JPH0634056B2 - Manufacturing method of nuclear fuel sintered body - Google Patents
Manufacturing method of nuclear fuel sintered bodyInfo
- Publication number
- JPH0634056B2 JPH0634056B2 JP62086579A JP8657987A JPH0634056B2 JP H0634056 B2 JPH0634056 B2 JP H0634056B2 JP 62086579 A JP62086579 A JP 62086579A JP 8657987 A JP8657987 A JP 8657987A JP H0634056 B2 JPH0634056 B2 JP H0634056B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- nuclear fuel
- sintered body
- concentration
- pores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、燃料特性にすぐれた核燃料焼結体の製造方法
に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a nuclear fuel sintered body having excellent fuel characteristics.
一般に原子炉に使用される核燃料は二酸化ウラン(UO
2)等の金属酸化物を構成成分として、この粉末を粉
砕、造粒あるいは混合後、成形し、更に、還元性雰囲気
で焼結し焼結体ペレットとして使用される。また、従
来、気孔形成剤として炭素、酸素、水素、窒素のうちい
ずれかを構成元素として含む有機化合物や、あるいは混
合するUO2粉末と同じ濃縮度を有する八三酸化ウラン
(U3O8)をUO2粉末に混合してから成形ならびに
焼結を行う方法も知られている。ところで、一般にこの
気孔形成剤によって生成されたペレット中の気孔は、ペ
レットが原子炉中で焼結する際に発生する気体状核分裂
生成物(FPガス)をその部分に溜めペレット外に放出
しないようにする為に用いられるものである。Nuclear fuel commonly used in nuclear reactors is uranium dioxide (UO).
This powder is crushed, granulated or mixed with a metal oxide such as 2 ) as a constituent, molded, and then sintered in a reducing atmosphere to be used as a sintered pellet. Further, conventionally, an organic compound containing any one of carbon, oxygen, hydrogen, and nitrogen as a pore-forming agent as a constituent element, or uranium trioxide (U 3 O 8 ) having the same degree of enrichment as the UO 2 powder to be mixed. There is also known a method in which the powder is mixed with UO 2 powder and then molded and sintered. By the way, generally, the pores in the pellet generated by the pore-forming agent are such that the gaseous fission product (FP gas) generated when the pellet is sintered in the reactor is stored in that portion and is not discharged to the outside of the pellet. It is used to
しかしながら、従来の焼結体ペレットにおいては、これ
ら気孔のペレット内分布は、単にペレット内で空間的に
均一な分布をする様に製造されるものでしかないもので
あり、FPガスの放出量の低減効果の点では必ずしも充
分満足のいくものではないという問題点がある。However, in the conventional sintered pellet, the distribution of these pores in the pellet is merely produced so as to have a spatially uniform distribution in the pellet, and the amount of FP gas released There is a problem that the reduction effect is not always sufficiently satisfactory.
本発明は、FPガスのペレット内気孔中への捕捉性を高
めてペレット外へのFPガスの放出量の更なる低減化を
図ることによって燃焼特性にすぐれた核燃料焼結体を製
造する方法を提供することを目的としている。The present invention provides a method for producing a nuclear fuel sintered body having excellent combustion characteristics by enhancing the trapping property of FP gas into the pores inside the pellet to further reduce the amount of FP gas released outside the pellet. It is intended to be provided.
上記目的を達成するため本発明に係る核燃料焼結体の製
造方法は、(イ)核燃料用金属酸化物粉末と、(ロ)前
記(イ)より酸化状態が高く、かつ、濃縮度の高い核燃
料用金属酸化物粉末との混合物からなる核燃料原料粉末
を成形し、さらにこの成形体を還元性雰囲気中で焼結す
ることを特徴としている。In order to achieve the above object, the method for producing a nuclear fuel sintered body according to the present invention is (a) a nuclear fuel metal oxide powder, and (b) a nuclear fuel having a higher oxidation state and a higher enrichment than (a). It is characterized in that a nuclear fuel raw material powder made of a mixture with a metal oxide powder for use is shaped, and the shaped body is further sintered in a reducing atmosphere.
核燃料酸化物粉末、特にUO2粉末にこれと同一の濃縮
度を有するU3O8を添加混合して成形し、還元性雰囲
気で焼結すると成形体中に空間的に実用上均一に分布し
たU3O8が焼結中にUO2に還元されると共にその体
積を減じて微小な気孔が生ずることは既に知られている
(たとえば、H.H.Davis and L.J.Ferrell:MICROSTRUCTU
RES OF AS-FABRICATED UO2 FUEL PELLETS;Ceramic Micr
ostructures′76(1976 年))。そして、このようにして
生成した気孔によって、ペレットが原子炉中で燃焼する
際に発生するFPガスがペレット内を拡散して捕捉さ
れ、これによってペレット外へのFPガスの放出が防止
されるということも知られている。When nuclear fuel oxide powder, especially UO 2 powder, was added and mixed with U 3 O 8 having the same degree of enrichment, and molded, and sintered in a reducing atmosphere, it was spatially and uniformly distributed in the molded body for practical use. It is already known that U 3 O 8 is reduced to UO 2 during sintering and its volume is reduced to generate fine pores (for example, HHDavis and LJ Ferrell: MICROSTRUCTU
RES OF AS-FABRICATED UO 2 FUEL PELLETS; Ceramic Micr
ostructures'76 (1976)). Then, the FP gas generated when the pellets are burned in the nuclear reactor is diffused and captured in the pellets by the pores thus generated, thereby preventing the FP gas from being released to the outside of the pellets. It is also known.
しかしながら、本発明者の知見によれば、上記のような
方法で得られる焼結体はFPガスの放出防止効果の点で
は必ずしも満足のいくものではない。本発明者は、焼結
体原料として、UO2粉末に、更にこれよりも高い濃縮
度を有するU3O8粉末を混合したものを用いることに
より、焼結体の気孔形成状態を、FPガスの放出を防止
する上で最適な状態にできることを見い出したものであ
る。However, according to the knowledge of the present inventor, the sintered body obtained by the above method is not always satisfactory in terms of the FP gas release prevention effect. The present inventor uses a mixture of UO 2 powder and U 3 O 8 powder having a higher degree of enrichment as a raw material for the sintered body to determine the state of pore formation of the sintered body in the FP gas. It has been found that the optimal state can be achieved in order to prevent the emission of
以下、本発明を更に詳細に説明する。以下の記載におい
て、量を表わす「%」は特に断らない限り重量基準であ
る。Hereinafter, the present invention will be described in more detail. In the following description, “%” representing an amount is based on weight unless otherwise specified.
本発明で用いられる核燃料用粉末としては、二酸化ウラ
ン粉末(UO2)があげられ、この粉末の粒径は混合前
において約10〜800μm程度の範囲が好ましい。The nuclear fuel powder used in the present invention is uranium dioxide powder (UO 2 ), and the particle size of this powder is preferably in the range of about 10 to 800 μm before mixing.
本発明で好ましく用いられる、酸化状態の高い核燃料用
粉末としては、八三酸化ウラン粉末(U3O8)があげ
られ、この粉末の濃縮度は、混合するUO2粉末の濃縮
度より高いものとすることが肝要である。またこの粉末
の粒径は、混合前において少くとも150μm以下、で
きれば44μm以下であることが好ましく、またこの粉
末の添加量は、通常0%を超え20%以下の範囲が好ま
しい。添加率が低い分についてはペレット製造技術上の
問題は無いが、本発明の効果をより発現させるためには
添加率は上記範囲において高い方がより好ましい。As a powder for nuclear fuel having a high oxidation state, which is preferably used in the present invention, uranium trioxide powder (U 3 O 8 ) can be mentioned, and the enrichment of this powder is higher than that of the UO 2 powder to be mixed. It is essential that Further, the particle size of this powder is preferably at least 150 μm or less, preferably 44 μm or less before mixing, and the addition amount of this powder is preferably in the range of more than 0% and 20% or less. Although there is no problem in terms of pellet manufacturing technology as far as the addition rate is low, it is more preferable that the addition rate is high in the above range in order to further exert the effect of the present invention.
ただし、20%を超えると、焼結後研削したペレットの
表面に荒れが生じ、表面粗さ並びに外観上不良となるの
で好ましくない。However, if it exceeds 20%, the surface of the pellet ground after sintering is roughened, resulting in poor surface roughness and appearance, which is not preferable.
また、本発明において「濃縮度」とは、238Uと235Uの
重量に対する235Uの重量割合、即ち、 を意味する。Further, in the present invention, the “concentration degree” means the weight ratio of 235 U to the weight of 238 U and 235 U, that is, Means
本発明においては、上記U3O8の濃縮度とがUO2の
濃縮度の差が大きい程その効果は大であるが、前者が後
者よりも0.1〜4%高いことが濃縮度公差並びに濃縮
ウラン調達の点で好ましい。In the present invention, the greater the difference between the enrichment of U 3 O 8 and the enrichment of UO 2 , the greater the effect. However, the former is higher than the latter by 0.1 to 4%, which is the tolerance of enrichment. Also, it is preferable in terms of procuring enriched uranium.
U3O8添加量と混合粉末の濃縮度との関係は、UO2
粉末の濃縮度をA%、混合比率をC%、U含有率をE%
としU3O8の濃縮度をB%、混合比率をD%、U含有
率をF%とすると、(C+D=100)、混合粉末の濃
縮度K%は、K=(A・C・E+B・D・F)/(C・
E+D・F)%となる。The relationship between the amount of U 3 O 8 added and the concentration of the mixed powder is UO 2
Concentration of powder is A%, mixing ratio is C%, U content is E%
And the concentration of U 3 O 8 is B%, the mixing ratio is D%, and the U content is F% (C + D = 100), the concentration K% of the mixed powder is K = (A ・ C ・ E + B・ DF ・ / C ・
E + DF / F)%.
具体的には、通常、UO2粉末のU含有率は約87.8
%であり、U3O8粉末のU含有率は約84.8%であ
る。また、U3O8粉末の添加量、即ち混合比率を10
%とし、その濃縮度を4.00%とすると、これと濃縮
度3.00%のUO2粉末(混合比率90%)とを従来
公知のボールミル、ブレンダー等の乾式混合装置で混合
を行った場合、混合粉末の濃縮度は結局3.10%とな
る。Specifically, the U content of UO 2 powder is usually about 87.8.
%, And the U content of the U 3 O 8 powder is about 84.8%. Further, the addition amount of U 3 O 8 powder, that is, the mixing ratio is 10
%, And the concentration is 4.00%, UO 2 powder having a concentration of 3.00% (mixing ratio 90%) was mixed with a conventionally known dry mixing device such as a ball mill or a blender. In this case, the concentration of the mixed powder will be 3.10%.
次いで、このようにして得られた混合粉末(核燃料原料
粉末)を、常法に従い、所望形状の成形機の金型中に装
入し、例えば1〜4ton /cm2程度の圧力で成形して、
二酸化ウランの理論密度である10.95g/ccの40
〜60%TDの成形体を得る。次いで、この成形体を水
素または分解アンモニアガス等の還元性ガス雰囲気中に
おいて、例えば約1600〜1800℃で約1〜10時
間焼結する。Then, the mixed powder (nuclear fuel raw material powder) thus obtained is charged into a mold of a molding machine having a desired shape by a conventional method, and molded under a pressure of, for example, about 1 to 4 ton / cm 2. ,
40 of theoretical density of uranium dioxide 10.95 g / cc
A molded product of -60% TD is obtained. Then, the compact is sintered in a reducing gas atmosphere such as hydrogen or decomposed ammonia gas at, for example, about 1600 to 1800 ° C. for about 1 to 10 hours.
得られた焼結体は、例えば所望の直径に研削し、これを
燃焼被覆中に充填し、不活性ガスに置換して封入し、燃
料棒として原子炉の運転に供する。The obtained sintered body is ground to, for example, a desired diameter, filled in a combustion coating, replaced with an inert gas and enclosed, and used as a fuel rod for operation of a nuclear reactor.
上記のような方法で製造された燃料ペレットは、ペレッ
ト中の気孔並びに235Uの濃度の空間的な分布が実質的
に均一であるばかりでなく、微視的には235U原子濃度
が高い部分に気孔が偏在して存在する為に、FPガスが
気孔に捕捉されやすくなり、被覆管とペレットとの間の
ギャップ熱伝達の低下を効果的に防止することができ、
これによって燃料特性の向上を図ることができる。The fuel pellets produced by the above-mentioned method not only have a substantially uniform spatial distribution of pores and 235 U concentration in the pellet, but also microscopically have a high 235 U atomic concentration. Since the pores are unevenly distributed in the FP, the FP gas is easily trapped in the pores, and it is possible to effectively prevent the reduction of the heat transfer in the gap between the cladding tube and the pellet,
This can improve the fuel characteristics.
上記の様なすぐれた効果が発現する理由は必ずしも明ら
かではないが、次の様に考えることができる。The reason why the above-mentioned excellent effects are exhibited is not always clear, but it can be considered as follows.
すなわち、UO2粉末よりも高い濃縮度のU3O8粉末
をUO2粉末に添加混合し、成形したのち還元雰囲気で
焼結すると、粉末混合時にU3O8はUO2中に均一に
分布し、焼結後生成する気孔は空間的に実用上均一に分
布し、また濃縮度も空間的に実用上均一となると共に気
孔はU3O8が存在していた部分に形成されるわけだか
ら、局所的に濃縮度の高い、即ち、235U濃度の高い部
分に気孔が形成されることになる。一方、同一中性子束
分布中にペレットがさらされた場合、FPガス発生量は
その濃度に比例して高くなるわけだから、FPガスの発
生量の多い部位に気孔が形成されていることになる。す
なわち、ペレット全体として考えると、上記方法で製造
した場合と、従来公知の方法、即ち、UO2粉末とU3
O8粉末の濃縮度を同じくして製造した場合とを比較す
ると、ペレット内に形成される気孔の数や体積は同一
で、また空間的分布は同一であっても、上記本発明の方
法で得られたペレットは比較的にFPガスの発生量が多
い局所に気孔が配置しているため、FPガスの気孔への
捕捉性が極めて良好になるものと考えられる。That is, the U 3 O 8 powder higher enrichment than UO 2 powder was added and mixed into UO 2 powder and sintering in a reducing atmosphere After molding, U 3 O 8 during powder mixing uniformly distributed in the UO 2 However, the pores generated after sintering are spatially and practically evenly distributed, and the concentration is also spatially and practically uniform, and the pores are formed in the portion where U 3 O 8 was present. However, stomata are locally formed in a highly concentrated portion, that is, in a portion where the 235 U concentration is high. On the other hand, when the pellets are exposed to the same neutron flux distribution, the FP gas generation amount increases in proportion to the concentration thereof, so that pores are formed at the site where the FP gas generation amount is large. That is, considering the pellet as a whole, it can be produced by the above-mentioned method and the conventionally known method, that is, UO 2 powder and U 3
Comparing the case where the O 8 powder was produced with the same concentration, the number of pores formed in the pellets was the same and the volume was the same, and the spatial distribution was the same. Since the obtained pellets have pores arranged locally where the amount of FP gas generated is relatively large, it is considered that the trapping property of FP gas into the pores becomes extremely good.
実施例1 原料となるUO2粉末は濃縮度2.00%でU%が8
7.7%のもの450gをあらかじめふるいがけにより
粒径を720μm以下に揃えておく。Example 1 UO 2 powder as a raw material had a concentration of 2.00% and a U% of 8
450 g of 7.7% is adjusted in advance to a particle size of 720 μm or less by sieving.
一方、U3O8粉末は焼結体を大気中500℃1時間で
酸化させ、ふるいがけにより粒径を44μm以下に揃え
た濃縮度3.90%でU%が84.8%のもの25gを
用いる。On the other hand, U 3 O 8 powder was obtained by oxidizing a sintered body in the air at 500 ° C. for 1 hour, and sieving the particles to a particle size of 44 μm or less. Concentration of 3.90% and U% of 84.8% 25 g To use.
両粉末を回転式混合器で均一に混合した後、成形圧力2
Ton /cm2で成形後、水素雰囲気中1750℃で3時間
焼結し研削を行う。After uniformly mixing both powders with a rotary mixer, the molding pressure 2
After molding at Ton / cm 2 , sintering is performed in a hydrogen atmosphere at 1750 ° C. for 3 hours and grinding is performed.
得られたペレットは濃縮度2.10%であり、内部に1
0〜40μm程度の大きさをもつ気孔が均一に形成され
た。The obtained pellets had a concentration of 2.10% and contained 1
Pores having a size of 0 to 40 μm were uniformly formed.
Claims (3)
前記(イ)より酸化状態が高く、かつ、濃縮度の高い核
燃料用金属酸化物粉末との混合物からなる核燃料原料粉
末を成形し、さらにこの成形体を還元性雰囲気中で焼結
することを特徴とする、核燃料焼結体の製造方法。1. A metal oxide powder for nuclear fuel, and (b)
Characteristic is that a nuclear fuel raw material powder composed of a mixture with a metal oxide powder for nuclear fuel having a higher oxidation state and a higher degree of enrichment than the above (a) is molded, and the molded body is sintered in a reducing atmosphere. And a method for producing a nuclear fuel sintered body.
2酸化ウラン(UO2)である、特許請求の範囲第1項
の製造方法。2. The metal oxide powder for nuclear fuel according to (a) above,
The method according to claim 1, which is uranium dioxide (UO 2 ).
より濃縮度の高い八三酸化ウラン(U3O8)からな
る、特許請求の範囲第2項の製造方法。3. The metal oxide for nuclear fuel of (b) above is UO 2
The production method according to claim 2, comprising uranium trioxide (U 3 O 8 ) having a higher degree of enrichment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62086579A JPH0634056B2 (en) | 1987-04-08 | 1987-04-08 | Manufacturing method of nuclear fuel sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62086579A JPH0634056B2 (en) | 1987-04-08 | 1987-04-08 | Manufacturing method of nuclear fuel sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63252291A JPS63252291A (en) | 1988-10-19 |
JPH0634056B2 true JPH0634056B2 (en) | 1994-05-02 |
Family
ID=13890916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62086579A Expired - Fee Related JPH0634056B2 (en) | 1987-04-08 | 1987-04-08 | Manufacturing method of nuclear fuel sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0634056B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2979469A1 (en) * | 2011-08-22 | 2013-03-01 | Commissariat Energie Atomique | PROCESS FOR PREPARING POROUS NUCLEAR FUEL |
-
1987
- 1987-04-08 JP JP62086579A patent/JPH0634056B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63252291A (en) | 1988-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4061700A (en) | Fugitive binder for nuclear fuel materials | |
US3883623A (en) | Process for controlling end-point density of sintered uranium dioxide nuclear fuel bodies and product | |
US3263004A (en) | Process of making a sintered, homogeneous dispersion of nuclear fuel and burnable poison | |
US3806565A (en) | Method of preparing relatively low density oxide fuel for a nuclear reactor | |
JPS6119952B2 (en) | ||
JP2004538475A5 (en) | ||
JP2004538475A (en) | Method for producing mixed oxide nuclear fuel powder and mixed oxide nuclear fuel sintered body | |
US9653188B2 (en) | Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same | |
US3375306A (en) | Method of producing dense,sintered bodies of uo2 or uo2-puo2 mixtures | |
US4264540A (en) | Production of nuclear fuel pellets | |
US4671904A (en) | Method for producing oxidic sintered nuclear fuel bodies | |
US3306957A (en) | Production of nuclear fuel materials | |
JPH0634056B2 (en) | Manufacturing method of nuclear fuel sintered body | |
US3168479A (en) | Process for producing high density nuclear fuel particles | |
US2952535A (en) | Sintering metal oxides | |
JPH09127290A (en) | Sintering method for nuclear fuel pellet | |
US3168601A (en) | Process for the production of plutonium oxide-containing nuclear fuel compacts | |
US3063793A (en) | Production of high density sintered uranium oxide | |
US3510545A (en) | Method of manufacturing nuclear fuel rods | |
US3761546A (en) | Method of making uranium dioxide bodies | |
US3819804A (en) | Conversion of uranium hexafluoride to uranium dioxide structures of controlled density and grain size | |
JP2588947B2 (en) | Manufacturing method of oxide nuclear fuel sintered body | |
JP2981580B2 (en) | Manufacturing method of nuclear fuel assembly | |
JP3051388B1 (en) | Manufacturing method of nuclear fuel sintered body | |
US3213161A (en) | Process for forming a uranium mononitride-uranium dioxide nuclear fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |