolling equipment and steel plate manufacturing equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597806A (en) * 1979-01-17 1980-07-25 Hitachi Ltd Method and apparatus for correcting asymmetry of rolling mill
US4512170A (en) * 1983-09-30 1985-04-23 Kaiser Aluminum & Chemical Corporation Process and apparatus for strip flatness and tension measurements
US4587819A (en) * 1984-08-31 1986-05-13 Brown, Boveri & Cie Aktiengesellschaft Method and circuit for flatness control in rolling mills

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140747A1 (en) * 2020-01-09 2021-07-15 パナソニックIpマネジメント株式会社 Roll press device, and control device

Also Published As

Publication number Publication date
KR930001222B1 (en) 1993-02-22
ZA859253B (en) 1986-08-27
US4726213A (en) 1988-02-23
KR860004662A (en) 1986-07-11
JPS61132213A (en) 1986-06-19
CN1030693C (en) 1996-01-17
BR8506006A (en) 1986-08-19
CN85109707A (en) 1986-07-23

Similar Documents

Publication Publication Date Title
JPH0638961B2 (en) Shape control method for rolled material
JP3067879B2 (en) Shape control method in strip rolling
JP3016117B2 (en) Manufacturing method of tapered steel plate
JP3045070B2 (en) Manufacturing method of tapered plate
JP4227686B2 (en) Edge drop control method during cold rolling
JP3321051B2 (en) Method and apparatus for controlling shape of rolled material
JP4086119B2 (en) Shape control method in cold rolling of hot rolled steel strip before pickling
JPH0687011A (en) Method for rolling thick plate
JP4831863B2 (en) Flatness control method and apparatus
JPS6032522B2 (en) Plate crown reduction method
JPS63260614A (en) Device for controlling shape in cluster mill
JP3935116B2 (en) Thickness control device for rolling mill
JPH0234241B2 (en)
JPH0618651B2 (en) Width direction plate thickness difference control method and control device in the longitudinal direction of a thin steel plate
JP2771342B2 (en) Edge drop control method for rolling mill
JP2505990B2 (en) Edge-drop control method for strip rolling
JPS6323849B2 (en)
JPH0144403B2 (en)
JP3438871B2 (en) Rolling mill shape control method
JP2001179332A (en) Control method and device for winding banded steel material
JP2807555B2 (en) Automatic thickness control method
JPH10225702A (en) Automatic dimension controlling method of shapes edger rolling
JP2505989B2 (en) Edge-drop control method for strip rolling
JP2000218313A (en) Plate thickness control method and device for continuous hot rolling mill
JPH10128420A (en) Edge drop control method in cold rolling of plate