[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0635506A - Variable structure control method - Google Patents

Variable structure control method

Info

Publication number
JPH0635506A
JPH0635506A JP4189352A JP18935292A JPH0635506A JP H0635506 A JPH0635506 A JP H0635506A JP 4189352 A JP4189352 A JP 4189352A JP 18935292 A JP18935292 A JP 18935292A JP H0635506 A JPH0635506 A JP H0635506A
Authority
JP
Japan
Prior art keywords
constant
time constant
filter time
control
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4189352A
Other languages
Japanese (ja)
Other versions
JP2850075B2 (en
Inventor
Atsushi Fujikawa
淳 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP4189352A priority Critical patent/JP2850075B2/en
Publication of JPH0635506A publication Critical patent/JPH0635506A/en
Application granted granted Critical
Publication of JP2850075B2 publication Critical patent/JP2850075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To vary the PI constant and the primary delay filter time constant of an equivalent disturbance observer and to attain a high function for the control response by multiplying the deviation value between the command input and the state input of a controlled system and the differential value of the deviation value by a weight coefficient and adding together these multiplied values. CONSTITUTION:For instance, the velocity deviation and its differential value are multiplied by a weight coefficient and these multiplied values are added together. Thus a parameter E is obtained. The function generators 4-6 calculates a proper P (proportion) constant, an I (integration) constant, and a primary delay filter time constant based on the parameter E respectively. Then each output of the generators 4-6 is sent to the corresponding parts of a PI controller 1 and an equivalent compensating part 3 with the velocity deviation defined as an input. Thus the output of generators 4-6 are changed into a proper proportion constant, an integration constant, and a filter time constant respectively. In such a way, the proportion time constant, the integration constant, and the primary delay filter time constant of an equivalent disturbance observer can be varied in accordance with the operating states. Thus it is possible to improve the robust properties and the stability against the setting fluctuation and the load fluctuation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業応用モータドライ
ブシステムにおいて、ロバスト制御を実現するために通
常よく用いられている等価外乱オブザーバの適用に関す
るもので、等価外乱オブザーバと比例積分制御(PI制
御)を適用して、偏差量やその微分値によって運転状況
に応じてこれらの補償量を可変とすることにより制御の
適応性を高め、定常および過渡特性を改善する制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to application of an equivalent disturbance observer which is usually used to realize robust control in an industrial application motor drive system, and is equivalent to an equivalent disturbance observer and a proportional integral control (PI control). ) Is applied to make the compensation amount variable according to the operating condition by the deviation amount or its differential value, thereby enhancing the adaptability of control and improving the steady-state and transient characteristics.

【従来の技術】[Prior art]

【0002】誘導電動機の速度制御系に比例積分制御
(PI制御)と等価外乱オブザーバとを適用して高機能
化を図ることはよく行われている。この場合比例定数
(KP)や積分定数(KI)は一定値として制御されて
いた。また、等価外乱オブザーバの制御周波数帶域を決
定する定数として、オブザーバの1次フィルタ時定数が
あるが、これも、従来は一定値で制御されるのが普通で
あった。
It is often practiced to apply a proportional-plus-integral control (PI control) and an equivalent disturbance observer to a speed control system of an induction motor to achieve high functionality. In this case, the proportional constant (KP) and the integral constant (KI) were controlled as constant values. Further, as a constant that determines the control frequency band of the equivalent disturbance observer, there is a first-order filter time constant of the observer, which was also conventionally controlled by a constant value.

【0003】このため、制御性能を上げるために、これ
らの定数を過補償気味に大きく取ると制御の応答性は向
上するが、電動機のトルク指令に制御補償量を重畳して
いるため、定常時には高周波ノイズが発生し、高周波の
トルクリップルや電動機の騒音が発生するので、これら
の時定数は適当に調整して安定側に選定せざるを得なか
った。これらはトレードオフの関係であった。
Therefore, in order to improve the control performance, if these constants are excessively compensated, the response of the control is improved. However, since the control compensation amount is superposed on the torque command of the electric motor, at the steady state. Since high frequency noise is generated and high frequency torque ripple and noise of the electric motor are generated, these time constants have to be appropriately adjusted and selected on the stable side. These were trade-off relationships.

【0004】誘導電動機の速度制御系を例として、図6
に基づいて上記の問題点を説明しよう。図示の記号は、 ωm * ;速度指令 KP ;比例定数 KI ;積分定数 T* ;トルク指令 Kt ;トルク発生計数 Jm ;電動機のシナーシャ Dm ;電動機のダンピング ωm ;電動機速度 である。
An example of a speed control system of an induction motor is shown in FIG.
Let's explain the above problems based on. The symbols shown are ω m * ; speed command KP; proportional constant KI; integration constant T * ; torque command Kt; torque generation count Jm; electric motor inertia Dm; electric motor damping ω m ; electric motor speed.

【0005】図6において、1はPI制御装置、2は制
御対象であって、設定入力ωm * と状態量ωm との偏差
eを、PI制御装置1を通じて制御対象2にトルク指令
*として印加することにより、速度制御系を安定化し
ている。ここでPI定数は一定値で制御されていた。ま
た、破線により囲まれた部分3の等価外乱補償部は、Go
pinathの手法を用いた最小次元トルクオブザーバで構成
されており、次式のように記せる。
In FIG. 6, 1 is a PI control device, 2 is a control target, and the deviation e between the set input ω m * and the state quantity ω m is given to the control target 2 via the PI control device 1 as a torque command T *. Is applied to stabilize the speed control system. Here, the PI constant was controlled at a constant value. Also, the equivalent disturbance compensator of the part 3 surrounded by the broken line is Go
It is composed of a minimum-dimensional torque observer using the pinath method and can be expressed as the following equation.

【数1】 TL =1/(1+Tf S){Kt*T* -Jm S ωm } …(1)[Formula 1] T L = 1 / (1 + T f S) {Kt * T * -Jm S ω m } (1)

【0006】Tf は1次フィルタ時定数で、この値も制
御対象に対して速度設定変動やパラメータ変動や負荷変
動が発生しても、このような運転状況の変化に無関係に
一定値で制御されていたために、制御上種々の問題が発
生していた。
T f is a primary filter time constant, and this value is also controlled at a constant value regardless of such changes in operating conditions even if speed setting fluctuations, parameter fluctuations, or load fluctuations occur with respect to the controlled object. Therefore, various problems have occurred in control.

【0007】[0007]

【発明が解決しようとする課題】このような運転状況の
変化に無関係に一定値で制御されているために、その影
響が制御特性を悪化させてしまうことがある。たとえ
ば、PI定数を一定値とすると、設定変動時にオーバー
シュートやワインドアップ現象が発生する。オブザーバ
時定数を一定値とすると制御全体のロバスト性は格段に
向上するが、その補償出力に高周波ノイズが重畳しがち
で、それがために高周波のトルクリップルが常時発生
し、電動機騒音を増大することがあった。
Since the control is performed with a constant value irrespective of such a change in the driving situation, the influence thereof may deteriorate the control characteristics. For example, if the PI constant is set to a constant value, overshoot or windup phenomenon occurs when the setting changes. When the observer time constant is set to a constant value, the robustness of the entire control is significantly improved, but high-frequency noise tends to be superimposed on the compensation output, which constantly causes high-frequency torque ripple and increases motor noise. There was an occasion.

【0008】特性を良くするために、PI定数は大きく
オブザーバ時定数は早くすると以上のような問題があ
り、実用上は安定となるようにこれらの定数は、比例定
数KP,積分定数KIは小さめに、オブザーバ時定数 Tf
大きめとする必要があった。
If the PI constant is large and the observer time constant is fast in order to improve the characteristics, the above problems occur, and these constants are rather small in proportion constant KP and integral constant KI so that they are stable in practical use. In addition, the observer time constant T f had to be large.

【0009】[0009]

【課題を解決するための手段】上記の問題を解決するた
めに、以下のような、運転状況に応じてこれらの補償量
を可変とすることにより制御の適応性を高め、定常及び
過渡特性を改善する制御手段を述べる。
In order to solve the above problem, the adaptiveness of control is enhanced by varying the compensation amount according to the operating condition as described below, and the steady and transient characteristics are improved. The control means to be improved will be described.

【0010】速度制御系においては運転状況を判断する
制御変数として速度偏差eがある。この値をパラメータ
として前述のPI制御定数や負荷トルクオブザーバの1
次遅れ時定数を可変制御させる。速度偏差eの値が大き
い時は制御補償量を大とし、応答性を向上させ、小さい
時は補償量を小さくして制御安定性を向上させるべく可
変構造とすればよい。そのために、式(2) に示すごと
く、速度偏差eとその微分値 de/dtに重み計数K1, K2
をそれぞれ掛け算し、加算することにより運転状況を評
価する値としてEを求め、
In the speed control system, the speed deviation e is a control variable for judging the operating condition. Using this value as a parameter, the above PI control constant and load torque observer 1
The next delay time constant is variably controlled. When the value of the speed deviation e is large, the control compensation amount is increased to improve the responsiveness, and when it is small, the compensation amount is decreased to form a variable structure to improve the control stability. Therefore, as shown in the equation (2), the speed deviation e and its differential value de / dt are added to the weighting factors K 1 and K 2
E is obtained as a value for evaluating the driving situation by multiplying and adding

【数2】 E=K1e+k2 de/dt …(2) このEの大きさに応じてP(比例)およびI(積分)な
どの定数を可変とすることにより、運転状況に即した定
数を選定させるような可変構造制御方法を提供するもの
である。これらの、PI定数,フィルタ時定数を運転状
況に応じて可変とするようEをパラメータとする関数に
より与えるようにしてもよく、PI定数,フィルタ時定
数を運転状況に応じて可変とするよう予め定義したデー
タデーブルを参照して選択するようにしてもよく、更に
PI定数,フィルタ時定数を運転状況に応じて上位のコ
ンピュータにより与えられるようにしてもよい。
[Equation 2] E = K 1 e + k 2 de / dt (2) By varying the constants such as P (proportional) and I (integral) according to the magnitude of E, constants according to the operating conditions It is intended to provide a variable structure control method for selecting. These PI constants and filter time constants may be given by a function having E as a parameter so as to be variable in accordance with the operating conditions. In order to make the PI constants and filter time constants variable in accordance with the operating conditions in advance. The defined data table may be referred to and selected, and the PI constant and the filter time constant may be given by the host computer according to the operating condition.

【0011】以上のように運転状態を速度偏差e及びそ
の速度偏差の微分値 de/dtとにより判断し、これらの
値によって比例定数KP、積分定数KI及びフィルタ時定数
Tfを最適な値に選定する。
As described above, the operating state is judged by the speed deviation e and the differential value de / dt of the speed deviation, and the proportional constant KP, the integral constant KI and the filter time constant are determined by these values.
Select T f to an optimum value.

【0012】[0012]

【作用】以上のように構成して、運転状態に応じて比例
定数KP、積分定数KI及びフィルタ時定数 Tf を最適な値
に選定することにより、高周波のトルクリップルを発生
せず、電動機騒音を増大することなく、且つ設定変動時
にオーバーシュートやワインドアップ現象が発生するこ
とのない、良好な制御特性を維持することができる。
[Operation] With the above configuration, by selecting the proportional constant KP, the integration constant KI, and the filter time constant T f to the optimum values according to the operating conditions, high frequency torque ripple is not generated and the motor noise is reduced. It is possible to maintain good control characteristics without increasing overshooting and without causing an overshoot or a wind-up phenomenon when the setting changes.

【0013】[0013]

【実施例】本発明にかかる可変構造制御方法の一実施例
について、図1、3に示す。例示の制御では、式(2) に
より得られるEをパラメータとして使う。この式(2) で
は速度偏差eとその微分値 de/dtとにそれぞれK1, K2
を掛け算しているが、この時例えば偏差値eの評価を大
きくしたければK1の値をK2の値より大きく取ればよい。
図1に示した実施例においては、このパラメータEに応
じてそれぞれ適当な比例定数KP,積分定数KI及びフィル
タ時定数 Tf が得られる関数発生器4,5,6を設け、
速度偏差eを入力としてそれらの出力をそれぞれPI制
御装置1′及び等価外乱補償部3′の相当部分に送り、
適当な比例定数KP,積分定数KI及びフィルタ時定数 Tf
に変更する。図3はそれらの関数発生器の特性を示す図
であって、(a) は関数発生器4におけるパラメータEに
対する比例定数KPの特性、(b)は関数発生器5における
パラメータEに対する積分定数KIの特性、(c) は関数発
生器6におけるパラメータEに対するフィルタ時定数 T
f の特性を示している。ここで、実システムにおいて
は、加減速リミッタ、トルクリミッタ、電流リミッタ等
による制御上限値が規定されるので、それに沿った上限
値を各関数発生器の可変出力に設けておけばよい。
1 and 3 show an embodiment of a variable structure control method according to the present invention. In the illustrated control, E obtained by the equation (2) is used as a parameter. In this equation (2), the velocity deviation e and its differential value de / dt are K 1 and K 2 respectively.
At this time, if the evaluation of the deviation value e is to be increased, the value of K 1 may be set larger than the value of K 2 .
In the embodiment shown in FIG. 1, function generators 4, 5 and 6 are provided which can obtain an appropriate proportional constant KP, integral constant KI and filter time constant T f in accordance with the parameter E.
The velocity deviation e is input and their outputs are sent to the corresponding parts of the PI controller 1'and the equivalent disturbance compensator 3 ', respectively.
Appropriate proportional constant KP, integral constant KI and filter time constant T f
Change to. FIG. 3 is a diagram showing the characteristics of these function generators, where (a) is the characteristic of the proportional constant KP for the parameter E in the function generator 4, and (b) is the integration constant KI for the parameter E in the function generator 5. , (C) is the filter time constant T for the parameter E in the function generator 6.
Shows the characteristics of f . Here, in the actual system, the control upper limit value is defined by the acceleration / deceleration limiter, torque limiter, current limiter, etc. Therefore, the upper limit value may be provided in the variable output of each function generator.

【0014】また、関数発生器によるのではなく、関数
特性カーブをデータテーブル化してそのデータテーブル
を使用することもできる。すなわち、図4に示すよう
に、速度偏差eの値に対する比例定数KP,積分定数KI及
びフィルタ時定数 Tf の適当な値を記録したデータテー
ブル(a) 、または前記パラメータEの値に対する比例定
数KP,積分定数KI及びフィルタ時定数 Tf の適当な値を
記録したデータテーブル(b) を関数発生器4,5,6の
代わりに用いて、運転状態に応じて比例定数KP、積分定
数KI及びフィルタ時定数 Tf を最適な値に選定すること
もできる。
Further, instead of using the function generator, the function characteristic curve can be converted into a data table and the data table can be used. That is, as shown in FIG. 4, a data table (a) recording appropriate values of the proportional constant KP, the integral constant KI, and the filter time constant Tf with respect to the value of the speed deviation e, or the proportional constant with respect to the value of the parameter E. The data table (b) in which appropriate values of KP, integration constant KI, and filter time constant T f are recorded is used instead of the function generators 4, 5, and 6, and the proportional constant KP and integration constant KI are used according to the operating conditions. Also, the filter time constant T f can be selected as an optimum value.

【0015】更にまた、制御系に上位コンピュータがあ
る場合には、図5に示すようにそのコンピュータ7で関
数演算により出力を得る方法もまた可能である。
Further, when the control system has a host computer, a method for obtaining an output by a function operation in the computer 7 as shown in FIG. 5 is also possible.

【0016】今までの説明では比例定数KP,積分定数KI
及びフィルタ時定数 Tf を同時に可変にする方法を述べ
たが、例えば比例定数KPと積分定数KIとのみを制御させ
るとか、フィルタ時定数 Tf のみを制御する等の組み合
わせは、自由に選択可能なことは勿論である。
In the above description, the proportional constant KP and the integral constant KI
And the method to make the filter time constant T f variable at the same time was described, but the combination such as controlling only the proportional constant KP and the integration constant KI or controlling only the filter time constant T f can be freely selected. Of course, of course.

【0017】また、式(2) における重み計数K1, K2のう
ち例えばK2を0とすると、速度偏差の微分値 de/dtの
評価はされないが、速度偏差eのみの評価で、PI定
数,フィルタ時定数を運転状況に応じて可変とする、最
も簡単な方法を図2に示すように実現できる。図2にお
いて、(a) は関数発生器4における速度偏差eに対する
比例定数KPの特性、(b) は関数発生器5における速度偏
差eに対する積分定数KIの特性、(c) は関数発生器6に
おける速度偏差eに対するフィルタ時定数 Tf の特性を
示している。
[0017] When for example K 2 0 of the weight counter K 1, K 2 in the formula (2), but not the evaluation of the differential value de / dt of the speed deviation, the evaluation of only the speed deviation e, PI The simplest method of changing the constant and the filter time constant according to the operating condition can be realized as shown in FIG. In FIG. 2, (a) is the characteristic of the proportional constant KP with respect to the speed deviation e in the function generator 4, (b) is the characteristic of the integration constant KI with respect to the speed deviation e in the function generator 5, and (c) is the function generator 6 The characteristic of the filter time constant T f with respect to the speed deviation e in FIG.

【0018】[0018]

【発明の効果】以上説明したごとき可変構造制御方法に
より、運転状況を瞬時瞬時観測し、運転状況に即した制
御定数で制御を行えば、設定変動や負荷変動に対してロ
バスト性及び安定性を向上させることが可能である。オ
ーバーシュート量は大幅に減少し、またインパクトドロ
ップ量は格段と少なくなり得る。
According to the variable structure control method as described above, the operating condition can be instantaneously and instantaneously observed, and the control can be performed with the control constants according to the operating condition, whereby the robustness and the stability against the setting fluctuation and the load fluctuation can be obtained. It is possible to improve. The amount of overshoot can be greatly reduced, and the amount of impact drop can be significantly reduced.

【0019】特に過渡時は制御定数を大きくするので応
答は高速となり、また整定時や定常時は逆に小さくする
ので制御系がロバスト安定する。更に従来のように一定
で制御していた時のような定常のトルクリップル、速度
リップルの発生は大幅に抑制される。また騒音を減少さ
せることも期待できる。
In particular, since the control constant is made large during the transition, the response becomes fast, and on the contrary, at the time of settling or in the steady state, the response is made small to make the control system robust and stable. Furthermore, the occurrence of steady torque ripples and speed ripples, which occurs when the control is performed in a constant manner as in the past, is greatly suppressed. It can also be expected to reduce noise.

【0020】本発明によれば、制御定数を運転状況に適
応したパラメータに簡単に変更ができ、また定数の選定
を可変とすることで選定の自由度が格段に向上し、速度
制御のみならず、位置制御やトルク制御等にも適用でき
る。
According to the present invention, the control constant can be easily changed to a parameter adapted to the operating condition, and the variable selection of the constant greatly improves the degree of freedom in selection. It can also be applied to position control and torque control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の技術思想の理解を容易にするための速
度フィードバック制御と等価外乱オブザーバを適用した
系の可変構造制御方法を示す基本ブロック線図である。
FIG. 1 is a basic block diagram showing a variable structure control method for a system to which a velocity feedback control and an equivalent disturbance observer are applied to facilitate understanding of the technical idea of the present invention.

【図2】本発明のうちの、速度偏差の微分値 de/dtの
評価はされないが、速度偏差eのみの評価で、PI定
数,フィルタ時定数を運転状況に応じて可変とする、最
も簡単な方法の特性カーブを示し、(a) は速度偏差eに
対する比例定数KPの特性、(b) は速度偏差eに対する積
分定数KIの特性、(c) は速度偏差eに対するフィルタ時
定数 Tf の特性を示している。
FIG. 2 of the present invention, the differential value de / dt of the speed deviation is not evaluated, but only the speed deviation e is evaluated, and the PI constant and the filter time constant are made variable according to the driving situation. Shows the characteristic curve of various methods, (a) is the characteristic of proportional constant KP for speed deviation e, (b) is the characteristic of integration constant KI for speed deviation e, (c) is the filter time constant T f for speed deviation e. It shows the characteristics.

【図3】本発明のうち、PI定数,フィルタ時定数を運
転状況に応じて可変とするようにEをパラメータとする
関数により与えることを特徴とする可変構造制御方法の
関数特性カーブの一例であり、(a) はパラメータEに対
する比例定数KPの特性、(b) はパラメータEに対する積
分定数KIの特性、(c) はパラメータEに対するフィルタ
時定数 Tf の特性を示している。
FIG. 3 is an example of a function characteristic curve of a variable structure control method, wherein a PI constant and a filter time constant are given by a function having E as a parameter so as to be variable according to an operating condition, among the present invention. (A) shows the characteristic of the proportional constant KP with respect to the parameter E, (b) shows the characteristic of the integration constant KI with respect to the parameter E, and (c) shows the characteristic of the filter time constant T f with respect to the parameter E.

【図4】可変構造制御方法の関数特性カーブをデータテ
ーブルとした一例を示し、(a)は速度偏差eの値に対す
る比例定数KP,積分定数KI及びフィルタ時定数 Tf の適
当な値を記録したデータテーブル、(b) はパラメータE
の値に対する比例定数KPと積分定数KI及びフィルタ時定
数 Tf の適当な値を記録したデータテーブルである。
FIG. 4 shows an example in which a function characteristic curve of a variable structure control method is used as a data table, and (a) records appropriate values of a proportional constant KP, an integration constant KI, and a filter time constant T f with respect to a value of a speed deviation e. Data table, (b) is parameter E
It is a data table which recorded appropriate values of a proportional constant KP, an integral constant KI, and a filter time constant Tf with respect to the value of.

【図5】制御系に上位コンピュータがある場合に、その
コンピュータで関数演算により出力を得る方法の一例を
示すブロック線図である。
FIG. 5 is a block diagram showing an example of a method of obtaining an output by a function operation in the computer when there is a host computer in the control system.

【図6】誘導電動機の速度制御系に比例積分制御(PI
制御)と等価外乱オブザーバとを適用して高機能化を図
った従来の制御系を示すブロック線図である。
FIG. 6 shows a proportional-integral control (PI
FIG. 8 is a block diagram showing a conventional control system that has been made highly functional by applying control) and an equivalent disturbance observer.

【符号の説明】[Explanation of symbols]

1,1′速度PI制御部 2 制御対象 3 3′等価外乱補償部 4,5,6 関数発生器 7 上位コンピュータ 1, 1'Velocity PI control unit 2 Control object 3 3'Equivalent disturbance compensation unit 4, 5, 6 Function generator 7 Upper computer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】制御対称の指令入力と状態両との偏差量を
P(比例)およびI(積分)などからなる安定化補償手
段を通じて該制御対象の印加入力量とするようになした
ものであって、前記印加入力量と該制御対象の状態量と
を用いて該制御対象の等価外乱を1次遅れフィルタを通
じて算出するようにした等価外乱補償手段を有する電動
機制御装置において、 前記P(比例)およびI(積分)などの定数と前記1次
遅れフィルタの時定数を該偏差量やその微分値に重み計
数を掛け算し、加算して、運転状況に応じて可変とする
ことを特徴とする可変構造制御方法。
1. A deviation amount between a control symmetrical command input and both states is set as an applied input amount of the controlled object through a stabilizing compensating means including P (proportional) and I (integral). In the electric motor control device having the equivalent disturbance compensating means for calculating the equivalent disturbance of the controlled object through the first-order lag filter using the applied input amount and the state quantity of the controlled object, ) And I (integration) and the time constant of the first-order lag filter are multiplied by the deviation amount or its differential value by a weighting coefficient and added to make it variable according to the driving situation. Variable structure control method.
【請求項2】前記制御方法において、PI定数とフィル
タ時定数とを運転状況に応じて可変とするよう関数によ
り与えることを特徴とする可変構造制御方法。
2. A variable structure control method according to the above control method, wherein a PI constant and a filter time constant are given by a function so as to be variable according to an operating condition.
【請求項3】前記制御方法において、PI定数とフィル
タ時定数とを運転状況に応じて可変とするよう予め定義
したデータテーブルを参照して選択するようにしたこと
を特徴とする可変構造制御方法。
3. The variable structure control method according to claim 3, wherein the PI constant and the filter time constant are selected with reference to a data table defined in advance so as to be variable according to the operating condition. .
【請求項4】前記制御方法において、PI定数とフィル
タ時定数とを運転状況に応じて上位のコンピュータより
与えられるようにしたことを特徴とする可変構造制御方
法。
4. A variable structure control method according to the above control method, wherein a PI constant and a filter time constant are provided from a host computer in accordance with an operating condition.
JP4189352A 1992-07-16 1992-07-16 Variable structure control method Expired - Fee Related JP2850075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4189352A JP2850075B2 (en) 1992-07-16 1992-07-16 Variable structure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4189352A JP2850075B2 (en) 1992-07-16 1992-07-16 Variable structure control method

Publications (2)

Publication Number Publication Date
JPH0635506A true JPH0635506A (en) 1994-02-10
JP2850075B2 JP2850075B2 (en) 1999-01-27

Family

ID=16239892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4189352A Expired - Fee Related JP2850075B2 (en) 1992-07-16 1992-07-16 Variable structure control method

Country Status (1)

Country Link
JP (1) JP2850075B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09282005A (en) * 1996-04-18 1997-10-31 Unisia Jecs Corp Position controller
JPH1155979A (en) * 1997-07-31 1999-02-26 Toyo Electric Mfg Co Ltd Method for controlling speed of fiber line
WO2000019288A1 (en) * 1998-09-28 2000-04-06 Kabushiki Kaisha Yaskawa Denki Position controller
JP2000270579A (en) * 1999-03-12 2000-09-29 Sankyo Seiki Mfg Co Ltd Current controller
JP2008047127A (en) * 2006-08-14 2008-02-28 Samsung Electronics Co Ltd Adaptive disturbance repressing method, computer-readable recording medium, adaptive disturbance repressing device, disk drive unit, and disk drive unit control method
WO2009096008A1 (en) * 2008-01-30 2009-08-06 Mitsubishi Electric Corporation Steering controller
JP2011097672A (en) * 2009-10-27 2011-05-12 Toshiba Corp Inverter apparatus
JP2011138200A (en) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Adaptive controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305780A (en) * 1987-06-08 1988-12-13 Fuji Electric Co Ltd Variable speed driving device for motor
JPH02253302A (en) * 1989-03-27 1990-10-12 Toyo Electric Mfg Co Ltd Variable structure pi controller
JPH0325505A (en) * 1989-06-22 1991-02-04 Toyo Electric Mfg Co Ltd Multifunction controller
JPH0378806A (en) * 1989-08-23 1991-04-04 Toyo Electric Mfg Co Ltd Multi-function type controller
JPH03150084A (en) * 1989-11-06 1991-06-26 Fanuc Ltd Speed control system of servomotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305780A (en) * 1987-06-08 1988-12-13 Fuji Electric Co Ltd Variable speed driving device for motor
JPH02253302A (en) * 1989-03-27 1990-10-12 Toyo Electric Mfg Co Ltd Variable structure pi controller
JPH0325505A (en) * 1989-06-22 1991-02-04 Toyo Electric Mfg Co Ltd Multifunction controller
JPH0378806A (en) * 1989-08-23 1991-04-04 Toyo Electric Mfg Co Ltd Multi-function type controller
JPH03150084A (en) * 1989-11-06 1991-06-26 Fanuc Ltd Speed control system of servomotor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09282005A (en) * 1996-04-18 1997-10-31 Unisia Jecs Corp Position controller
JPH1155979A (en) * 1997-07-31 1999-02-26 Toyo Electric Mfg Co Ltd Method for controlling speed of fiber line
WO2000019288A1 (en) * 1998-09-28 2000-04-06 Kabushiki Kaisha Yaskawa Denki Position controller
JP2000270579A (en) * 1999-03-12 2000-09-29 Sankyo Seiki Mfg Co Ltd Current controller
JP2008047127A (en) * 2006-08-14 2008-02-28 Samsung Electronics Co Ltd Adaptive disturbance repressing method, computer-readable recording medium, adaptive disturbance repressing device, disk drive unit, and disk drive unit control method
WO2009096008A1 (en) * 2008-01-30 2009-08-06 Mitsubishi Electric Corporation Steering controller
US8437915B2 (en) 2008-01-30 2013-05-07 Mitsubishi Electric Corporation Steering controller
JP5235906B2 (en) * 2008-01-30 2013-07-10 三菱電機株式会社 Steering control device
JP2011097672A (en) * 2009-10-27 2011-05-12 Toshiba Corp Inverter apparatus
JP2011138200A (en) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Adaptive controller

Also Published As

Publication number Publication date
JP2850075B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US10884121B2 (en) Inter-vehicle distance control device
US8040098B2 (en) Position controller
EP1026818B1 (en) Motor speed controller and gain setting method of the controller
Abd et al. Integral sliding mode control based on barrier function for servo actuator with friction
JPH0635506A (en) Variable structure control method
JPH0325505A (en) Multifunction controller
JP5015703B2 (en) Position control device
JP5362339B2 (en) Motor control device
JPH09305239A (en) Backlash damping control method
JP3158461B2 (en) Dynamometer electric inertia compensation method
JPS594954B2 (en) Mechanical drive system shaft torsional vibration control device
JPH0330161B2 (en)
JP2004064949A (en) Positional control system of ultrasonic motor
JPH086603A (en) Adjusting method for servo system and its servo controller
JP2737064B2 (en) Control device
JPS63301303A (en) Control input designing method for variable structure control system
JP3016521B2 (en) Motor control device
JPH06161507A (en) Controller
KR100794893B1 (en) Motor control apparatus
JP3244184B2 (en) Torsion control system by state space method.
JP4036520B2 (en) Simple adaptive controller
JPH06113578A (en) Motor speed control method
JPH07322664A (en) Controller for electric motor
JP3266391B2 (en) Control device
JP2850076B2 (en) Control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees