JPH0636614A - Electrically conductive wire - Google Patents
Electrically conductive wireInfo
- Publication number
- JPH0636614A JPH0636614A JP21203592A JP21203592A JPH0636614A JP H0636614 A JPH0636614 A JP H0636614A JP 21203592 A JP21203592 A JP 21203592A JP 21203592 A JP21203592 A JP 21203592A JP H0636614 A JPH0636614 A JP H0636614A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- shape memory
- shape
- core
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coils Of Transformers For General Uses (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、家電、通信等に用いら
れるトランス等のコイル、リード線に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to coils and lead wires for transformers and the like used in home appliances, communications and the like.
【0002】[0002]
【従来の技術】Ti−Ni系合金等の形状記憶合金がマ
ルテンサイト変態の逆変態に顕著な形状記憶効果を持つ
ことは、よく知られている。又、逆変態後の温度で超弾
性を持つこともよく知られている。形状記憶合金の中で
もTi−Ni系合金は、その性能の良さから実用合金と
して幅広い分野で使われている。しかし、この合金は電
気抵抗がニクロム線並のため、通電時の発熱が大きく導
電線としての実用には不向きであった。2. Description of the Related Art It is well known that shape memory alloys such as Ti-Ni alloys have a remarkable shape memory effect in the reverse transformation of martensitic transformation. It is also well known that it has superelasticity at the temperature after reverse transformation. Among shape memory alloys, Ti-Ni alloys are used in a wide range of fields as practical alloys because of their good performance. However, since this alloy has an electric resistance comparable to that of nichrome wire, it generates a large amount of heat when energized and is not suitable for practical use as a conductive wire.
【0003】[0003]
【発明が解決しようとする課題】一般に、トランス等の
コイルには真ちゅう等のCu基線が用いられている。し
かし、VTR等の同軸トランスの配線には、その収納場
所が狭いため配線時の変形が起き易く、自動化し難い難
点があった。一方、Cu−Zn−Al合金等のCu基合
金は、電気抵抗が小さいため導電性形状記憶合金線とし
て用いることは考えられるが、形状回復力の弱さ、径時
変化の点から実用化はされていない。そこで、本発明の
技術的課題は、上記欠点に鑑み、形状回復力が大きく、
径時変化が小さい形状記憶合金、特にTi−Ni系合金
を導電線として実用に供させることを目的とする。Generally, a Cu base line of brass or the like is used for a coil of a transformer or the like. However, the wiring of a coaxial transformer such as a VTR is apt to be deformed at the time of wiring because the storage space is small, which makes it difficult to automate. On the other hand, Cu-Zn-Al alloys and other Cu-based alloys are considered to be used as conductive shape memory alloy wires because of their low electric resistance, but they are not put to practical use in terms of weak shape recovery force and change over time. It has not been. Therefore, the technical problem of the present invention is, in view of the above drawbacks, that the shape recovery force is large,
The purpose is to practically use a shape memory alloy having a small change with time, particularly a Ti—Ni alloy as a conductive wire.
【0004】[0004]
【課題を解決するための手段】本発明によれば、形状記
憶合金を外皮に、Cu,Al,C,Sn等の導電物質を
内芯とすることで、任意の形状を保つことを特徴とする
導電線が得られる。又、本発明によれば、該形状記憶合
金のマルテンサイト変態温度以下の環境温度で導電線配
置部位に装着容易な形状に変形し、装着完了後、使用環
境温度で該合金を母相とすることで、設定形状に回復
し、かつ前記部位に対し保形を持続する導電線が得られ
る。又、本発明によれば、外皮がTi−Ni系合金チュ
ーブであることを特徴とする導電線が得られる。According to the present invention, an arbitrary shape can be maintained by using a shape memory alloy as an outer skin and a conductive material such as Cu, Al, C or Sn as an inner core. A conductive wire is obtained. Further, according to the present invention, the shape memory alloy is transformed into a shape that can be easily attached to the conductive wire disposition portion at an environmental temperature equal to or lower than the martensitic transformation temperature, and after the attachment is completed, the alloy is used as a matrix phase at an operating environmental temperature. As a result, a conductive wire that restores the set shape and maintains the shape of the portion is obtained. Further, according to the present invention, a conductive wire characterized in that the outer cover is a Ti-Ni alloy tube can be obtained.
【0005】[0005]
【作用】Cu,Al,C,Sn等の導電物質を0.03
φmm〜0.07φmmの内芯として、Ti−Ni系の
形状記憶合金を外皮に、0.005mm以上被覆するこ
とにより良好な導電性を有しつつ、更に良好な形状記憶
性を有する導電線が得られ、この導電線を使用して、例
えば同軸ロータリートランスコアの外側のローターコア
の巻線する場合等、内径の溝に巻コイルを巻き回すこと
が非常に困難であるが、この導電線を使用することによ
り、自由に冷水(0〜5℃)中で変形させて、巻コイル
を内径の溝内に挿入し装着後、室温(20〜25℃)に
加熱してやると、設定の巻コイルに復元して、同軸ロー
タリートランスコアに巻コイルを固定することができ
る。形状回復力が大きく、径時変化が小さい形状記憶合
金を使用した導電線を提供することができる。Function: Conductive material such as Cu, Al, C, Sn is 0.03
By using a Ti-Ni-based shape memory alloy as an inner core of φmm to 0.07φmm and covering the outer skin with 0.005 mm or more, a conductive wire having good shape memory while having good conductivity can be obtained. It is very difficult to wind the winding coil around the groove of the inner diameter by using this conductive wire, for example, when winding the outer rotor core of the coaxial rotary transformer core. By using it, you can freely transform it in cold water (0 to 5 ° C), insert the winding coil into the groove of the inner diameter, and after mounting it, heat it to room temperature (20 to 25 ° C) It can be restored and the winding coil can be fixed to the coaxial rotary transformer core. It is possible to provide a conductive wire using a shape memory alloy having a large shape recovery force and a small change with time.
【0006】[0006]
【実施例】下記に実施例にて詳細に説明する。EXAMPLES Examples will be described in detail below.
【0007】[0007]
【実施例1】高周波溶解法によって得たTi−50.5
at%Ni合金を熱間加工、冷間加工で外径3.0φm
m、内径2.6φmmのチューブとした後、径2.5φm
mのCu線を前記チューブに挿入した。その後、冷間加
工率30〜50%毎の焼鈍を繰り返し、伸線によって径
が0.08φmmの線を得た。得た線の断面はTi−N
i合金被膜の厚さが0.005mmであり、Cu線の径
は0.07φmmであった。次に、この線を束ねて径が
3φmmのコイル状に加工し、400℃で約1時間の熱
処理をした。その後、この線を冷水(0〜5℃)中で変
形し、内径3φmmのボビンに挿入し、室温(20〜2
5℃)まで加熱した。前記コイルは、形状が完全に回復
して、トランスのボビン内径に密着した。又、同コイル
の電気抵抗は、径が0.07φmmのCu線と同じ値を
示した。得られた線の断面が、Ti−Ni合金被膜の厚
さが0.005mmであり、Cu線の径が0.03φm
m、0.05φmmでも、径が0.07φmmのCu線と
同様なことを確かめたが、Cu線の径が0.03φm
m、0.05φmmの場合においても、形状記憶性が完
全に回復し、導電性は径が0.07φmmのCu線と同
様に良好であった。Example 1 Ti-50.5 obtained by a high frequency melting method
Outside diameter of 3.0φm by hot working and cold working of at% Ni alloy
m, 2.5 dia.
Cu wire of m was inserted into the tube. After that, annealing was repeated every cold working ratio of 30 to 50% to obtain a wire having a diameter of 0.08 mm by drawing. The cross section of the obtained wire is Ti-N
The thickness of the i alloy coating was 0.005 mm, and the diameter of the Cu wire was 0.07 mm. Next, the wires were bundled and processed into a coil shape having a diameter of 3 mm, and heat-treated at 400 ° C for about 1 hour. After that, this wire is deformed in cold water (0 to 5 ° C.), inserted into a bobbin with an inner diameter of 3φ mm, and heated to room temperature (20 to 2
Heated to 5 ° C). The coil has completely recovered its shape and is in close contact with the inner diameter of the bobbin of the transformer. The electric resistance of the coil showed the same value as that of the Cu wire having a diameter of 0.07 mm. The cross section of the obtained wire has a Ti—Ni alloy coating thickness of 0.005 mm and a Cu wire diameter of 0.03 φm.
It was confirmed that the diameter of the Cu wire was 0.03 mm, and the diameter of the Cu wire was 0.03 mm.
Even in the case of m and 0.05 mm, the shape memory property was completely recovered, and the conductivity was as good as the Cu wire having a diameter of 0.07 mm.
【0008】[0008]
【実施例2】高周波溶解法によって得たTi−50.5
at%Ni合金を熱間加工、冷間加工で外径3.0φm
m、内径2.6φmmのチューブとした後の径2.5φm
mのAl線を前記チューブに挿入した。その後、冷間加
工率30〜50%毎の焼鈍を繰り返し、伸線によって径
が0.04φmmの線を得た。得られた線の断面はTi
−Ni合金被膜の厚さが0.005mmであり、Al線
の径は0.03φmmであった。次に、この線を束ねて
径が3φmmのコイル状に加工し、400℃で約1時間
の熱処理をした。その後、この線を冷水(0〜5℃)中
で変形し、内径3φmmのボビンに挿入し、室温(20
〜25℃)まで加熱した。前記コイルは、形状が完全に
回復して、トランスのボビン内径に密着した。又、同コ
イルの電気抵抗は、径が0.03φmmのAl線と同じ
値を示した。得られた線の断面が、Ti−Ni合金被膜
の厚さが0.005mmであり、Al線の径が0.05φ
mmの場合、形状記憶性は完全回復と比較してやや劣
る、ほぼ回復した程度であり、導電性は径が0.05φ
mmのAl線と同じ電気抵抗を示し良好であった。Al
線0.07φmmの場合、形状記憶性は殆ど回復が認め
られず、導電性はAl線の径が0.07φmmと同じ電
気抵抗を示して良好であったが、形状記憶性としては径
が0.07φmmのAl線は使用に供しない。Example 2 Ti-50.5 obtained by a high frequency melting method
Outside diameter of 3.0φm by hot working and cold working of at% Ni alloy
m, 2.5mm diameter after making a tube with 2.6mm inner diameter
m Al wire was inserted into the tube. After that, the cold working rate was repeatedly annealed at every 30 to 50%, and a wire with a diameter of 0.04 mm was obtained by drawing. The cross section of the obtained wire is Ti
The thickness of the -Ni alloy coating was 0.005 mm, and the diameter of the Al wire was 0.03 mm. Next, the wires were bundled and processed into a coil shape having a diameter of 3 mm, and heat-treated at 400 ° C for about 1 hour. After that, this wire is deformed in cold water (0 to 5 ° C.), inserted into a bobbin with an inner diameter of 3φ mm, and cooled to room temperature (20
~ 25 ° C). The coil has completely recovered its shape and is in close contact with the inner diameter of the bobbin of the transformer. Further, the electric resistance of the coil showed the same value as that of the Al wire having a diameter of 0.03φ mm. The cross section of the obtained wire had a Ti-Ni alloy coating thickness of 0.005 mm and an Al wire diameter of 0.05φ.
In the case of mm, the shape memory property is slightly inferior to the complete recovery and is almost recovered, and the conductivity is 0.05φ in diameter.
The electric resistance was the same as that of the Al wire of mm, which was good. Al
In the case of the wire of 0.07φ mm, almost no recovery of the shape memory was observed, and the conductivity was good, showing the same electric resistance as the diameter of the Al wire of 0.07 φmm, but the diameter of the shape memory was 0. Do not use Al wire of 0.07 mm.
【0009】[0009]
【実施例3】高周波溶解法によって得たTi−50.5
at%Ni合金を熱間加工、冷間加工で外径3.0φm
m、内径2.6φmmのチューブとした後の径2.5φm
mのC線(C電極棒)を前記チューブに挿入した。その
後、冷間加工率30〜50%毎の焼鈍を繰り返し、伸線
によって径が0.04φmmの線を得た。得た線の断面
はTi−Ni合金被膜の厚さは0.005mmであり、
C線の径は0.03φmmであった。次に、この線を束
ねて径が3φmmのコイル状に加工し、400℃で約1
時間の熱処理をした。その後、この線を冷水(0〜5
℃)中で変形し、内径3φmmのボビンに挿入し、室温
(20〜25℃)まで加熱した。前記コイルは、形状が
完全に回復して、トランスのボビン内径に密着した。
又、同コイルの電気抵抗は、径が0.03φmmのC線
と同じ値を示した。得られた線の断面が、Ti−Ni合
金被膜の厚さが0.005mmであり、C線の径が0.0
5φmmの場合、形状記憶性はほぼ回復であり、導電性
は径が0.05φmmのC線と同じく良好で、径が0.0
5φmmのC線と同じ電気抵抗を示した。C線の径が
0.07φmmの場合、形状記憶性は殆ど回復せず、導
電性は径が0.07φmmのC線と同じ電気抵抗を示し
て良好であったが、形状記憶性としては径が0.07φ
mmのC線は使用に供しない。Al線と似たような結果
が得られた。Example 3 Ti-50.5 obtained by a high frequency melting method
Outside diameter of 3.0φm by hot working and cold working of at% Ni alloy
m, 2.5mm diameter after making a tube with 2.6mm inner diameter
The C line of m (C electrode rod) was inserted into the tube. After that, the cold working rate was repeatedly annealed at every 30 to 50%, and a wire with a diameter of 0.04 mm was obtained by drawing. The cross section of the obtained wire has a Ti-Ni alloy coating thickness of 0.005 mm,
The diameter of the C wire was 0.03 mm. Next, the wires are bundled and processed into a coil with a diameter of 3 mm, and the temperature is about 1 at 400 ° C.
Heat treated for hours. Then, this line is cold water (0-5
C.), deformed in a bobbin with an inner diameter of 3 mm, and heated to room temperature (20 to 25 ° C.). The coil has completely recovered its shape and is in close contact with the inner diameter of the bobbin of the transformer.
The electric resistance of the coil showed the same value as that of the C wire having a diameter of 0.03 mm. The cross section of the obtained wire had a Ti-Ni alloy coating thickness of 0.005 mm and a C wire diameter of 0.0.
In the case of 5 mm, the shape memory is almost recovered, and the conductivity is as good as the C wire with a diameter of 0.05 mm, and the diameter is 0.0 mm.
It showed the same electric resistance as the C line of 5 mm. When the diameter of the C wire was 0.07φ mm, the shape memory property was hardly recovered, and the conductivity was good, showing the same electric resistance as that of the C wire having the diameter of 0.07 φmm, but the shape memory ability was good. Is 0.07φ
The mm C line is not used. Similar results were obtained with the Al line.
【0010】[0010]
【実施例4】高周波溶解法によって得たTi−50.5
at%Ni合金を熱間加工、冷間加工で外径3.0φm
m、内径2.6φmmのチューブとした後の径2.5φm
mのSn線を前記チューブに挿入した。その後、冷間加
工率30〜50%毎の焼鈍を繰り返し、伸線によって径
が0.08φmmの線を得た。得た線の断面はTi−N
i合金被膜の厚さが0.005mmであり、Sn線の径
が0.07φmmであった。次に、この線を束ねて径が
3φmmのコイル状に加工し、400℃で約1時間の熱
処理をした。その後、この線を冷水(0〜5℃)中で変
形し、内径3φmmのボビンに挿入し、室温(20〜2
5℃)まで加熱した。前記コイルは、形状が完全に回復
して、トランスのボビン内径に密着した。又、同コイル
の電気抵抗は、径が0.07φmmのSn線と同じ値を
示した。得られた線の断面が、Ti−Ni合金被膜の厚
さは0.005mmであり、Sn線の径が0.03φmm
の場合、形状記憶性は完全回復で良好、導電性は径が
0.03φmmのSn線と同じ電気抵抗を示して良好で
あった。又、Sn線の径が0.05φmmの場合、形状
記憶性は完全回復で良好、導電性は径が0.05φmm
のSn線と同じ電気抵抗を示して良好であった。Example 4 Ti-50.5 obtained by a high frequency melting method
Outside diameter of 3.0φm by hot working and cold working of at% Ni alloy
m, 2.5mm diameter after making a tube with 2.6mm inner diameter
m Sn wire was inserted into the tube. After that, annealing was repeated every cold working ratio of 30 to 50% to obtain a wire having a diameter of 0.08 mm by drawing. The cross section of the obtained wire is Ti-N
The thickness of the i alloy coating was 0.005 mm and the diameter of the Sn wire was 0.07 mm. Next, the wires were bundled and processed into a coil shape having a diameter of 3 mm, and heat-treated at 400 ° C for about 1 hour. After that, this wire is deformed in cold water (0 to 5 ° C.), inserted into a bobbin with an inner diameter of 3φ mm, and heated to room temperature (20 to 2
Heated to 5 ° C). The coil has completely recovered its shape and is in close contact with the inner diameter of the bobbin of the transformer. The electric resistance of the coil showed the same value as that of the Sn wire having a diameter of 0.07φmm. The cross section of the obtained wire has a Ti-Ni alloy coating thickness of 0.005 mm and a Sn wire diameter of 0.03 mm.
In the case of No. 2, the shape memory property was good with complete recovery, and the conductivity was good with the same electric resistance as the Sn wire having a diameter of 0.03 mm. When the diameter of Sn wire is 0.05φmm, shape memory property is fully recovered and good, and the conductivity is 0.05φmm.
The Sn wire showed the same electric resistance and was good.
【0011】以上、実施例1〜4までの結果を表1に示
す。The results of Examples 1 to 4 are shown in Table 1 above.
【0012】[0012]
【表1】 表1の中の○印は完全に回復、△印はほぼ回復(90%
以上)、×印は殆ど回復しない(回復50%以下)こと
を示す。[Table 1] The circles in Table 1 are completely recovered, and the triangles are almost recovered (90%
Above), x indicates almost no recovery (recovery of 50% or less).
【0013】[0013]
【実施例5】VTR等の電子機器に使用される同軸型ロ
ータリートランスは、図1に示す如く、内側のステータ
コア7と外側のローターコア1により構成され、必要な
チャンネル数に相当した数のコイルが各々のコアの対向
した位置に設けられている。この種のトランスコアのコ
イルは、図2の(a)に示す如く、ワイヤーをトロイダ
ル状に加工した変形前の巻コイル10により構成され
る。図1に示す内側のステータコア7において、コイル
組立上、特に問題がないが、外側のローターコア1で
は、図2の(b)の矢印で示すように、コイルの一部を
内側に変形させ、変形後の巻コイル11をコア内に挿入
する。この巻コイルに形状記憶合金を外皮に導電物質を
内芯とする導電線を使用する。即ち、形状記憶合金のマ
ルテンサイト変態温度以下の温度で、図2の(b)の矢
印で示すように、巻コイルの一部を内側に変形させてコ
ア内に挿入する。装着完了後、使用環境温度で、この形
状記憶合金を母相とすることで、図2の(c)の矢印の
方向に設定形状に回復し、回復した巻コイル12を固定
することが容易にできる。即ち、ワイヤーをトロイダル
状に巻線加工して変形させて、使用環境温度で前記形状
記憶合金を外皮に、導電物質を内芯とする本発明の導電
線を使用してコア内に挿入する。装着後、使用環境温度
でこの導電線の形状記憶合金を母相とすることで、図2
の(c)の矢印の方向に回復して、設定形状にもどるた
めに巻コイルを非常に効率よく固定し、設置することが
できる。Fifth Embodiment As shown in FIG. 1, a coaxial rotary transformer used in an electronic device such as a VTR is composed of an inner stator core 7 and an outer rotor core 1 and has a number of coils corresponding to the required number of channels. Are provided at opposite positions of each core. As shown in FIG. 2A, the coil of the transformer core of this type is composed of a winding coil 10 before deformation, which is obtained by processing a wire into a toroidal shape. In the inner stator core 7 shown in FIG. 1, there is no particular problem in coil assembly, but in the outer rotor core 1, as shown by the arrow in FIG. The deformed winding coil 11 is inserted into the core. A conductive wire having a shape memory alloy as an outer skin and a conductive material as an inner core is used for this winding coil. That is, at a temperature equal to or lower than the martensitic transformation temperature of the shape memory alloy, as shown by the arrow in FIG. 2B, a part of the wound coil is deformed inward and inserted into the core. After the mounting is completed, the shape memory alloy is used as the mother phase at the operating environment temperature to recover the set shape in the direction of the arrow in FIG. 2C, and the recovered wound coil 12 can be easily fixed. it can. That is, a wire is wound into a toroidal shape and deformed, and the shape memory alloy is used as an outer skin and a conductive wire of the present invention having a conductive material as an inner core is inserted into the core at a use environment temperature. After mounting, by using the shape memory alloy of this conductive wire as the matrix phase at the operating environment temperature,
The wound coil can be fixed and installed very efficiently so as to recover in the direction of the arrow (c) and return to the set shape.
【0014】[0014]
【発明の効果】以上述べたように、形状記憶合金、特に
Ti−Ni系合金をチューブ状の外皮にし、Cu,A
l,C,Sn等の導電物質を芯材にして、形状記憶合金
と導電物質との複合材料とする。この複合材料を使用し
て、外皮の形状記憶合金はマルテンサイト変態温度以下
の環境温度で装着容易な形状に変形し、装着完了後には
使用環境温度で形状記憶合金を母相とすることで、設定
形状に回復する。本発明の導電線は同軸ロータリートラ
ンスのローターコアの巻コイルや電磁石の巻コイル、そ
の他トランスコイル等に使用する。巻コイルが設定形状
に回復し、固定することにより、装着困難な巻コイルが
装着容易になり、かつ作業性がよくなり、歩留向上にも
役立つ形状回復力が大きく、径時変化が小さい形状記憶
合金外皮の導電線が得られる。As described above, a shape memory alloy, particularly a Ti-Ni alloy is used as a tube-shaped outer cover, and Cu, A
A conductive material such as l, C, or Sn is used as a core material to form a composite material of a shape memory alloy and a conductive material. Using this composite material, the shape memory alloy of the outer shell is transformed into a shape that can be easily mounted at an environmental temperature of the martensitic transformation temperature or lower, and after the mounting is completed, the shape memory alloy is used as a matrix phase at the operating environmental temperature, Restores the set shape. The conductive wire of the present invention is used for a winding coil of a rotor core of a coaxial rotary transformer, a winding coil of an electromagnet, and other transformer coils. The wound coil recovers to the set shape and is fixed, so that the wound coil that is difficult to mount becomes easy to mount, the workability is improved, the shape recovery force that helps improve the yield is large, and the change with time is small. The conductive wire of the memory alloy skin is obtained.
【図面の簡単な説明】[Brief description of drawings]
【図1】同軸ロータリートランスコアの断面図。FIG. 1 is a sectional view of a coaxial rotary transformer core.
【図2】同軸ロータリートランスコアの外側のローター
コアの本発明の巻コイルの斜視図。図2の(a)は変形
前の巻コイルの斜視図、図2の(b)は変形した巻コイ
ルの斜視図、図2の(c)は形状記憶合金を使用した導
電線がもとの形状に回復した巻コイルの斜視図。FIG. 2 is a perspective view of the inventive wound coil of the rotor core outside the coaxial rotary transformer core. 2 (a) is a perspective view of the wound coil before deformation, FIG. 2 (b) is a perspective view of the deformed wound coil, and FIG. 2 (c) is originally a conductive wire using a shape memory alloy. The perspective view of the winding coil which was recovered to the shape.
【符号の説明】 1 ローターコア 7 ステータコア 8 形状記憶合金を使用した導電線の巻コイル 9 ステータコアの巻コイル 10 変形前の巻コイル 11 変形後の巻コイル 12 回復した巻コイル[Description of Reference Signs] 1 rotor core 7 stator core 8 winding coil of conductive wire using shape memory alloy 9 winding coil of stator core 10 winding coil before deformation 11 winding coil after deformation 12 recovered winding coil
Claims (3)
とすることで、任意の形状を保つことを特徴とする導電
線。1. A conductive wire, which has a shape memory alloy as an outer skin and a conductive material as an inner core to maintain an arbitrary shape.
のマルテンサイト変態温度以下の環境温度で導電線配置
部位に装着容易な形状に変形し、装着完了後、使用環境
温度で該合金を母相とすることで設定形状に回復し、か
つ前記部位に対し保形を持続することを特徴とする導電
線。2. The alloy according to claim 1, wherein the shape memory alloy is transformed into a shape that can be easily attached to a conductive wire arranging portion at an ambient temperature of a martensitic transformation temperature or lower, and after the attachment is completed, the alloy is treated at an operating ambient temperature. A conductive wire that recovers to a set shape by maintaining a phase and maintains shape retention for the portion.
チューブであることを特徴とする導電線。3. A conductive wire, wherein the outer cover according to claim 1 is a Ti—Ni alloy tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21203592A JPH0636614A (en) | 1992-07-15 | 1992-07-15 | Electrically conductive wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21203592A JPH0636614A (en) | 1992-07-15 | 1992-07-15 | Electrically conductive wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0636614A true JPH0636614A (en) | 1994-02-10 |
Family
ID=16615794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21203592A Pending JPH0636614A (en) | 1992-07-15 | 1992-07-15 | Electrically conductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0636614A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002177858A (en) * | 2000-12-13 | 2002-06-25 | Dainippon Screen Mfg Co Ltd | Substrate treatment apparatus |
US9655702B2 (en) | 2008-12-29 | 2017-05-23 | Koninklijke Philips N.V. | Non-pressurized system for creating liquid droplets in a dental cleaning appliance |
-
1992
- 1992-07-15 JP JP21203592A patent/JPH0636614A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002177858A (en) * | 2000-12-13 | 2002-06-25 | Dainippon Screen Mfg Co Ltd | Substrate treatment apparatus |
US9655702B2 (en) | 2008-12-29 | 2017-05-23 | Koninklijke Philips N.V. | Non-pressurized system for creating liquid droplets in a dental cleaning appliance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3881741B2 (en) | NiMnGa alloy | |
EP0456927A1 (en) | Superconducting wire and method of production thereof | |
JP2693255B2 (en) | Nb (Bottom 3) Method and apparatus for manufacturing Al-based superconducting wire | |
JPH0636614A (en) | Electrically conductive wire | |
JP3103608B2 (en) | Nickel-based substrate for ceramic superconductors | |
JPS61165244A (en) | Production of niti shape memory alloy coil spring | |
JPS6076110A (en) | Assembling and magnetizing method for magnetic circuit | |
JP3050554B2 (en) | Magnet wire | |
JP2007254824A (en) | Fixture and heat treatment method of core | |
JPS5958813A (en) | Manufacture of amorphous metal core | |
JPH01298706A (en) | Manufacture of superconducting coil | |
JP3126071B2 (en) | Superconducting device and manufacturing method thereof | |
JP2874056B2 (en) | Leaded inductor and manufacturing method thereof | |
JP2003288816A (en) | Method of lowering ac loss of superconductive coil | |
JPH0625848Y2 (en) | Electric circuit element | |
JPH0422009B2 (en) | ||
JPS58152311A (en) | Method of producing wire with ring | |
Fil’kin et al. | The properties of industrial superconducting composite wires for the UNK magnets | |
JPS6330773Y2 (en) | ||
JPH08181014A (en) | Superconductive magnet device and its manufacture | |
JPS607325B2 (en) | Method for manufacturing compound composite superconductor | |
JP2002105566A (en) | Coil spring having shape memory effect and its production method | |
JP3415646B2 (en) | Superconducting conductor | |
JP3457060B2 (en) | Oxide superconducting conductor | |
JPH11273469A (en) | Superconductive precursor composite wire and manufacture of superconductive composite wire |