JPH0636472Y2 - Brick structure of hearth of steelmaking arc furnace - Google Patents
Brick structure of hearth of steelmaking arc furnaceInfo
- Publication number
- JPH0636472Y2 JPH0636472Y2 JP13910687U JP13910687U JPH0636472Y2 JP H0636472 Y2 JPH0636472 Y2 JP H0636472Y2 JP 13910687 U JP13910687 U JP 13910687U JP 13910687 U JP13910687 U JP 13910687U JP H0636472 Y2 JPH0636472 Y2 JP H0636472Y2
- Authority
- JP
- Japan
- Prior art keywords
- hearth
- refractory
- mgo
- arc furnace
- brick
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案は特殊鋼・鋳・鍛鋼などの製造に使用されるアー
ク炉(別名,エルー式電弧炉)の炉床部の煉瓦積構造に
関し、特にMgO−C質耐火物を適用して、その耐久性を
改善するものである。[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a brick-layer structure of a hearth portion of an arc furnace (also known as an Eru type electric arc furnace) used for manufacturing special steel, casting, forged steel, etc. In particular, MgO-C refractory is applied to improve its durability.
〔従来技術〕 従来、製鋼アーク炉の炉床耐火物として、溶鋼側最内層
に、主としてマグネシアスタンプ材が使用されている。
かってマグネシア煉瓦が使用されたこともあるが、スポ
ーリングによる損傷が大きいことに加えて、形状が第6
図に示すような四方おちであったため、施工に時間がか
ゝるという問題があって、現在では殆ど行われていな
い。[Prior Art] Conventionally, as a hearth refractory for a steelmaking arc furnace, a magnesia stamp material is mainly used for the innermost layer on the molten steel side.
The magnesia brick was once used, but in addition to the large damage caused by spalling,
Since it has four sides as shown in the figure, there is a problem that it takes time to construct, so it is hardly done at present.
近年の製鋼アーク炉では第5図に示すごとく、まずシャ
モット煉瓦3をしき、その上に焼成マグネシア煉瓦4
を、更にその上にマグネシアスタンプ材5を施工すると
いう構造になっている。In a recent steelmaking arc furnace, as shown in FIG. 5, first chamotte brick 3 is squeezed, and then fired magnesia brick 4 is laid on it.
And the magnesia stamp material 5 is further applied on it.
最近、製鋼アーク炉では、tap−tapを短縮してコストダ
ウンを図るため、熱負荷が増大し、このため、炉床のマ
グネシアスタンプ材の損傷が激しくなり、補修用耐火物
が大量に使用されるようになっている。また、炉床容量
の変化につれて、炉床上部のスラグ層の位置が大きく変
化するため、スラグ層と接触する炉床耐火物の損傷範囲
が広がり、補修用耐火物の使用量が増える傾向にある。Recently, in steelmaking arc furnaces, the tap-tap is shortened to reduce the cost, resulting in an increase in the heat load, which causes severe damage to the magnesia stamp material of the hearth and a large amount of refractory materials for repair is used. It has become so. Also, as the hearth capacity changes, the position of the slag layer above the hearth changes significantly, so the range of damage to the hearth refractory that contacts the slag layer expands, and the amount of refractory used for repair tends to increase. .
一方、UHPアーク電気炉のホットスポット用炉材とし
て、1970年頃に開発されたMgO−C質耐火物は、その秀
れた特性のために、ホットスポット以外の炉壁6、出鋼
口7、出鋼樋8へと使用範囲を広げつつある。MgO−C
質耐火物は、その主成分であるマグネシアとカーボンが
ともに高融点物質であり、しかも両者に共融関係がない
ため、耐火性に秀れている。また、カーボンの高熱伝導
性、低熱膨張性、低弾性率などにより熱的スポーリング
に強く、カーボンがスラグに濡れにくいため、変質層の
生成が少なく、構造的スポーリングを起しにくいという
特長がある。On the other hand, the MgO-C quality refractory that was developed around 1970 as a hot spot furnace material for UHP arc electric furnaces, due to its excellent properties, the furnace wall 6 except the hot spot, the tap hole 7, The range of use is expanding to the Idemitsu gutter 8. MgO-C
A high quality refractory has excellent refractory properties because both its main components, magnesia and carbon, are high melting point substances, and both have no eutectic relationship. Also, due to the high thermal conductivity, low thermal expansion, and low elastic modulus of carbon, it is resistant to thermal spalling, and because carbon is difficult to wet with slag, the generation of an altered layer is small and structural spalling is less likely to occur. is there.
このようなMgO−C質耐火物の特性を生かすべく、製鋼
アーク炉の炉床部へ適用することが熱望されたが、下記
の問題点があって、いまだ実施された例がない。It was eagerly desired to apply it to the hearth of a steelmaking arc furnace in order to make full use of such characteristics of the MgO-C refractory material, but there is no example that has been implemented due to the following problems.
(イ)MgO−C質耐火物は、高耐火性のため、煉瓦間の
焼付が悪く、炉傾動時の衝撃力または、溶鋼による浮力
のため、浮き上がる可能性がある。(A) Since the MgO-C refractory has high fire resistance, seizure between bricks is poor, and there is a possibility that the refractory will rise due to impact force when the furnace tilts or buoyancy due to molten steel.
(ロ)MgO−C質耐火物は、熱伝導率が高いため、目地
への地金侵入が起こりやすく、この地金により、耐火物
が浮き上がる可能性がある。(B) Since the MgO-C refractory has a high thermal conductivity, the ingot easily enters the joint, and the ingot may raise the refractory.
(ハ)従来の四方おち煉瓦9を使用した場合、施工に時
間がかかる。(C) When the conventional four-sided brick 9 is used, it takes a long time for construction.
(ニ)MgO−C質耐火物は、摩擦抵抗が低いため、耐火
物の膨張により、迫り出し現象を起こし浮き上がる可能
性がある。(D) Since the MgO-C refractory has low frictional resistance, expansion of the refractory may cause a squeeze-out phenomenon and float up.
そこで本考案は、前記イ〜ニの問題点を解消し、MgO−
C質耐火物の長所を充分に発揮させ、製鋼アーク炉の炉
床部の耐用を向上させることを目的とする。Therefore, the present invention solves the above problems (1) to (2) and replaces MgO-
The purpose is to fully utilize the advantages of the C-type refractory material and improve the service life of the hearth of a steelmaking arc furnace.
本発明者等は、上述のMgO−C質耐火物の特性を生かす
べく、アーク炉炉床煉瓦の形状、築造法、モルタルの研
究を重ねた結果、本考案を完成するに至った。The inventors of the present invention have completed the present invention as a result of repeated studies of the shape of the arc furnace hearth brick, the construction method, and the mortar in order to make full use of the above-mentioned properties of the MgO-C refractory material.
すなわち、本考案は、その目的を達成するために、ブッ
ク形状のMgO−C質耐火物を出鋼口と直角方向に積むこ
とを特徴とする。また、煉瓦積みの際、横面にアルミナ
質の目地モルタルを使用してもよい。なお、連結築造す
るブック形状MgO−C質耐火物の下部と周囲は、マグネ
シア質スタンプ材を施工するものとする。In other words, the present invention is characterized by stacking book-shaped MgO-C quality refractories in a direction perpendicular to the tap hole in order to achieve the object. In addition, when laying bricks, alumina-based joint mortar may be used on the lateral surface. In addition, the lower part and the periphery of the book-shaped MgO-C refractory to be connected and built shall be made of magnesia stamp material.
本考案において、従来、MgO−C質耐火物が製鋼アーク
炉炉床に適用できなかった理由である前記(イ)〜
(ニ)の問題点を下記の如く解消した。In the present invention, the reason why the MgO-C quality refractory cannot be applied to the steelmaking arc furnace hearth in the past (a) to
The problem of (d) was solved as follows.
(イ)MgO−C質耐火物の焼付が悪い問題は、目地にア
ルミナ質モルタルを使用することによって解消した。Mg
O−C質耐火物に含まれるMgOとモルタル中のAl2O3が作
用してスピネル(MgO・Al2O3)を生成することにより、
煉瓦間に接着力を生ずるため、焼付不良の弊害が解消さ
れる。(B) The problem of poor seizure of MgO-C refractories was solved by using alumina mortar for joints. Mg
The MgO contained in the O—C refractory and Al 2 O 3 in the mortar act to generate spinel (MgO · Al 2 O 3 ),
Since the adhesive force is generated between the bricks, the adverse effect of defective printing is eliminated.
(ロ)目地に地金が侵入しやすい問題は、煉瓦の形を第
4図に示す如くブック形状に変えて目地部10を曲線にし
て目地を実質的に長くすることにより解消した。横面に
アルミナ質モルタルを使用することも地金侵入防止に役
立っている。(B) The problem that the ingot easily penetrates into the joint was solved by changing the brick shape into a book shape as shown in FIG. 4 and making the joint portion 10 into a curve to substantially lengthen the joint. The use of alumina mortar on the lateral surface also helps prevent the intrusion of metal.
(ハ)施工時間については、形状面で、従来採用されて
いた四方落ち9をやめてブック形状1を採用することに
より解消された。ブック形状の煉瓦は、両端に同一Rの
凸と凹の面を有するので、第7図に示すように,施工し
ようとするMgO−C煉瓦の下地のマグネシアスタンプ材
5′が平坦でなくても、その起伏に応じて、前記凸面11
と凹面12をすべらせることにより、目地厚10を広げるこ
となく容易に築造することができる。従って施工時間を
短くできる。(C) Regarding the construction time, in terms of shape, it was eliminated by eliminating the four-way drop 9 that was conventionally used and adopting the book shape 1. Since the book-shaped brick has convex and concave surfaces of the same R at both ends, as shown in Fig. 7, even if the magnesia stamp material 5'underlying the MgO-C brick to be constructed is not flat. , The convex surface 11 depending on the undulation
By sliding the concave surface 12 and the concave surface 12, it is possible to easily build without expanding the joint thickness 10. Therefore, the construction time can be shortened.
(ニ)MgO−C質耐火物が膨張により迫り出す問題は、M
gO−C質耐火物の下部5′と周囲5″をマグネシアスタ
ンプ材として、これにMgO−C質耐火物の膨張を吸収さ
せることにより解消した。またMgO質耐火物の施工方向
を第8図でなく、第2図の如くすることも迫り出し倒壊
防止に有効である。(D) The problem of MgO-C refractory swelling due to expansion is M
The lower part 5'of gO-C refractory and the surrounding 5 "are made of magnesia stamp material and absorbed by the expansion of MgO-C refractory. Not only that, but also as shown in FIG.
以下に本考案を実施によって更に具体的に説明する。 Hereinafter, the present invention will be described in more detail by implementation.
第1、2、3図に示すように、ブック形状1のMgO−C
質耐火物を出鋼口7と直角方向に施工した。MgO−C質
耐火物の寸法は、厚さa=230mm、長さb=230mm、幅C
=80mm、曲率半径r=180mmであり、材質は第1表に示
すものである。MgO−C質耐火物の横面2、2′にAl2O3
含量が95.5%のモルタルを使用した。MgO−C質耐火物
の下部5′と周囲5″は、第2表に示すマグネシアスタ
ンプ材を使用した。As shown in FIGS. 1, 2, and 3, MgO-C of book shape 1
The refractory material was installed in the direction perpendicular to the tap hole 7. The dimensions of MgO-C refractory are thickness a = 230mm, length b = 230mm, width C
= 80 mm, radius of curvature r = 180 mm, and the materials are shown in Table 1. Al 2 O 3 on the lateral surfaces 2 and 2'of MgO-C refractory
Mortar with a content of 95.5% was used. For the lower part 5'and the periphery 5 "of the MgO-C quality refractory, the magnesia stamp material shown in Table 2 was used.
次にA〜C3社での実用テストの結果について述べる。第
3表にA、B、C3社での製鋼アーク炉の運転条件と炉内
径およびMgO−C質耐火物の施工範囲を示す。Next, the results of practical tests at companies A to C3 will be described. Table 3 shows the operating conditions of the steelmaking arc furnaces at companies A, B, and C3, the inner diameter of the furnace, and the construction range of MgO-C quality refractories.
A社:8heats/day(1日の出鋼回数が8回)の間欠操業
である。炉床への石灰の投入がある。耐用は1200heats
であり、損耗量は、最大0.15mm/heatsであった。 Company A: Intermittent operation of 8 heats / day (the number of steel operations per day is 8). There is lime injection into the hearth. Life is 1200heats
And the amount of wear was 0.15 mm / heats at the maximum.
B社:17heats/dayの連続操業で、現在5000heats(約1
年間)使用中。炉床への石灰の投入なし。Company B: Continuous operation of 17 heats / day, currently 5000 heats (about 1
In use). No lime was added to the hearth.
C社:10heats/dayの間欠操業で現在2000heats(約8ケ
月)使用中。特に損傷部見当たらず。炉床への石灰の投
入時々あり。Company C: Currently using 2000 heats (about 8 months) due to intermittent operation of 10 heats / day. Especially no damaged part is found. Injecting lime into the hearth Sometimes.
実用テストの結果、本考案による煉瓦積構造を採用する
ことにより、炉底耐火物の損傷が軽減し、スラグライン
の位置が安定化するため,従来のマグネシアスタンプ材
による炉床にくらべて、炉床補修材の使用量が20〜30%
減り、吹付材の使用量が5〜10%減り、スラグライン部
煉瓦の使用量が5〜10%減ることが判った。As a result of practical tests, by using the brickwork structure according to the present invention, damage to the bottom refractory material is reduced and the position of the slag line is stabilized. 20-30% floor repair material usage
It was found that the amount of spray material used decreased by 5-10% and the amount of brick used in the slag line decreased 5-10%.
以上に説明したように、本考案においては、ブック形状
のMgO−C質耐火物を出鋼口の方向に対し直角に築造す
ることにより、あるいは更に補助的にアルミナ質モルタ
ルを使用することにより、構造的に安定かつ耐食性に秀
れた製鋼アーク炉炉床が得られる。従って、下記の如
く、製鋼アーク炉の生産性向上が図られる。As described above, in the present invention, by constructing a book-shaped MgO-C quality refractory material at right angles to the direction of the tap hole, or by additionally using aluminous mortar, A steelmaking arc furnace hearth that is structurally stable and has excellent corrosion resistance can be obtained. Therefore, the productivity of the steelmaking arc furnace can be improved as described below.
a.炉床補修材の使用量が減少する。a. The amount of hearth repair material used will be reduced.
b.炉床の損耗が少ないため、安定操業ができる。b. Stable operation is possible because there is little wear of the hearth.
c.吹付材の使用量が減少する。c. The amount of spray material used decreases.
d.スラグラインの位置が一定となるため、スラグライン
部煉瓦の使用量が減少する。d. Since the position of the slag line is constant, the amount of bricks used in the slag line is reduced.
e.電力使用量が減少する。e. Electricity consumption is reduced.
第1図は本考案にかかる製鋼アーク炉の炉床部の煉瓦積
構造を示す縦断面図、第2図は第1図I−I線による横
断平面図、第3図は第1図II−II線による部分縦断面
図、第4図は本考案のブック形状耐火物の斜視図、第5
図は従来の製鋼アーク炉炉床部の煉瓦積構造を示す縦断
面図、第6図は従来の四方おち煉瓦の斜視図、第7図は
本考案のブック形状耐火物が、下面の起伏に応じて、目
地厚を広げることなく施工できることを示す縦断側面説
明図、第8図は脱落しやすい施工方向を示す図である。 図中、1……ブック形状耐火物、2、2′……横面、3
……シャモット煉瓦,4……マグネシア煉瓦、5、5′、
5″……マグネシアスタンプ材、6……炉壁,7……出鋼
口、8……出鋼樋、9……四方おち煉瓦、10……目地、
11……凸面、12……凹面。FIG. 1 is a vertical sectional view showing a brickwork structure of a hearth of a steelmaking arc furnace according to the present invention, FIG. 2 is a cross-sectional plan view taken along the line I--I of FIG. 1, and FIG. 3 is FIG. II is a partial longitudinal sectional view, FIG. 4 is a perspective view of the book-shaped refractory material of the present invention, FIG.
Figure is a vertical cross-sectional view showing the brickwork structure of the conventional steelmaking arc furnace hearth, Figure 6 is a perspective view of a conventional four-sided brick, and Figure 7 shows the book-shaped refractory of the present invention with the bottom surface undulating. Accordingly, FIG. 8 is a vertical cross-sectional side view showing that construction can be performed without widening the joint thickness, and FIG. 8 is a diagram showing a construction direction in which the joint easily falls. In the figure, 1 ... Book-shaped refractory, 2, 2 '... Side surface, 3
…… Chamotte brick, 4 …… Magnesia brick, 5, 5 ',
5 ″ ... magnesia stamp material, 6 …… furnace wall, 7 …… de tap, 8 …… decod gutter, 9 …… four-sided brick, 10 …… joint,
11 …… Convex, 12 …… Concave.
Claims (2)
状のMgO-C質耐火物(1)を出鋼口の方向と直角に積む
ことを特徴とする製鋼アーク炉の炉床部の煉瓦積構造。1. A brick in the hearth of a steelmaking arc furnace, characterized in that book-shaped MgO-C refractory materials (1) are stacked in the hearth of the steelmaking arc furnace at right angles to the direction of the tapping port. Product structure.
(2),(2)′にアルミナ質の目地モルタルを使用す
ることを特徴とする実用新案登録請求の範囲第1項記載
の製鋼アーク炉の炉床部の煉瓦積構造。2. A utility model registration claim characterized in that an alumina joint mortar is used on the lateral surfaces (2), (2) 'of the book-shaped MgO-C refractory material (1). Brick structure of the hearth of the steelmaking arc furnace described in paragraph.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13910687U JPH0636472Y2 (en) | 1987-09-10 | 1987-09-10 | Brick structure of hearth of steelmaking arc furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13910687U JPH0636472Y2 (en) | 1987-09-10 | 1987-09-10 | Brick structure of hearth of steelmaking arc furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6445292U JPS6445292U (en) | 1989-03-17 |
JPH0636472Y2 true JPH0636472Y2 (en) | 1994-09-21 |
Family
ID=31402057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13910687U Expired - Lifetime JPH0636472Y2 (en) | 1987-09-10 | 1987-09-10 | Brick structure of hearth of steelmaking arc furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0636472Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2534605B2 (en) * | 1992-10-27 | 1996-09-18 | 元旦ビューティ工業株式会社 | Building structure |
-
1987
- 1987-09-10 JP JP13910687U patent/JPH0636472Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6445292U (en) | 1989-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1439410A (en) | Refractory material and furnace wall built thereof | |
JPH0636472Y2 (en) | Brick structure of hearth of steelmaking arc furnace | |
US3139048A (en) | Refractory brick and furnace construction | |
US2024595A (en) | Furnace structure | |
US4453352A (en) | Refractory brick with expansion allowance | |
CN210321195U (en) | Special refractory brick for rotary kiln | |
CN211451852U (en) | Ferronickel electric furnace with magnesium-carbon composite furnace lining | |
CN108424989A (en) | A kind of blast furnace taphole region cooling structure | |
CA1220621A (en) | Shaft furnace having a metal shell, a refractory lining and cooling bodies projecting through the shell into the lining | |
US2683032A (en) | Basic lined cupola | |
US3299600A (en) | Spalling-resistant refractory brick | |
CN110906740A (en) | Ferronickel electric furnace with magnesium-carbon composite furnace lining | |
JPH0216982Y2 (en) | ||
CN217005347U (en) | Novel splicing magnesia brick | |
CN217032027U (en) | Novel environment-friendly durable magnesia brick | |
CN221325101U (en) | Bottom brick layer structure of metallurgical furnace kiln | |
US4196894A (en) | Basic oxygen furnace and refractories therefor having improved thermal conductivity | |
CN221944903U (en) | Low-calcium carbon furnace silica brick | |
US2757623A (en) | Composite furnace roof construction | |
JPH11131128A (en) | Lining structure of refining furnace | |
KR200371423Y1 (en) | Structure of refractory bricks constructed on furnace inner wall | |
JP3135149B2 (en) | Municipal solid waste incineration ash melting furnace | |
JP3303039B2 (en) | Precast block for electric furnace ceiling | |
RU25216U1 (en) | FIRESTONE | |
JPS5953617A (en) | Construction of furnace bottom with nozzle |