JPH0634028B2 - Switchgear test method and device - Google Patents
Switchgear test method and deviceInfo
- Publication number
- JPH0634028B2 JPH0634028B2 JP6678485A JP6678485A JPH0634028B2 JP H0634028 B2 JPH0634028 B2 JP H0634028B2 JP 6678485 A JP6678485 A JP 6678485A JP 6678485 A JP6678485 A JP 6678485A JP H0634028 B2 JPH0634028 B2 JP H0634028B2
- Authority
- JP
- Japan
- Prior art keywords
- switchgear
- test
- current
- circuit
- auxiliary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は開閉装置のしゃ断性能を検証する試験装置にお
いて、特に力率改善用コンデンサバンク回路に用いられ
る開閉装置の試験装置に関する。Description: TECHNICAL FIELD The present invention relates to a test device for verifying the breaking performance of a switchgear, and more particularly to a switchgear tester used in a power factor improving capacitor bank circuit.
力率改善用コンデンサバンク回路に用いられる開閉装置
は回路電流しゃ断後の開閉装置の電極間にかかる電圧に
対して再点弧が発生しないようにすることが重要であ
る。その理由は、万一回路電流しゃ断後に電極間に再点
弧が発生するとそれに伴うサージ電圧により地絡事故が
発生し、相間短絡事故に至る危険性があるからである。It is important for the switchgear used in the power factor improving capacitor bank circuit to prevent re-ignition from occurring with respect to the voltage applied between the electrodes of the switchgear after the circuit current is cut off. The reason is that if re-ignition occurs between the electrodes after the circuit current is cut off, a surge voltage is generated, which causes a ground fault, which may lead to an interphase short circuit.
従って、かかる回路に用いられる開閉装置において再点
弧が発生しないようにするにはそのしゃ断性能の検証を
十分に行なわなければならない。Therefore, in order to prevent re-ignition from occurring in the switchgear used in such a circuit, its breaking performance must be sufficiently verified.
ところで、開閉装置のしゃ断性能の検証は実負荷回路で
実施することがその適合性を見極める上で最も好ましい
ことであるが、最近のコンデンサバンク回路ではコンデ
ンサバンクの容量が大容量化してきており、これに伴い
3相試験設備により実負荷に基いてしゃ断性能を検証で
きる範囲は自ずと制限される。By the way, it is the most preferable to verify the breaking performance of the switchgear in an actual load circuit to determine its suitability, but in recent capacitor bank circuits, the capacity of the capacitor bank is increasing, Along with this, the range in which the three-phase test facility can verify the breaking performance based on the actual load is naturally limited.
このため、従来では3相実負荷試験設備を用いた場合と
同等のしゃ断性能を検証する方法として、昭和42年1
1月発行の電気学会技術報告書「小電流開閉試験法の検
討」でも紹介されているように回路電流しゃ断後に再点
弧が発生するか否かを検証するようにした試験方法が採
用されている。Therefore, as a method of verifying the breaking performance equivalent to that in the case of using the three-phase actual load test facility in the past, 1
As introduced in the technical report “Small current switching test method” published by the Institute of Electrical Engineers of Japan in January, a test method that verifies whether or not re-ignition occurs after the circuit current is cut off is adopted. There is.
この試験方法は大きな進み力率電流のしゃ断性能の検証
を比較的小容量の設備で実負荷回路でのそれと等価的に
実施できるようにすることを目的として、供試開閉装置
(以下これを供試器と呼ぶ)に規定電流を流すための電
流源回路と電流しゃ断後に回復電圧を印加する電圧源回
路とで試験回路を構成し、供試器に遅れ力率の電流を流
すと共に回復電圧は進み力率電流しゃ断時と等価な電圧
を印加するようにしたものである。This test method aims to enable verification of the breaking performance of a large lead power factor current to be equivalent to that in an actual load circuit with a relatively small capacity equipment. A test circuit is composed of a current source circuit for supplying a specified current to the test device) and a voltage source circuit for applying the recovery voltage after the current is cut off. A voltage equivalent to that at the time of cutting off the advance power factor current is applied.
第4図はこのような従来の合成試験回路の構成例を示す
ものである。FIG. 4 shows a configuration example of such a conventional synthesis test circuit.
第4図に示すように供試器4の両端を、電流源電源1に
リアクトル2及び補助開閉装置3を直列に介して接続す
ると共に電圧源電源5に補助開閉装置6及びコンデンサ
7を直列に介して接続する構成とし、供試器4に対し電
流源電源1から遅れ力率電流を供給し、電圧源電源5か
らは進み力率電流を供給して遅れ力率電流と進み力率電
流の合成電流を補助開閉装置3と供試器4とでしゃ断し
た後の回復電圧が進み力率電流しゃ断時と等価になるよ
うにしてある。As shown in FIG. 4, both ends of the EUT 4 are connected to the current source power source 1 through the reactor 2 and the auxiliary switchgear 3 in series, and the voltage source power source 5 is connected with the auxiliary switchgear 6 and the capacitor 7 in series. The delay power factor current is supplied from the current source power source 1 to the EUT 4, and the leading power factor current is supplied from the voltage source power source 5 to the EUT 4, and the delay power factor current and the leading power factor current are The recovery voltage after the combined current is cut off by the auxiliary switchgear 3 and the EUT 4 is made equal to that at the time when the power factor current is cut off.
次にかかる構成の試験回路において、供試器4のしゃ断
性能を検証する場合の作用を第5図に示す試験時の現象
波形を参照しながら説明する。Next, in the test circuit having such a configuration, the operation for verifying the cutoff performance of the DUT 4 will be described with reference to the phenomenon waveform at the time of the test shown in FIG.
第4図において、今補助開閉装置3及び供試器4に投入
指令が与えられこれらが共に投入されると、電流源電源
1から供試器4にリアクトル2,補助開閉装置3を介し
て遅れ力率電流8が流れる。また補助開閉装置6を投入
すると電圧源電源5から供試器4に補助開閉装置6及び
コンデンサ7を介して進み力率電流9が流れる。従っ
て、、供試器4には遅れ力率電流8と進み力率電流9と
の合成電流10が流れることになる。このような状態に
ある時、補助開閉装置3と供試器4とにしゃ断指令をそ
れぞれ与えてこれらを同時にしゃ断すると、供試器4の
極間には電圧源電源5側から進み電流しゃ断時と等価な
極間電圧が印加される。この場合、極間電圧は供試器4
が3相開閉装置であればしゃ断第1相と等価な電圧条件
として行ない、また補助開閉装置3は一般的に供試器4
より絶縁耐力の高い開閉装置が用いられる。In FIG. 4, when a command is given to the auxiliary switchgear 3 and the EUT 4 and both of them are turned ON, the current source power supply 1 delays the EUT 4 via the reactor 2 and the auxiliary switchgear 3. Power factor current 8 flows. When the auxiliary switchgear 6 is turned on, a power factor current 9 flows from the voltage source 5 to the DUT 4 via the auxiliary switchgear 6 and the capacitor 7. Therefore, the combined current 10 of the delayed power factor current 8 and the advanced power factor current 9 flows through the EUT 4. In such a state, if a cutoff command is given to the auxiliary switchgear 3 and the EUT 4 respectively, and they are cut off at the same time, the gap between the EUT 4 advances from the voltage source 5 side and the current is cut off. An inter-electrode voltage equivalent to is applied. In this case, the voltage between contacts is
If the three-phase switchgear is a three-phase switchgear, the voltage condition equivalent to the interrupting first phase is used.
A switchgear with a higher dielectric strength is used.
以上のようにして供試器4が電流しゃ断後の極間電圧に
耐えられるか否かを検証することにより、開閉装置が実
負荷回路において電極間に再点弧が発生するか否かを判
定することができる。As described above, the switchgear determines whether re-ignition occurs between electrodes in the actual load circuit by verifying whether the EUT 4 can withstand the voltage between contacts after current interruption. can do.
[背景技術の問題点] しかし、このような試験回路で検証された開閉装置を一
般の力率改善用コンデンサバンク回路に用いる場合、こ
のコンデンサバンク回路に直列リアクトルが接続されて
はいるものの開閉装置にコンデンサバンク回路が電圧最
大位相で投入されるとその投入時に高周波成分が回路電
流に重畳し、その最大波高値が回路電流の5倍程度にな
って流れることがある。また第6図に示すように直列リ
アクトルが接続されていない,あるいはインピーダンス
の小さな直列リアクトルが接続されているようなコンデ
ンサバンク回路であって、既に別の開閉装置16により
変圧器13を介して電源12側に投入されたコンデンサ
バンク14がある場合、このコンデンサバンク14と同
一系統に並列設置されたコンデンサバンク15を開閉装
置17により投入すると電源12側から開閉装置17に
流れる回路電流18に重畳してコンデンサバンク14側
から高周波突入電流19が流れ込む。従ってこの高周波
突入電流19の波高値は回路電流18と比較して非常に
大きく、しかも周波数も高いため開閉装置17のしゃ断
時への影響が懸念される。[Problems of the background art] However, when the switchgear verified by such a test circuit is used in a general power factor improving capacitor bank circuit, the switchgear which has a series reactor connected to the capacitor bank circuit is used. When the capacitor bank circuit is turned on at the maximum voltage phase, the high frequency component may be superimposed on the circuit current when the voltage is turned on, and the maximum peak value may flow about 5 times the circuit current. In addition, as shown in FIG. 6, a capacitor bank circuit in which a series reactor is not connected, or a series reactor having a small impedance is connected, and a power supply is already supplied via a transformer 13 by another switching device 16. When there is a capacitor bank 14 turned on on the 12 side, when the capacitor bank 15 installed in parallel with the capacitor bank 14 in the same system is turned on by the switchgear 17, it is superimposed on the circuit current 18 flowing from the power source 12 side to the switchgear 17. A high-frequency inrush current 19 flows in from the capacitor bank 14 side. Therefore, the peak value of the high-frequency inrush current 19 is very large as compared with the circuit current 18, and the frequency is also high, so there is concern that the switching device 17 may be interrupted.
本発明は上記のような事情に鑑みてなされたもので、そ
の目的は比較的小容量設備で開閉装置の投入時に回路電
流に重畳する高周波突入電流をも考慮したしゃ断性能を
検証することができる開閉装置の試験方法及びその装置
を提供しょうとするものである。The present invention has been made in view of the above circumstances, and its purpose is to verify the breaking performance in consideration of the high-frequency inrush current superimposed on the circuit current when the switchgear is turned on in a relatively small capacity facility. It is intended to provide a test method for a switchgear and a device therefor.
〔発明の概要〕 本発明はかかる目的を達成するため、供試器投入時に流
れる遅れ力率電流と進み力率電流の合成電流に高周波突
入電流を重畳させ、この電流しゃ断後に供試器に印加さ
れる回復電圧により、再点弧が発生するか否かを検証す
ることを特徴とするものである。[Summary of the Invention] In order to achieve such an object, the present invention superimposes a high-frequency inrush current on a combined current of a lagging power factor current and a leading power factor current that flows when the EUT is turned on, and applies the current to the EUT after the current interruption. It is characterized by verifying whether or not re-ignition occurs depending on the recovery voltage that is applied.
以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明による開閉装置の試験方法及びその装置
を説明するための回路構成例を示すもので、第4図と同
一部分には同一符号を付してその説明を省略し、ここで
は異なる部分について述べる。FIG. 1 shows an example of a circuit configuration for explaining a test method for a switchgear according to the present invention and a device therefor. The same parts as those in FIG. 4 are designated by the same reference numerals and the description thereof will be omitted. The different parts will be described.
本実施例では第1図に示すように従来の試験回路(第4
図に示す回路)に、電源23により整流器22を介して
充電されるコンデンサ20,リアクトル21及び補助開
閉装置24を供試器4の両端に直列接続した突入電流源
回路を新たに付加する構成とするものである。そして補
助開閉装置3,6,24並びに供試器4に対して投入指
令及びしゃ断指令を与える指令回路31を設けるもので
ある。In this embodiment, as shown in FIG.
(In the circuit shown in the drawing), a capacitor 20 charged by the power supply 23 through the rectifier 22, a reactor 21, and an auxiliary switchgear 24 are connected in series to both ends of the EUT 4, and an inrush current source circuit is newly added. To do. Then, a command circuit 31 for giving a closing command and a cutting command to the auxiliary opening / closing devices 3, 6, 24 and the DUT 4 is provided.
次にかかる構成の試験回路において、コンデンサバンク
回路に使用される開閉装置を供試器4としてそのしゃ断
性能を検証する場合の作用を第2図に示す現象波形を参
照しながら説明する。Next, in the test circuit having such a configuration, the operation in the case where the switchgear used in the capacitor bank circuit is used as the test device 4 to verify its breaking performance will be described with reference to the phenomenon waveforms shown in FIG.
第1図に示す試験回路において、予め突入電流源回路の
コンデンサ20に対して電源23及び整流器22の充電
回路により例えば第6図に示す並列コンデンサバンク1
5の端子電圧相当の電圧に充電しておく。このような状
態にある時、補助開閉装置24を指令回路31から出力
される投入指令により投入するとコンデンサ20の充電
電圧がリアクトル21を経て供試器4の電極間に印加さ
れる。この状態で指令回路31から出力される投入指令
により供試器4を投入するとコンデンサ20から補助開
閉装置24,リアクトル21を介して高周波突入電流2
5が供試器4に流れる。この高周波突入電流25が供試
器4に流れ始めると同時に又は直後に指令回路31より
出力される投入指令により補助開閉装置3を投入する
と、電流源電源1から電流調整用リアクトル2,補助開
閉装置3を経て供試器4に遅れ力率電流26が流れる。
また、指令回路31より出力される投入指令により補助
開閉装置6を投入すると電圧源電源5から補助開閉装置
6,コンデンサ7を経て進み力率電流27が供試器4に
流れる。従って、供試器4に流れるしゃ断電流は遅れ力
率電流26と進み力率電流27の合成電流28とこれに
重畳される高周波突入電流25となる。ここで、指令回
路31からのしゃ断指令により突入電流源回路の補助開
閉装置24をしゃ断した後、指令回路31から出力され
るしゃ断指令により補助開閉装置3及び供試器4を同時
にしゃ断すると供試器4の電極間に電圧源電源5から電
圧29が印加される。この場合、補助開閉装置3は供試
器4より高い絶縁耐力のものが必要になることは言うま
でもない。In the test circuit shown in FIG. 1, the parallel capacitor bank 1 shown in FIG.
Charge to a voltage equivalent to the terminal voltage of 5. In such a state, when the auxiliary switchgear 24 is closed by the closing command output from the command circuit 31, the charging voltage of the capacitor 20 is applied between the electrodes of the test device 4 via the reactor 21. In this state, when the EUT 4 is closed by the closing command output from the command circuit 31, the high-frequency inrush current 2 flows from the capacitor 20 via the auxiliary switchgear 24 and the reactor 21.
5 flows to the EUT 4. When the auxiliary switchgear 3 is turned on by the closing command output from the command circuit 31 at the same time as or immediately after the high-frequency inrush current 25 starts to flow to the EUT 4, the current source power source 1 for the current adjusting reactor 2 and the auxiliary switchgear. After 3, the delay power factor current 26 flows to the EUT 4.
Further, when the auxiliary switchgear 6 is turned on by the closing command output from the command circuit 31, a forward power factor current 27 flows from the voltage source power source 5 through the auxiliary switchgear 6 and the capacitor 7 to the DUT 4. Therefore, the cutoff current flowing through the EUT 4 is the combined current 28 of the delayed power factor current 26 and the advanced power factor current 27, and the high frequency inrush current 25 superimposed on this. Here, after the auxiliary switchgear 24 of the inrush current source circuit is cut off by the cutoff command from the command circuit 31, the auxiliary switchgear 3 and the EUT 4 are simultaneously cut off by the cutoff command output from the command circuit 31. A voltage 29 is applied from the voltage source power supply 5 between the electrodes of the container 4. In this case, needless to say, the auxiliary switchgear 3 needs to have a higher dielectric strength than that of the DUT 4.
このように本実施例の如く、供試器4の投入時に流れる
遅れ力率電流26と進み力率電流27の合成電流28に
高周波突入電流25を重畳させ、この電流しゃ断後に電
圧源電源5より供試器4の電極間に回復電圧29を印加
するようにしたので、この電極間の回復電圧29に対し
て再点弧が発生するか否かを検証すれば高周波突入電流
を考慮したしゃ断性能試験が可能となる。In this way, as in this embodiment, the high frequency inrush current 25 is superposed on the combined current 28 of the delayed power factor current 26 and the leading power factor current 27 that flows when the EUT 4 is turned on, and the voltage source power source 5 outputs the current after the current interruption. Since the recovery voltage 29 is applied between the electrodes of the EUT 4, if it is verified whether re-ignition occurs with respect to the recovery voltage 29 between the electrodes, the breaking performance considering the high-frequency inrush current is considered. Testing is possible.
次に本発明の他の実施例について述べる。Next, another embodiment of the present invention will be described.
上記実施例では突入電流源回路におけるコンデンサ20
の充電回路を電源23に対して整流器22を一方向の極
性として接続するようにしたが、これを第3図に示すよ
うにコンデンサ20の充電極性のため、+,−充電用整
流器22a,22bとこれらを切換える極性切換用断路
器30を設けることにより突入電流の極数切換が可能と
なる。またこの極性切換用断路器30を遠方操作可能と
すれば、試験の能率を向上させることができる。In the above embodiment, the capacitor 20 in the inrush current source circuit is used.
The charging circuit is connected to the power source 23 with the rectifier 22 having a unidirectional polarity. However, because of the charging polarity of the capacitor 20 as shown in FIG. 3, the rectifiers 22a, 22b for + and-charging are charged. By providing the polarity switching disconnecting switch 30 for switching between them, the number of poles of the inrush current can be switched. Further, if the polarity switching disconnector 30 can be operated remotely, the efficiency of the test can be improved.
また第1図に示す試験回路において、その一部の構成を
次のようにしても前述と同様の実施が可能である。The test circuit shown in FIG. 1 can be implemented in the same manner as described above even if a part of the configuration thereof is as follows.
(a)通常、開閉装置は3相一体構造となっているの
で、その1相分を供試器4とし、他の2相分を補助開閉
装置3,6として用いればその開閉制御を容易に行なう
ことができる。(A) Normally, since the switchgear has a three-phase integrated structure, if one phase is used as the test device 4 and the other two phases are used as the auxiliary switchgear 3, 6, the opening / closing control can be facilitated. Can be done.
(b)第1図に示す試験回路においては電流源回路,電
圧源回路,充電回路の電源を直接各機器に接続したが、
これを変圧器をそれぞれ介して各機器に接続する構成と
すれば、低電圧電源で幅広い試験が可能となる。(B) In the test circuit shown in FIG. 1, the power sources of the current source circuit, the voltage source circuit, and the charging circuit were directly connected to each device,
If this is connected to each device via a transformer, a wide range of tests can be performed with a low-voltage power supply.
また(b)項のように電源1から変圧器を介して各機器
に接続する場合には変圧器の一次、二次側のいずれかに
リアクトルを設けることも可能である。Further, in the case where the power source 1 is connected to each device via a transformer as in the item (b), it is possible to provide a reactor on either the primary side or the secondary side of the transformer.
(d)第1図に示す試験回路において、補助開閉装置3
及び供試器4をしゃ断する場合、そのしゃ断位相を制御
することにより任意のアーク時間に対するしゃ断性能を
検証することができる。(D) In the test circuit shown in FIG. 1, the auxiliary switchgear 3
When the EUT 4 is cut off, the cutoff performance for any arc time can be verified by controlling the cutoff phase.
以上述べたように本発明によれば、供試器投入時に流れ
る遅れ力率電流と進み力率電流の合成電流に高周波突入
電流を重畳させ、この電流しゃ断後に供試器の電極間に
回復電圧を印加して再点弧が発生するか否かを検証する
ことにより、比較的小容量設備で開閉装置の投入時に回
路電流に重畳する高周波突入電流をも考慮したしゃ断性
能の試験が可能な開閉装置の試験方法及びその装置を提
供することができる。As described above, according to the present invention, the high frequency inrush current is superimposed on the combined current of the delayed power factor current and the leading power factor current flowing when the EUT is turned on, and the recovery voltage is applied between the electrodes of the EUT after the current interruption. By verifying whether or not re-ignition occurs by applying a voltage, it is possible to perform a switching performance test that considers the high-frequency inrush current that is superimposed on the circuit current when the switchgear is turned on in a relatively small capacity facility. An apparatus test method and the apparatus can be provided.
第1図は本発明による開閉装置の試験方法及びその装置
を説明するための一実施例を示す回路構成図、第2図は
同実施例において供試器の試験時の現象波形図、第3図
は本発明の他の実施例における充電回路の構成説明図、
第4図は従来の開閉装置の試験方法及びその装置を説明
するための回路構成図、第5図は同試験回路で供試器の
試験を実施した時の現象波形図、第6図は開閉装置を並
列コンデンサバンクのある回路に適用した場合の問題点
を説明するための回路構成図である。 1……電流源電源、2,21……リアクトル、3,6,
24……補助開閉装置、4……供試器、5……電圧源電
源、7,20……コンデンサ、22……整流器、23…
…電源、31……指令回路。FIG. 1 is a circuit configuration diagram showing an embodiment for explaining a switchgear test method and device therefor according to the present invention, FIG. 2 is a phenomenon waveform diagram during test of a test device in the embodiment, and FIG. FIG. 6 is a diagram illustrating the configuration of a charging circuit according to another embodiment of the present invention,
FIG. 4 is a circuit configuration diagram for explaining a conventional switchgear test method and its device, FIG. 5 is a phenomenon waveform diagram when a test of the EUT is conducted in the test circuit, and FIG. 6 is a switchgear. It is a circuit block diagram for demonstrating the problem when a device is applied to the circuit with a parallel capacitor bank. 1 ... Current source power supply, 2, 21 ... Reactor, 3, 6,
24 ... Auxiliary switchgear, 4 ... EUT, 5 ... Voltage source power supply, 7, 20 ... Capacitor, 22 ... Rectifier, 23 ...
... power supply, 31 ... command circuit.
Claims (5)
に充電されたコンデンサを有する充電回路から高周波突
入電流を流し、これと同時又は直後に電流源電源から供
給される遅れ力率電流と電圧源電源から供給される進み
力率電流との合成電流を流し、次いで前記充電回路をし
ゃ断してから前記電流源電源のしゃ断と同時に前記供試
開閉装置をしゃ断してこの供試開閉装置の極間に前記電
圧源電源から進み電流しゃ断時と等価な極間電圧を印加
するようにした開閉装置の試験方法。1. A delayed power factor current supplied from a current source power source to a test switchgear by supplying a high-frequency inrush current from a charging circuit having a capacitor charged in advance to a predetermined voltage, and simultaneously or immediately thereafter. And a progressive power factor current supplied from a voltage source power supply, and then the charging circuit is cut off, and then the test opening / closing device is cut off at the same time as the current source power supply is cut off. A test method for a switchgear in which an inter-electrode voltage equivalent to that when the current is cut off is applied between the electrodes of the switch.
て電源が接続され且つ前記供試開閉装置に対して所定の
遅れ力率電流を供給する電流源回路と、前記供試開閉装
置の両端に補助開閉装置を介して電源が接続され且つ前
記供試開閉装置に対して所定の進み力率電流を供給する
電圧源回路と、前記供試開閉装置の両端に補助開閉装置
を介して充電用電源により充電されるコンデンサが接続
され且つ前記供試開閉装置に対して高周波突入電流を供
給する突入電流源回路と、前記供試開閉装置の投入時前
記突入電流源回路の補助開閉装置に投入指令を与えると
同時に又はその直後に前記電流源回路及び電圧源回路の
補助開閉装置にそれぞれ投入指令を与え且つ前記供試開
閉装置のしゃ断時にはその前に前記突入電流源回路の補
助開閉装置にしゃ断指令を与える指令回路とを備えたこ
とを特徴とする開閉装置の試験装置。2. A current source circuit, which is connected to both ends of the test opening / closing device via auxiliary switchgear devices, and which supplies a predetermined delay power factor current to the test opening / closing device, and the test opening / closing device. A power source is connected to both ends of the test opening and closing device via a supplementary switchgear and a voltage source circuit for supplying a predetermined advance power factor current to the test opening and closing device, and an auxiliary switchgear at both ends of the test opening and closing device. An inrush current source circuit connected to a capacitor charged by a charging power source and supplying a high-frequency inrush current to the DUT, and an auxiliary switching device for the inrush current source circuit when the DUT is turned on. At the same time as or immediately after the closing command is given, the closing command is given to the auxiliary switchgear of the current source circuit and the voltage source circuit, respectively, and before the test switchgear is cut off, the auxiliary switchgear of the inrush current source circuit is provided. Sha Test apparatus of the switchgear, characterized in that a command circuit for providing a command.
リアクトル及び補助開閉装置を直列接続したものである
特許請求の範囲第2項に記載の開閉装置の試験装置。3. A switchgear test apparatus according to claim 2, wherein the current source circuit is one in which a power source, a reactor and an auxiliary switchgear are connected in series to the test switchgear.
コンデンサ及び補助開閉装置を直列接続したものである
特許請求の範囲第2項に記載の開閉装置の試験装置。4. The switchgear test apparatus according to claim 2, wherein the voltage source circuit is a test switchgear in which a power source, a capacitor and an auxiliary switchgear are connected in series.
て接続される突入電流源回路のコンデンサは充電用電源
に充電極性が切換可能に接続したものである特許請求の
範囲第2項に記載の開閉装置の試験装置。5. The capacitor of the inrush current source circuit connected to both ends of the test opening / closing device via the auxiliary opening / closing device is connected to the charging power source so that the charging polarity can be switched. The switchgear testing device according to.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6678485A JPH0634028B2 (en) | 1985-03-30 | 1985-03-30 | Switchgear test method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6678485A JPH0634028B2 (en) | 1985-03-30 | 1985-03-30 | Switchgear test method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61225675A JPS61225675A (en) | 1986-10-07 |
JPH0634028B2 true JPH0634028B2 (en) | 1994-05-02 |
Family
ID=13325832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6678485A Expired - Lifetime JPH0634028B2 (en) | 1985-03-30 | 1985-03-30 | Switchgear test method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0634028B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0418678A3 (en) * | 1989-09-20 | 1991-12-27 | Hitachi, Ltd. | Synthetic equivalent test circuit of circuit breaker |
JP5677148B2 (en) * | 2011-03-15 | 2015-02-25 | 株式会社東芝 | Capacitor bank switching performance test equipment |
-
1985
- 1985-03-30 JP JP6678485A patent/JPH0634028B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61225675A (en) | 1986-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110073229B (en) | Test device of direct current breaker | |
JPH03202793A (en) | Testing apparatus for circuit breaker | |
JPH0634028B2 (en) | Switchgear test method and device | |
JP3103262B2 (en) | Circuit breaker test circuit for switchgear | |
JP2675649B2 (en) | Switchgear test method and device | |
JP2003115242A (en) | Breaker testing circuit | |
JPH06186309A (en) | Interruption test circuit for switch | |
JPH0735831A (en) | Method and apparatus for testing breaker | |
JPH08271596A (en) | Synthetic equivalent test method for circuit breaker | |
JPH0738014B2 (en) | Step-out synthesis tester for circuit breaker | |
JPS61155780A (en) | Equivalence tester for small leading current of breaker | |
JP2001343436A (en) | Withstand voltage testing method of breaker | |
JPH0434111B2 (en) | ||
JP3035897B2 (en) | Arc extension method in three-phase synthesis test of high voltage circuit breaker | |
JPH0651036A (en) | Short line fault testing device | |
JPH0563748B2 (en) | ||
JPH08278349A (en) | Method for synthetic equalization testing of breaker | |
SU1737615A1 (en) | Device for compensation of emf of faulty phase under single- phase short-circuits in network with ungrounded neutral | |
JPH0355110Y2 (en) | ||
JPH01123176A (en) | Arc extension circuit | |
JPH08233915A (en) | Cut-off tester for resistance cut-off type breaker and cut-off testing method using the same | |
JPH0519029A (en) | Composite equivalent test circuit of circuit breaker | |
JPH055067B2 (en) | ||
JPS60207079A (en) | Synthesis test of breaker | |
JPH0782080B2 (en) | Circuit breaker test equipment |