JPH06348294A - Band dividing and coding device - Google Patents
Band dividing and coding deviceInfo
- Publication number
- JPH06348294A JPH06348294A JP13456193A JP13456193A JPH06348294A JP H06348294 A JPH06348294 A JP H06348294A JP 13456193 A JP13456193 A JP 13456193A JP 13456193 A JP13456193 A JP 13456193A JP H06348294 A JPH06348294 A JP H06348294A
- Authority
- JP
- Japan
- Prior art keywords
- band
- quantization
- bits
- power
- bit number
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は音声ICレコーダ等に用
いられるデジタルの音声信号を主として符号化する帯域
分割符号化装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a band division coding device for mainly coding a digital voice signal used in a voice IC recorder or the like.
【0002】[0002]
【従来の技術】従来よりデジタルの音声信号を圧縮符号
化する際、いくつかのサブバンドに分割して符号化する
方法が取られている。2. Description of the Related Art Conventionally, when a digital audio signal is compression-encoded, a method of dividing the audio signal into several sub-bands and encoding them has been adopted.
【0003】例えば本発明の出願人による特開平4−1
29430号公報(H03M 7/00)はその一例を
開示している。同公報には、入力されたデジタルの音声
信号はまず帯域分割フィルタ群(BPF:Band Path Fi
lter)によって分割され、分割されたデジタルの音声信
号の各々は通過帯域の中心周波数だけ下に周波数シフト
され、そこで低域通過フィルタを通して低周波信号に変
換され、それを帯域通過フィルタの帯域幅から決まる標
本化周波数でダウンサンプリングしてその結果をブロッ
ク毎の前向き適応PCM(Pulse Code Modulation)で符
号化するものであった。For example, Japanese Patent Application Laid-Open No. 4-1 by the applicant of the present invention
Japanese Patent No. 29430 (H03M 7/00) discloses an example thereof. In this publication, an input digital audio signal is first described as a band division filter group (BPF: Band Path Filtration).
Each of the divided digital audio signals is frequency shifted down by the center frequency of the pass band, where it is converted to a low frequency signal through a low pass filter, which is converted from the band pass filter bandwidth. Downsampling is performed at a determined sampling frequency, and the result is encoded by forward adaptive PCM (Pulse Code Modulation) for each block.
【0004】またこの公報の復号部では各帯域毎に上記
の操作とは逆の操作をして各帯域毎の帯域通過信号を作
成し、それらを足し合わせて出力音声波形とするもので
あった。In the decoding unit of this publication, a reverse operation to the above operation is performed for each band to create a bandpass signal for each band, and these are added together to form an output voice waveform. .
【0005】斯かる技術の利点としては、(1)帯域毎
にビット配分を効果的に行うことが容易である、(2)
各帯域の量子化誤差はその帯域の信号のみに関係し、そ
の帯域の電力が小さい場合はたとえ量子化歪が多くとも
全体の信号から見ると僅かな誤差でしかない、(3)各
帯域の量子化誤差は理想的には白色雑音となり周波数ス
ペクトル的に広く拡がり、その一部しかその帯域に落ち
ない、等が挙げられる。As an advantage of such a technique, (1) it is easy to effectively perform bit allocation for each band, (2)
The quantization error in each band is related only to the signal in that band, and when the power in that band is small, even if the quantization distortion is large, it is only a small error from the viewpoint of the whole signal. The quantization error ideally becomes white noise, spreads widely in the frequency spectrum, and only a part of it falls in the band.
【0006】また上記(1)(2)より各帯域に割り当
てる1サンプル当りのビット数をその帯域の信号の電力
に応じて適応的に変化させていくことが望ましいが、そ
の場合は以下の式に従って分割するのが最も適当(波形
歪が最小になる)とされていた。From the above (1) and (2), it is desirable to adaptively change the number of bits per sample allocated to each band according to the power of the signal in that band. In that case, the following equation It was said that it is most appropriate to divide according to the above (waveform distortion is minimized).
【0007】[0007]
【数1】 [Equation 1]
【0008】ここでブロック毎に求めた電力を2の2σ
乗の形に量子化すれば前記数1は、Here, the electric power obtained for each block is set to 2σ
If quantized to the power of
【0009】[0009]
【数2】 [Equation 2]
【0010】となる。また例えば前記数2でWi =1/
4、N=4とすると、[0010] Further, for example, in the above equation 2, W i = 1 /
4, and N = 4,
【0011】[0011]
【数3】 [Equation 3]
【0012】となる。[0012]
【0013】ところで実際にはこの場合Ri は小数や負
の数で求められる場合もあるため、それらの数字を正の
整数(0を含む)にする条件文が必要であった。そして
各帯域に割り当てるビット数Ri が小数になった場合に
は、四捨五入等によって正の整数にしなければならない
が、その時には波形歪が大きくなるという問題点があっ
た。In fact, in this case, R i may be obtained as a decimal number or a negative number, so that a conditional statement for making those numbers positive integers (including 0) is necessary. When the number of bits R i assigned to each band becomes a decimal number, it must be a positive integer by rounding, but at that time, there is a problem that the waveform distortion becomes large.
【0014】またRi が負の数になった場合には、割り
当てるビット数を0にすれば波形歪を最小にすることが
できる。しかし0ビットが割り当てられるブロックが多
くなれば再生音に異音が発生する惧れがあった。よって
この異音を防ぐためには、どの帯域にも1ビット以上を
割り当てる必要が生じ、その時には全体的に量子化ビッ
ト数が不足して量子化誤差が増大するという欠点があっ
た。When R i becomes a negative number, the waveform distortion can be minimized by setting the number of allocated bits to 0. However, if the number of blocks to which 0 bit is allocated increases, there is a fear that an abnormal sound will be generated in the reproduced sound. Therefore, in order to prevent this abnormal noise, it is necessary to allocate 1 bit or more to every band, and at that time, there is a drawback that the number of quantization bits is insufficient and the quantization error increases.
【0015】[0015]
【発明が解決しようとする課題】上記従来技術のように
波形歪が最小になる時の各帯域へ割り当てるビット数R
i は前記数1に求まる。しかしRi が小数で求まった場
合には、四捨五入によって正の整数にする条件文が必要
で、又そのときは波形歪みが大きくなるという問題点が
あった。As in the prior art described above,
Number of bits R allocated to each band when waveform distortion is minimized
i Is found in the above equation 1. But Ri Is a decimal place
If this is the case, a conditional statement is required to make it a positive integer by rounding.
And at that time, there is a problem that the waveform distortion becomes large.
there were.
【0016】またRi が負の数になった時には割り当て
るビット数を0にすれば波形歪みを最小とすることがで
きる。しかし0ビットが割り当てられるブロックが多く
なれば再生音に異音が発生する。よってこの異音を防ぐ
ためには殿帯域にも1ビット以上を割り当てれば良い
が、その時には量子化誤差が増大するという問題点があ
った。When R i becomes a negative number, the waveform distortion can be minimized by setting the number of allocated bits to 0. However, if the number of blocks to which 0 bit is assigned increases, an abnormal sound is generated in the reproduced sound. Therefore, in order to prevent this abnormal noise, it is sufficient to allocate 1 bit or more to the band, but at that time there is a problem that the quantization error increases.
【0017】本発明は斯かる従来の波形歪の大きくなる
という問題点及び量子化誤差が増大するという問題点を
解決するために成されたものである。The present invention has been made in order to solve the conventional problems of increasing the waveform distortion and increasing the quantization error.
【0018】[0018]
【課題を解決するための手段】本発明は、音声信号等の
デジタル信号を複数の帯域に分割する帯域分割フィルタ
と、該フィルタの出力のブロック毎の電力を求め2の2
σ乗の形に量子化する電力算出手段と、前記ブロック毎
に適応量子化する量子化手段と、前記σの値により前記
量子化手段の各帯域毎の量子化ビット数を適応的に制御
する量子化ビット数制御部とを備え、前記量子化ビット
数制御部は前記帯域分割フィルタから出力される1サン
プルデータ毎に量子化ビット数を規則的に変化させ前記
各帯域に割り当てる前記量子化手段の量子化ビット数を
小数を含む0より大きい数に設定するものであり、望ま
しくは前記量子化ビット数制御部は、前記量子化手段へ
の割り当てビット数が0以下になった帯域について0よ
り大きく1未満のビット数を設定するものである。According to the present invention, a band division filter for dividing a digital signal such as a voice signal into a plurality of bands and an electric power for each block of the output of the filter are obtained.
Power calculation means for quantizing into the form of σ, adaptive quantizing means for each block, and adaptively controlling the number of quantizing bits for each band of the quantizing means by the value of σ. A quantization bit number control unit, wherein the quantization bit number control unit regularly changes the quantization bit number for each sample data output from the band division filter and assigns the quantization bit number to each band. Is set to a number greater than 0 including a decimal, and preferably, the quantization bit number control unit is set to 0 or more for a band in which the number of bits assigned to the quantization means is 0 or less. The number of bits is set to be less than one.
【0019】[0019]
【作用】上記構成において、従来技術と同様に波形歪が
最小になる時の各帯域へ割り当てる前記ビット数Ri は
前記数1によって求められる。そしてRi が小数になっ
た場合に、上記手段によって各帯域に割り当てるビット
数をRi に一致又は近い値にすることができ、波形歪を
減らすことができる。In the above structure, the number of bits R i to be assigned to each band when the waveform distortion is minimized is obtained by the equation 1 as in the prior art. When R i becomes a decimal number, the number of bits assigned to each band can be made equal to or close to R i by the above means, and waveform distortion can be reduced.
【0020】またRi が負の数になった時には、何の帯
域にも最低でも0を越す1未満のビット数を割り当てる
ことによって、他の帯域の量子化歪を増大させることな
しに聴感上の異音を取り除くことができる。Further, when R i becomes a negative number, the number of bits of at least less than 1 exceeding 0 is assigned to any band so that the audible feeling can be obtained without increasing the quantization distortion of other bands. The abnormal noise of can be removed.
【0021】[0021]
【実施例】以下本発明の一実施例を図1の機能ブロック
図及び図2、図3のビット数割当説明図に基づき詳細に
説明す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the functional block diagram of FIG. 1 and the bit number allocation explanatory diagrams of FIGS.
【0022】図1において、1はQMF(Qudrature Mir
ror Filter) で、入力音声をサンプリング周波数の1/
4の周波数で高域と低域に分け、サンプリング周波数の
1/2にダウンサンプリングするもので、本実施例では
QMF1を2段に用いることで入力音声を4つの帯域に
分割すると共に、該フィルタ1の出力をベースバンドに
落としている。In FIG. 1, 1 is a QMF (Qudrature Mir)
ror Filter), input audio is 1 / sampling frequency
The frequency is divided into a high frequency band and a low frequency band, and down-sampling is performed to ½ of the sampling frequency. In this embodiment, the QMF1 is used in two stages to divide the input voice into four bands and the filter. The output of 1 is dropped to the baseband.
【0023】2は各帯域毎に帯域分割された音声を数サ
ンプル毎(例えば128サンプル毎)にブロックにまと
め、そのブロック内の電力を計算する電力算出手段であ
る。3は計算された電力を2の2σ乗に量子化する量子
化手段で、実際には電力を2進数で表し、最も左に1の
立っているところを捜し、それが右から何ビット目であ
るかを調べ、その値から1を引き2で割ることによって
各帯域毎のσi を求める。Reference numeral 2 is a power calculation means for collecting the sound divided into bands for each band into blocks for every several samples (for example, for every 128 samples) and calculating the power in the block. Numeral 3 is a quantizing means for quantizing the calculated electric power to the power of 2 to the power of 2 and, in fact, expresses the electric power in a binary number, and searches for the place where 1 stands on the leftmost, and at what bit from the right It is checked whether or not it exists, and 1 is subtracted from the value to divide it by 2 to obtain σ i for each band.
【0024】4は1ブロック内の電力が1になるように
正規化する正規化手段で、ダイナミックレンジの広いデ
ジタルの音声信号に対して精度良く量子化することが可
能となる。Reference numeral 4 is a normalizing means for normalizing the electric power in one block to be 1, which makes it possible to quantize digital audio signals having a wide dynamic range with high precision.
【0025】5は各帯域の量子化器で用いる量子化ビッ
ト数を割り当てる量子化ビット数制御部で、各帯域のσ
の値を用いて数4により割り当てることができる。Reference numeral 5 denotes a quantization bit number control unit for allocating the number of quantization bits used by the quantizer of each band, and σ of each band
Can be assigned by the equation 4 using the value of
【0026】[0026]
【数4】 [Equation 4]
【0027】実際にはRi は0より大きい小数で求めら
れる場合もあり、前記数4のRi の取る値はx.00,
x.25,x.50,x.75(xは整数)の4通りが
ある。この時は図2の1(1)〜(4)に示されるよう
に、1サンプルおきに割り当てるビット数を規則的に変
えることにより、各帯域に割り当てる平均ビット数を小
数にする。Actually, R i may be obtained as a decimal number larger than 0, and the value taken by R i in the above equation 4 is x. 00,
x. 25, x. 50, x. There are four types, 75 (x is an integer). At this time, as shown by 1 (1) to (4) in FIG. 2, the average number of bits assigned to each band is made a decimal by regularly changing the number of bits assigned every other sample.
【0028】即ち、(1)ではすべてのサンプルをxビ
ットで量子化する、(2)では4サンプルの内3サンプ
ルをxビットで量子化し、残り1サンプルをx+1ビッ
トで量子化する、(3)では4サンプルの内2サンプル
をxビットで量子化し、残り2サンプルをx+1ビット
で量子化する、(4)では4サンプルの内1サンプルを
xビットで量子化し、残り3サンプルをx+1ビットで
量子化することにより所望の小数ビットが得られる。That is, in (1), all samples are quantized with x bits, in (2), 3 out of 4 samples are quantized with x bits, and the remaining 1 sample is quantized with x + 1 bits. ) Quantizes 2 out of 4 samples with x bits and quantizes the remaining 2 samples with x + 1 bits, (4) quantizes 1 sample out of 4 samples with x bits and 3 remaining samples with x + 1 bits Quantization yields the desired fractional bits.
【0029】またRi は0や負の数で求められる場合も
あり、その場合は図3のように0より大きく1未満のビ
ット数を割り当てる。即ち(1)では4サンプルの内1
サンプルを1ビットで量子化し、残り3サンプルを0に
する、(2)では4サンプルの内2サンプルを1ビット
で量子化し、残り2サンプルを0にする、(3)では4
サンプルの内3サンプルを1ビットで量子化し、残り1
サンプルを0にすることにより所望の小数ビットが得ら
れる。In some cases, R i may be obtained by 0 or a negative number. In that case, the number of bits greater than 0 and less than 1 is assigned as shown in FIG. That is, in (1), 1 out of 4 samples
Quantize the sample with 1 bit and set the remaining 3 samples to 0. In (2), quantize 2 out of 4 samples with 1 bit and set the remaining 2 samples to 0. (3) sets 4
Quantize 3 out of 3 samples with 1 bit and leave 1 remaining
By setting the sample to 0, the desired fractional bit is obtained.
【0030】6は前記量子化ビット数制御部5で割り当
てられた量子化ビット数に応じて正規化手段4で正規化
された信号を量子化する信号量子化手段、7は各帯域の
量子化された符号及び補助情報σi を多重化するマルチ
プレクサである。Numeral 6 is a signal quantizing means for quantizing the signal normalized by the normalizing means 4 in accordance with the number of quantizing bits assigned by the quantizing bit number controller 5, and 7 is a quantizer for each band. It is a multiplexer that multiplexes the generated code and auxiliary information σ i .
【0031】8は前記マルチプレクサ7からの信号を各
帯域の符号及び補助情報σi に分割するデマルチプレク
サである。Reference numeral 8 is a demultiplexer for dividing the signal from the multiplexer 7 into codes of each band and auxiliary information σ i .
【0032】9は前記量子化ビット数制御部5と同様に
ビット割り当てを計算する復号化ビット数制御部、10
は各帯域の電力を復号化する電力復号化手段、11は各
帯域毎の電力を復号化する電力復号化手段、12は復号
化された電力を用いて正規化されている信号を元に戻す
逆正規化手段である。Denoted at 9 is a decoding bit number control unit for calculating bit allocation in the same manner as the quantization bit number control unit 5, 10
Is a power decoding means for decoding the power of each band, 11 is a power decoding means for decoding the power of each band, and 12 is a signal that has been normalized using the decoded power. It is an inverse normalization means.
【0033】13は復号化側のQMFであって、帯域分
割されてダウンサンプリングされている信号をアップサ
ンプリング及び帯域結合するものである。Reference numeral 13 is a decoding-side QMF for up-sampling and band-combining a band-divided and down-sampled signal.
【0034】上記の構成によって、どんな音声に対して
も前記フィルタ1で帯域分割を行って各帯域の電力を求
め、量子化手段6でその値を2の2σ乗に量子化するこ
とにより、σの値に基づいて、各帯域に割り当てる量子
化ビット数を量子化ビット数制御部5にて小数を含むビ
ット数で適応的に制御できるので最適な符号化を行うこ
とができる。With the above-mentioned structure, for any speech, band division is performed by the filter 1 to obtain power of each band, and the quantizing means 6 quantizes the value to the power of 2σ, Based on the value of, the number of quantization bits to be assigned to each band can be adaptively controlled by the number of bits including the decimal number in the quantization bit number control unit 5, so that optimum coding can be performed.
【0035】さらに先の操作と逆の操作をたどることに
より、符号化された信号をもとのデジタルの音声信号に
復号することができる。The encoded signal can be decoded into the original digital audio signal by following the operation reverse to the above operation.
【0036】[0036]
【発明の効果】本発明装置によるとデジタルの音声信号
を帯域分割符号化する際に、各帯域毎の電力を求め、そ
の値を2の2σ乗の形に量子化することにより、各帯域
に割り当てる量子化ビット数を適応的に制御することが
可能となり、また1サンプルおきに量子化ビット数を規
則的に変えることにより、各帯域毎に割り当てるビット
数が小数になることにも対応できるようにしたことによ
って量子化歪を軽減し、さらに波形歪を最小にするため
の割り当てビット数が0以下になった帯域にも最低でも
0より大きく1未満のビット数を割り当てることによっ
て他の帯域の量子化歪を増大させることなしに聴感上の
異音を取り除くことができるので、どんな音声に対して
も最適に符号化することができるので極めて有益であ
る。According to the apparatus of the present invention, when band-division encoding a digital audio signal, the power for each band is obtained, and the value is quantized to the power of 2 2 σ to obtain each band. It becomes possible to adaptively control the number of quantized bits to be assigned, and by regularly changing the number of quantized bits every other sample, it is possible to deal with the case where the number of assigned bits for each band becomes a decimal number. By reducing the quantization distortion, and further by allocating the number of bits greater than 0 and less than 1 at least to the band in which the number of allocated bits is 0 or less for minimizing the waveform distortion, Since it is possible to remove perceptual abnormal sounds without increasing the quantization distortion, it is extremely useful because it can optimally encode any voice.
【図1】図1は本発明装置の一実施例を説明するための
ブロック図である。FIG. 1 is a block diagram for explaining an embodiment of the device of the present invention.
【図2】小数ビット割り当てを説明するための図であ
る。FIG. 2 is a diagram for explaining decimal bit allocation.
【図3】0より大きく1未満のビット数を割当を説明す
るための図である。FIG. 3 is a diagram for explaining allocation of a bit number greater than 0 and less than 1.
1 帯域分割フィルタ(QMF) 2 電力算出手段 5 量子化ビット数制御部 6 量子化手段 1 Band Division Filter (QMF) 2 Power Calculation Means 5 Quantization Bit Number Control Unit 6 Quantization Means
Claims (2)
に分割する帯域分割フィルタと、該フィルタの出力のブ
ロック毎の電力を求め2の2σ乗の形に量子化する電力
算出手段と、前記ブロック毎に適応量子化する量子化手
段と、前記σの値により前記量子化手段の各帯域毎の量
子化ビット数を適応的に制御する量子化ビット数制御部
とを備え、前記量子化ビット数制御部は前記帯域分割フ
ィルタから出力される1サンプルデータ毎に量子化ビッ
ト数を規則的に変化させ前記各帯域に割り当てる前記量
子化手段の量子化ビット数を小数を含む0より大きい数
に設定することを特徴とする帯域分割符号化装置。1. A band division filter for dividing a digital signal such as a voice signal into a plurality of bands, and a power calculation means for calculating the power of each block of the output of the filter and quantizing it to the power of 2 2σ. Quantization means for adaptively quantizing each block, and a quantization bit number control unit for adaptively controlling the number of quantization bits for each band of the quantization means by the value of σ, The number control unit regularly changes the number of quantization bits for each sample data output from the band division filter, and sets the number of quantization bits of the quantization means assigned to each band to a number greater than 0 including a decimal. A band division encoding device characterized by setting.
いて、前記量子化ビット数制御部は、前記量子化手段へ
の割り当てビット数が0以下になった帯域について0よ
り大きく1未満のビット数を設定することを特徴とする
帯域分割符号化装置。2. The band division coding apparatus according to claim 1, wherein the quantization bit number control unit is a bit greater than 0 and less than 1 in a band in which the number of bits assigned to the quantization means is 0 or less. A band division encoding device characterized by setting a number.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13456193A JPH06348294A (en) | 1993-06-04 | 1993-06-04 | Band dividing and coding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13456193A JPH06348294A (en) | 1993-06-04 | 1993-06-04 | Band dividing and coding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06348294A true JPH06348294A (en) | 1994-12-22 |
Family
ID=15131215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13456193A Pending JPH06348294A (en) | 1993-06-04 | 1993-06-04 | Band dividing and coding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06348294A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014514617A (en) * | 2011-05-13 | 2014-06-19 | サムスン エレクトロニクス カンパニー リミテッド | Bit allocation, audio encoding and decoding |
-
1993
- 1993-06-04 JP JP13456193A patent/JPH06348294A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014514617A (en) * | 2011-05-13 | 2014-06-19 | サムスン エレクトロニクス カンパニー リミテッド | Bit allocation, audio encoding and decoding |
US9711155B2 (en) | 2011-05-13 | 2017-07-18 | Samsung Electronics Co., Ltd. | Noise filling and audio decoding |
US9773502B2 (en) | 2011-05-13 | 2017-09-26 | Samsung Electronics Co., Ltd. | Bit allocating, audio encoding and decoding |
US10109283B2 (en) | 2011-05-13 | 2018-10-23 | Samsung Electronics Co., Ltd. | Bit allocating, audio encoding and decoding |
US10276171B2 (en) | 2011-05-13 | 2019-04-30 | Samsung Electronics Co., Ltd. | Noise filling and audio decoding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1734511B1 (en) | Entropy coding by adapting coding between level and run-length/level modes | |
EP0473367B1 (en) | Digital signal encoders | |
US7933417B2 (en) | Encoding device and decoding device | |
JP3900000B2 (en) | Encoding method and apparatus, decoding method and apparatus, and program | |
JP3318931B2 (en) | Signal encoding device, signal decoding device, and signal encoding method | |
JP4728568B2 (en) | Entropy coding to adapt coding between level mode and run length / level mode | |
EP0665547B1 (en) | Encoding and decoding system | |
JP3255022B2 (en) | Adaptive transform coding and adaptive transform decoding | |
KR100723400B1 (en) | Apparatus and method for encoding digital signal using plural look up table | |
JPH0969781A (en) | Audio data encoding device | |
JP2705377B2 (en) | Band division coding method | |
JPH06348294A (en) | Band dividing and coding device | |
JP3011447B2 (en) | Band division coding device | |
JP3108259B2 (en) | Band division coding device | |
JPH08179794A (en) | Sub-band coding method and device | |
JPH0750589A (en) | Sub-band coding device | |
JPH07295594A (en) | Audio signal encoding method | |
JPH0934493A (en) | Acoustic signal encoding device, decoding device, and acoustic signal processing device | |
JP3235365B2 (en) | High efficiency coding method and apparatus therefor | |
JPH06224862A (en) | Method and equipment for processing digital audio signal | |
KR970005829B1 (en) | Bit rate transform method of audio subband coder | |
JPH0535295A (en) | Voice encoding method | |
JP2001325000A (en) | Audio signal coding device | |
JPH11149298A (en) | Voice sub-band encoding method | |
JPH08237209A (en) | Digital audio signal processor |