[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06330341A - Pretreatment of magnesium or magnesium alloy material before coating - Google Patents

Pretreatment of magnesium or magnesium alloy material before coating

Info

Publication number
JPH06330341A
JPH06330341A JP12253893A JP12253893A JPH06330341A JP H06330341 A JPH06330341 A JP H06330341A JP 12253893 A JP12253893 A JP 12253893A JP 12253893 A JP12253893 A JP 12253893A JP H06330341 A JPH06330341 A JP H06330341A
Authority
JP
Japan
Prior art keywords
liter
magnesium
coating
ion
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12253893A
Other languages
Japanese (ja)
Inventor
Takayuki Fukuoka
貴之 福岡
Isao Kawasaki
功 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP12253893A priority Critical patent/JPH06330341A/en
Publication of JPH06330341A publication Critical patent/JPH06330341A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To impart adhesion and corrosion resistance of a coating film comparable to or higher than those of a film formed by conventional anodic oxidation or chromating while adopting an easy treating method such as dipping or spraying without containing a Cr compd. CONSTITUTION:An Mg or Mg alloy material is pretreated before coating with a zinc phosphate treating soln. contg. 0.5-2.5g/l Zn ions, 0.1-3g/l Mn ions, 5-40g/l phosphate ions, 0.05-3g/l (expressed in terms of HF) fluorine compd. and a film formation accelerator. In the treating soln., Ni ions, Co ions and Cu ions are contained at <0.01g/l concn. each.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マグネシウムまたはマ
グネシウム合金材の塗装前処理方法に関するものであ
り、特にクロメート処理よりも優れた塗膜密着性及び塗
膜耐食性を付与することのできる塗装前処理方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pretreatment of coating of magnesium or magnesium alloy material, and particularly pretreatment of coating capable of imparting better coating adhesion and coating corrosion resistance than chromate treatment. It is about the method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】マグネ
シウム及びマグネシウム合金材は、極めて反応活性な素
材であるため、塗膜密着性及び塗膜耐食性を改善するこ
とを目的に、種々の塗装前処理方法が検討されてきてい
る。
2. Description of the Related Art Magnesium and magnesium alloy materials are extremely reactive materials, and therefore various pretreatments for coating are applied for the purpose of improving coating adhesion and coating corrosion resistance. Methods are being considered.

【0003】塗装前処理方法としては、従来より、塗膜
耐食性の向上を目的とした電気化学的処理(陽極酸化処
理)や、化学的に防食皮膜を形成させる化成処理が実用
化されている。
As a coating pretreatment method, an electrochemical treatment (anodizing treatment) for the purpose of improving the corrosion resistance of a coating film and a chemical conversion treatment for chemically forming an anticorrosion coating have been put into practical use.

【0004】陽極酸化処理としては、例えばDow17
陽極酸化処理法がMILで規格化されている。Dow1
7法は、マグネシウム系金属処理物を陽極として、酸性
弗化アンモン(NH4 HF2 )、重クロム酸ナトリウム
(Na2 Cr2 7 ・2H2O)、及び燐酸等を含んだ
処理液中で電解し、マグネシウム系金属処理物表面に酸
化皮膜を形成する方法である。各種マグネシウム合金材
等に対し、このような方法で、ある程度の塗膜密着性及
び塗膜耐食性を付与することができるが、この方法で
は、処理液にクロム化合物を含有すること、及び電気エ
ネルギーコストがかかることが問題となっている。
As anodizing treatment, for example, Dow17
The anodizing method is standardized by MIL. Dow1
Method 7 uses a magnesium-based metal-treated product as an anode in a treatment liquid containing acidic ammonium fluoride (NH 4 HF 2 ), sodium dichromate (Na 2 Cr 2 O 7 , 2H 2 O), phosphoric acid, etc. Is used to form an oxide film on the surface of the magnesium-based metal-treated product. By such a method, it is possible to impart a certain degree of coating film adhesion and coating film corrosion resistance to various magnesium alloy materials and the like, but in this method, the treatment liquid contains a chromium compound, and the electric energy cost Is a problem.

【0005】化成処理法としては、クロム酸塩法(例え
ばDow22法)、スズ酸塩処理法(例えばDow23
法)、及び燐酸マンガン処理法などが実用化されてい
る。Dow22法は、実用上充分満足し得る塗装下地皮
膜を形成することができるものの、処理液にクロム化合
物を含有するという環境保護の観点からの問題がある。
また、Dow23法は、高温処理が必要であり、塗膜耐
食性はクロム酸塩処理のDow22法に比べ劣るという
問題がある。また燐酸マンガン処理法は、クロム化合物
を含有し、高温処理が必要であり、塗膜耐食性もクロム
酸塩法に劣るという問題がある。
As the chemical conversion treatment method, a chromate method (for example, Dow22 method) and a stannate treatment method (for example, Dow23 method) are used.
Method) and manganese phosphate treatment method have been put to practical use. Although the Dow22 method can form a coating base film which is sufficiently satisfactory for practical use, it has a problem from the viewpoint of environmental protection that the treatment liquid contains a chromium compound.
Further, the Dow23 method requires high temperature treatment, and has a problem that the coating film corrosion resistance is inferior to that of the chromate-treated Dow22 method. Further, the manganese phosphate treatment method has a problem that it contains a chromium compound, requires high temperature treatment, and is inferior to the chromate method in coating film corrosion resistance.

【0006】本発明の目的は、このような従来の問題点
を解消し、クロム化合物を含有しない処理液で、マグネ
シウムまたはマグネシウム合金材に対して、従来の陽極
酸化法やクロム酸塩処理法と同等以上の塗膜密着性及び
塗膜耐食性を付与することのできる塗装前処理方法を提
供することにある。
An object of the present invention is to solve the above-mentioned conventional problems and to treat magnesium or magnesium alloy material with a conventional anodic oxidation method or chromate treatment method with a treatment liquid containing no chromium compound. It is an object of the present invention to provide a coating pretreatment method capable of imparting coating coating adhesion and coating corrosion resistance that are equal to or higher than the above.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記従来
の問題点を解決するため、クロム化合物を含有しない処
理液で陽極酸化法やクロム酸処理法と同等以上の塗膜密
着性及び塗膜耐食性を付与することのできる塗装前処理
方法について鋭意検討を重ねた結果、特定の組成を有す
る燐酸亜鉛処理液により、マグネシウムまたはマグネシ
ウム合金材を前処理することにより、従来と同等以上の
塗膜密着性及び塗膜耐食性を得ることができることを見
出し、本発明を完成するに至った。
In order to solve the above-mentioned conventional problems, the inventors of the present invention used a treatment liquid containing no chromium compound to achieve coating film adhesion equal to or higher than that of anodizing or chromic acid treatment. As a result of extensive studies on a coating pretreatment method capable of imparting coating film corrosion resistance, as a result of pretreatment of a magnesium or magnesium alloy material with a zinc phosphate treatment liquid having a specific composition, a coating equal to or more than the conventional coating can be obtained. The inventors have found that it is possible to obtain film adhesion and coating corrosion resistance, and have completed the present invention.

【0008】すなわち、本発明の塗装前処理方法は、亜
鉛イオン0.5〜2.5g/リットル、マンガンイオン
0.1〜3g/リットル、燐酸イオン5〜40g/リッ
トル、弗素化合物0.05〜3g/リットル(HF換
算)、及び皮膜化成促進剤を含み、ニッケルイオン、コ
バルトイオン及び銅イオンのいずれもが0.01g/リ
ットル未満である燐酸亜鉛処理液で、マグネシウムまた
はマグネシウム合金材を処理することを特徴としてい
る。
That is, according to the pretreatment method for coating of the present invention, zinc ion is 0.5 to 2.5 g / liter, manganese ion is 0.1 to 3 g / liter, phosphate ion is 5 to 40 g / liter, and fluorine compound is 0.05 to. A magnesium or magnesium alloy material is treated with a zinc phosphate treatment liquid containing 3 g / liter (converted to HF) and a film formation accelerator, and each of nickel ions, cobalt ions and copper ions is less than 0.01 g / liter. It is characterized by that.

【0009】本発明において用いる燐酸亜鉛処理液中の
亜鉛イオン含有量は、0.5〜2.5g/リットルであ
る。0.5g/リットル未満であると、塗装したマグネ
シウム材の耐塩水噴霧性(SST)(JIS−Z−23
71に準拠して測定)が低下する。また2.5g/リッ
トルを超えると、塗装したマグネシウム材の複合腐食サ
イクル試験(CCT)における耐食性能が低下する。亜
鉛イオンのより好ましい含有量は、0.8〜1.5g/
リットルである。
The zinc ion content in the zinc phosphate treatment liquid used in the present invention is 0.5 to 2.5 g / liter. When the amount is less than 0.5 g / liter, the coated magnesium material has salt spray resistance (SST) (JIS-Z-23).
71). On the other hand, if it exceeds 2.5 g / liter, the corrosion resistance performance of the coated magnesium material in the complex corrosion cycle test (CCT) deteriorates. The more preferable content of zinc ion is 0.8 to 1.5 g /
It is a liter.

【0010】本発明において用いられる燐酸亜鉛処理液
中のマンガンイオンの含有量は、0.1〜3g/リット
ルの範囲内である。0.1g/リットル未満であると、
塗装したマグネシウム材の複合腐食サイクル試験(CC
T)における耐食性能が低下する。また3g/リットル
を超えると、塗装したマグネシウムの耐塩水噴霧性(S
ST)が低下する。本発明においてマンガンイオンのよ
り好ましい含有量は、0.8〜2g/リットルである。
The content of manganese ion in the zinc phosphate treatment liquid used in the present invention is in the range of 0.1 to 3 g / liter. When it is less than 0.1 g / liter,
Composite corrosion cycle test of painted magnesium material (CC
Corrosion resistance performance in T) decreases. If it exceeds 3 g / liter, the coated magnesium has salt spray resistance (S
ST) decreases. In the present invention, the more preferable content of manganese ion is 0.8 to 2 g / liter.

【0011】また、本発明において用いる燐酸亜鉛処理
液中の、マンガンイオン/亜鉛イオンの含有量の比率
は、1/4〜4であることが好ましい。この比率が1/
4未満であると、塗装したマグネシウム材の複合腐食サ
イクル試験(CCT)における耐食性能向上の効果が減
少する場合がある。またこの比率が4を超えると、塗装
したマグネシウム材の耐塩水噴霧性(SST)性能向上
の効果が減少する場合がある。また本発明において、マ
ンガンイオン/亜鉛イオンのより好ましい含有量の比率
は0.5〜2である。
The ratio of manganese ion / zinc ion content in the zinc phosphate treatment liquid used in the present invention is preferably 1/4 to 4. This ratio is 1 /
If it is less than 4, the effect of improving the corrosion resistance of the coated magnesium material in the complex corrosion cycle test (CCT) may be reduced. If this ratio exceeds 4, the effect of improving the salt spray resistance (SST) performance of the coated magnesium material may be reduced. Further, in the present invention, the more preferable content ratio of manganese ion / zinc ion is 0.5 to 2.

【0012】本発明において用いる燐酸亜鉛処理液中の
燐酸イオンの含有量は、5〜40g/リットルである。
燐酸イオンの含有量が5g/リットル未満となると、浴
組成の変動が大きくなり、安定して良好な皮膜を形成で
きなくなる。また、耐塩水噴霧性(SST)性能向上の
効果が減少する。また、燐酸イオンの含有量が40g/
リットルを超えても、より以上の格別の効果の向上がな
く、経済的に不利なものとなる。燐酸イオンのより好ま
しい含有量は、10〜20g/リットルである。
The content of phosphate ions in the zinc phosphate treatment liquid used in the present invention is 5 to 40 g / liter.
If the content of phosphate ions is less than 5 g / liter, the bath composition varies greatly, and it becomes impossible to stably form a good film. Further, the effect of improving salt spray resistance (SST) performance is reduced. Also, the content of phosphate ion is 40 g /
Even if it exceeds the liter, it is economically disadvantageous because there is no further improvement in the effect. The more preferable content of phosphate ion is 10 to 20 g / liter.

【0013】本発明において用いる燐酸亜鉛処理液中の
弗素化合物の含有量は、HF換算で0.05〜3g/リ
ットルである。0.05g/リットル未満であると、浴
組成の変動が大きくなり、安定して良好な皮膜を形成で
きなくなる。3g/リットルを超えても、より以上の格
別の効果の向上がなく、経済的に不利なものとなる。弗
素化合物としては、例えば、弗酸、硅弗化水素酸、硼弗
化水素酸、ジルコニウム弗酸、チタニウム弗酸、及びそ
れらのアルカリ金属塩もしくはアンモニウム塩等を用い
ことができる。弗素化合物のより好ましい含有量は、H
F換算で0.3〜1.5g/リットルである。
The content of the fluorine compound in the zinc phosphate treatment liquid used in the present invention is 0.05 to 3 g / liter in terms of HF. If it is less than 0.05 g / liter, the fluctuation of the bath composition becomes large, and it becomes impossible to stably form a good film. Even if it exceeds 3 g / liter, there is no further improvement in the particular effect, which is economically disadvantageous. As the fluorine compound, for example, hydrofluoric acid, hydrofluoric acid, borohydrofluoric acid, zirconium hydrofluoric acid, titanium hydrofluoric acid, and alkali metal salts or ammonium salts thereof can be used. The more preferable content of the fluorine compound is H
It is 0.3 to 1.5 g / liter in terms of F.

【0014】本発明において用いる燐酸亜鉛処理液中の
皮膜化成促進剤としては、例えば、亜硝酸塩、過酸化水
素、及びm−ニトロベンゼンスルホン酸塩等から選ばれ
る少なくとも1種以上を用いることができる。亜硝酸塩
を単独で使用する場合、0.01〜0.5g/リットル
含有することが好ましい。また過酸化水素を単独で使用
する場合は、0.5〜10g/リットル含有することが
好ましい。またm−ニトロベンゼンスルホン酸塩を単独
で用いる場合は、0.05〜5g/リットル含有するこ
とが好ましい。これらの皮膜化成促進剤が上記含有量の
範囲よりも少ない量であると、耐塩水噴霧性(SST)
が低下する。また上記含有量の範囲を超えて含有して
も、上記含有量の範囲で得られる以上の格別の効果を得
ることができず、経済的に不利なものとなる。
As the film formation accelerator in the zinc phosphate treatment liquid used in the present invention, for example, at least one selected from nitrite, hydrogen peroxide, m-nitrobenzene sulfonate and the like can be used. When nitrite is used alone, it is preferably contained in an amount of 0.01 to 0.5 g / liter. When hydrogen peroxide is used alone, it is preferably contained in an amount of 0.5 to 10 g / liter. When m-nitrobenzenesulfonate is used alone, it is preferably contained in an amount of 0.05 to 5 g / liter. When the amount of these film formation accelerators is less than the above range, salt spray resistance (SST)
Is reduced. Further, even if the content exceeds the above range, it is not economically disadvantageous because the special effect more than that obtained in the above range cannot be obtained.

【0015】本発明で用いる燐酸亜鉛処理液において
は、ニッケルイオン、コバルトイオン及び銅イオンのい
ずれもが、0.01g/リットル未満であることが必要
である。これらのイオンが0.01g/リットル以上含
有されると、耐塩水噴霧性(SSC)及び複合腐食サイ
クル試験(CCT)における耐食性能が低下する。 ま
た、本発明において用いる燐酸亜鉛処理液中には、鉄イ
オンが0.01g/リットル未満であることが好まし
い。鉄イオンが0.01g/リットル以上含有される
と、同様に、耐塩水噴霧性(SST)及び複合腐食サイ
クル試験(CCT)の耐食性能が低下するおそれがあ
る。
In the zinc phosphate treatment liquid used in the present invention, it is necessary that the nickel ion, cobalt ion and copper ion are all less than 0.01 g / liter. When these ions are contained in an amount of 0.01 g / liter or more, the salt spray resistance (SSC) and the corrosion resistance performance in the complex corrosion cycle test (CCT) are deteriorated. Further, the zinc phosphate treatment liquid used in the present invention preferably contains less than 0.01 g / liter of iron ions. When iron ions are contained in an amount of 0.01 g / liter or more, similarly, the salt spray resistance (SST) and the corrosion resistance performance of the complex corrosion cycle test (CCT) may decrease.

【0016】また本発明において用いる燐酸亜鉛処理液
は、上記主成分の他に、硝酸イオン2〜20g/リット
ルを含んでいてもよい。またクロレートイオンを0.0
5〜2g/リットル含んでいてもよい。
The zinc phosphate treatment liquid used in the present invention may contain nitrate ions of 2 to 20 g / liter in addition to the above main components. Chlorate ion is 0.0
It may contain 5 to 2 g / liter.

【0017】本発明で用いる燐酸亜鉛処理液の全酸度
は、10〜40ポイントであることが好ましい。全酸度
は、処理液を10ml採取し、フェノールフタレインを
指示薬として、0.1N苛性ソーダで滴定して求めるこ
とができる。10ポイント未満であると、耐塩水噴霧性
(SST)が低下し、40ポイントを超えても格別の効
果が得られず、経済的に不利なものとなる。
The total acidity of the zinc phosphate treatment liquid used in the present invention is preferably 10 to 40 points. The total acidity can be determined by collecting 10 ml of the treatment liquid and titrating with 0.1N caustic soda using phenolphthalein as an indicator. If it is less than 10 points, the salt spray resistance (SST) is lowered, and if it exceeds 40 points, no particular effect can be obtained, which is economically disadvantageous.

【0018】また本発明で用いられる燐酸亜鉛処理液の
遊離酸度は、0.5〜2.0ポイントであることが好ま
しい。処理液の遊離酸度は、処理液を10ml採取し、
ブロムフェノールブルーを指示薬として、0.1N苛性
ソーダで滴定することにより求めることができる。0.
4ポイント未満であると、処理液の安定性が低下し、ス
ラッジを生成するおそれが生じる。また2.0ポイント
を超えると、耐塩水噴霧性(SST)が低下するおそれ
がある。
The free acidity of the zinc phosphate treatment liquid used in the present invention is preferably 0.5 to 2.0 points. The free acidity of the treatment liquid was obtained by collecting 10 ml of the treatment liquid,
It can be determined by titrating with 0.1N caustic soda using bromphenol blue as an indicator. 0.
If it is less than 4 points, the stability of the treatment liquid is lowered and sludge may be generated. If it exceeds 2.0 points, the salt spray resistance (SST) may decrease.

【0019】本発明において、燐酸亜鉛処理液で処理す
る際の処理温度は、室温(20℃)〜70℃の範囲で適
宜選択することができる。本発明において燐酸亜鉛処理
液で処理する時間は、特に限定されるものではなく、例
えば10秒〜10分間、好ましくは1〜2分間処理され
る。
In the present invention, the treatment temperature for the treatment with the zinc phosphate treatment liquid can be appropriately selected within the range of room temperature (20 ° C.) to 70 ° C. In the present invention, the treatment time with the zinc phosphate treatment liquid is not particularly limited, and is, for example, 10 seconds to 10 minutes, preferably 1 to 2 minutes.

【0020】本発明において燐酸亜鉛処理液で処理する
方法としては、浸漬処理や、噴霧処理などの処理方法を
採用することができる。本発明で塗装前処理されるマグ
ネシウム及びマグネシウム合金材は、鉄、ニッケル、及
び銅の含有量が少なくことが好ましく、鉄0.004%
未満、ニッケル0.001%未満、銅0.015%未満
であることが好ましい。
In the present invention, as the method of treating with the zinc phosphate treating solution, treatment methods such as dipping treatment and spraying treatment can be adopted. The magnesium and magnesium alloy materials to be pretreated by coating in the present invention preferably have a low content of iron, nickel, and copper, and have an iron content of 0.004%.
Less, less than 0.001% nickel, and less than 0.015% copper.

【0021】[0021]

【実施例】以下、実施例及び比較例を挙げて本発明を具
体的に説明する。 (1)処理対象金属:マグネシウム材AZ91D(AS
TM規格,Fe含有量0.004%未満,Ni含有量
0.001%未満,Cu含有量0.015%未満;ガラ
スビーズによるショットブラスト材)を用いた。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. (1) Metal to be treated: Magnesium material AZ91D (AS
TM standard, Fe content less than 0.004%, Ni content less than 0.001%, Cu content less than 0.015%; shot blast material using glass beads) was used.

【0022】但、比較例6では処理対象のマグネシウム
材として、ASTM規格AZ91A(Fe含有量規定な
し,Ni含有量0.01%未満,Cu含有量0.08%
未満)のショットブラスト材を用いた。 (2)酸性燐酸塩水溶液:表1に示す組成のものを用い
た。なお表1に示す以外の他の成分として、PO 4 3-
15.0g/リットル、NO3 - =5.0g/リット
ル、NO2 - =0.07g/リットルを含有し、全酸度
21はポイント、遊離酸度は1.0ポイントである。
However, in Comparative Example 6, magnesium to be treated
As a material, ASTM standard AZ91A (Fe content not specified
However, Ni content is less than 0.01%, Cu content is 0.08%
Less than) shot blast material was used. (2) Acidic phosphate aqueous solution: Use the composition shown in Table 1.
It was In addition, as ingredients other than those shown in Table 1, PO Four 3-=
15.0 g / liter, NO3 -= 5.0 g / lit
Le, NO2 -= 0.07 g / liter, total acidity
21 is a point and the free acidity is 1.0 point.

【0023】但、比較例5ではDow22法の処理液を
用いた。処理液組成は、K+ 1.23g/リットル、C
r27 2- 130.48g/リットル、MnO4 - 3.7
7g/リットル、SO4 2- 1.00g/リットルであ
る。 (3)処理工程:脱脂→水洗→表面調整→化成→水洗→
純水洗→乾燥→塗装の工程に従って処理した。 (4)各処理条件: (a)脱脂;アルカリ性脱脂剤(日本ペイント社製「サ
ーフクリーナー53」2重量%濃度水溶液)を使用し、
40〜45℃で2分間浸漬処理する。
However, in Comparative Example 5, the treatment liquid of the Dow22 method was used. Treatment liquid composition is K + 1.23 g / liter, C
r 2 O 7 2- 130.48g / l, MnO 4 - 3.7
It is 7 g / liter and SO 4 2- 1.00 g / liter. (3) Treatment process: Degreasing → Washing → Surface adjustment → Chemical conversion → Washing →
It was treated according to the steps of washing with pure water, drying, and painting. (4) Each treatment condition: (a) Degreasing; using an alkaline degreasing agent ("Surf Cleaner 53" 2% by weight aqueous solution manufactured by Nippon Paint Co., Ltd.),
Immersion treatment is performed at 40 to 45 ° C. for 2 minutes.

【0024】(b)水洗;水道水を使用し、室温で15
秒間スプレー水洗する。 (c)表面調整;表面調整剤(日本ペイント社製「サー
フファイン5N−8」0.1重量%濃度水溶液)を使用
し、室温で20秒間浸漬処理する。
(B) Washing with water; using tap water, at room temperature for 15
Rinse with spray water for 2 seconds. (C) Surface conditioning: A surface conditioning agent ("Surffine 5N-8" manufactured by Nippon Paint Co., Ltd., 0.1% by weight concentration aqueous solution) is used, and immersion treatment is performed at room temperature for 20 seconds.

【0025】(d)化成;表1に示す組成の上記燐酸亜
鉛処理液を使用し、40℃で2分間浸漬処理する。但し
実施例3は35℃、実施例4は1分間浸漬処理する。
(D) Chemical conversion: Using the zinc phosphate treatment solution having the composition shown in Table 1, immersion treatment is carried out at 40 ° C. for 2 minutes. However, Example 3 is immersed at 35 ° C., and Example 4 is immersed for 1 minute.

【0026】(e)水洗;水道水を使用し、室温で15
秒間スプレー水洗する。 (f)純水洗;イオン交換水を使用し、室温で15秒間
スプレー水洗する。
(E) Rinse with water; use tap water at room temperature for 15
Rinse with spray water for 2 seconds. (F) Rinse with pure water: Using ion-exchanged water, wash with spray water for 15 seconds at room temperature.

【0027】(g)乾燥;80℃の熱風で10分間乾燥
する。 (h)塗装;カチオン型電着塗料(日本ペイント社製
「パワートップU−1000ダークグレー」)を膜厚2
5μmになるように電着塗装し、175℃で25分間焼
き付ける。得られた電着塗膜について次の各性能試験を
実施した。 (5)性能試験: (a)密着性試験;塗装板を50℃の脱イオン水に10
日間浸漬した後、これに2mm間隔のゴバン目(100
個)を鋭利なカッターで形成し、その各面に粘着テープ
を貼着した後、これらをハクリして塗装板に残っている
ゴバン目塗膜の数を数えた。
(G) Drying: Drying with hot air at 80 ° C. for 10 minutes. (H) Coating; a cationic electrodeposition coating (“Power Top U-1000 Dark Gray” manufactured by Nippon Paint Co., Ltd.) with a film thickness of 2
Electrodeposition coating is performed so that the thickness becomes 5 μm, and baking is performed at 175 ° C. for 25 minutes. The following performance tests were carried out on the obtained electrodeposition coating film. (5) Performance test: (a) Adhesion test; the coated plate was immersed in deionized water at 50 ° C. for 10
After soaking for a day, it was rubbed with 2 mm intervals (100 mm).
Individual pieces) were formed with a sharp cutter, and an adhesive tape was attached to each surface thereof, and then these pieces were peeled off to count the number of scoring films remaining on the coated plate.

【0028】(b)塩水噴霧試験(JIS−Z−237
1);塗装板にクロスカットを入れ、5%塩水を500
時間噴霧し続けた後、カット部からの最大腐食幅(片
側)を測定した。
(B) Salt spray test (JIS-Z-237
1); Put a cross cut on the coated plate and add 5% salt water to 500.
After continuing spraying for a time, the maximum corrosion width (one side) from the cut portion was measured.

【0029】(c)複合腐食試験;塗装板にクロスカッ
トを入れ、塩水噴霧(JIS−Z−2371、24時
間)→湿潤試験(温度40℃、相対湿度85%の雰囲気
中に120時間)→室内放置(24時間)を1サイクル
として4サイクル繰り返して行い、カット部からの最大
腐食幅(片側)を測定した。 (6)試験結果 表1〜表3に示す通りである。
(C) Composite corrosion test: A cross-cut was put on a coated plate, and salt spray (JIS-Z-2371, 24 hours) → wetting test (temperature 40 ° C., relative humidity 85% for 120 hours) → The chamber was left indoors (24 hours) as one cycle and repeated for 4 cycles to measure the maximum corrosion width (one side) from the cut portion. (6) Test results As shown in Tables 1 to 3.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】表1〜表3から明らかなように、本発明に
従い塗装前処理されたマグネシウム及びマグネシウム合
金材は、塗膜密着性に優れており、また塩水噴霧試験及
び複合腐食試験において優れた塗膜耐食性を示してい
る。
As can be seen from Tables 1 to 3, the magnesium and magnesium alloy materials pre-treated according to the present invention have excellent coating film adhesion and excellent coating properties in the salt spray test and the complex corrosion test. Shows film corrosion resistance.

【0034】[0034]

【発明の効果】本発明に従えば、クロム化合物を含有す
ることなく、浸漬法や噴霧法等の簡易な処理方法で、従
来の陽極酸化法やクロム酸塩処理と同等以上の塗膜密着
性及び塗膜耐食性を付与することができる。
EFFECTS OF THE INVENTION According to the present invention, the adhesion of the coating film which is equal to or higher than that of the conventional anodizing method or chromate treatment can be obtained by a simple treatment method such as dipping or spraying without containing a chromium compound. And coating film corrosion resistance can be imparted.

【0035】本発明に従えば、電気的エネルギーを使用
することなく、また高温に加熱することなく、短時間で
塗装前処理を行うことができる。
According to the present invention, the pretreatment for coating can be performed in a short time without using electric energy and without heating to a high temperature.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウムまたはマグネシウム合金材
の塗装前処理方法であって、 亜鉛イオン0.5〜2.5g/リットル、マンガンイオ
ン0.1〜3g/リットル、燐酸イオン5〜40g/リ
ットル、弗素化合物0.05〜3g/リットル(HF換
算)、及び皮膜化成促進剤を含み、ニッケルイオン、コ
バルトイオン及び銅イオンのいずれもが、0.01g/
リットル未満である燐酸亜鉛処理液で、塗装前のマグネ
シウムまたはマグネシウム合金材を処理することを特徴
とする、マグネシウムまたはマグネシウム合金材の塗装
前処理方法。
1. A pretreatment method for coating magnesium or magnesium alloy material, which comprises: zinc ion 0.5 to 2.5 g / liter, manganese ion 0.1 to 3 g / liter, phosphate ion 5 to 40 g / liter, fluorine. Compounds 0.05 to 3 g / liter (converted to HF) and a film formation accelerator, and each of nickel ion, cobalt ion and copper ion is 0.01 g /
A method for pretreatment of magnesium or magnesium alloy material, which comprises treating the magnesium or magnesium alloy material before coating with a zinc phosphate treatment liquid of less than 1 liter.
【請求項2】 皮膜化成促進剤が、亜硝酸イオン0.0
1〜0.5g/リットル、過酸化水素0.5〜10g/
リットル、及びm−ニトロベンゼンスルホン酸イオン
0.05〜5g/リットルから選ばれる少なくとも1種
である、請求項1に記載のマグネシウムまたはマグネシ
ウム合金材の塗装前処理方法。
2. The film formation accelerator is nitrite ion 0.0.
1 to 0.5 g / liter, hydrogen peroxide 0.5 to 10 g /
The pretreatment method for coating magnesium or magnesium alloy material according to claim 1, which is at least one selected from liter and m-nitrobenzenesulfonate ion of 0.05 to 5 g / liter.
【請求項3】 前記マグネシウムまたはマグネシウム合
金材の鉄含有率が0.004%未満、ニッケル含有率が
0.001%未満、銅含有率が0.015%未満であ
る、請求項1に記載のマグネシウムまたはマグネシウム
合金材の塗装前処理方法。
3. The magnesium or magnesium alloy material according to claim 1, wherein the iron content is less than 0.004%, the nickel content is less than 0.001%, and the copper content is less than 0.015%. Pretreatment method for coating magnesium or magnesium alloy material.
JP12253893A 1993-05-25 1993-05-25 Pretreatment of magnesium or magnesium alloy material before coating Pending JPH06330341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12253893A JPH06330341A (en) 1993-05-25 1993-05-25 Pretreatment of magnesium or magnesium alloy material before coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12253893A JPH06330341A (en) 1993-05-25 1993-05-25 Pretreatment of magnesium or magnesium alloy material before coating

Publications (1)

Publication Number Publication Date
JPH06330341A true JPH06330341A (en) 1994-11-29

Family

ID=14838347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12253893A Pending JPH06330341A (en) 1993-05-25 1993-05-25 Pretreatment of magnesium or magnesium alloy material before coating

Country Status (1)

Country Link
JP (1) JPH06330341A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070782A3 (en) * 2001-03-06 2003-12-11 Chemetall Gmbh Method for coating metallic surfaces and use of the substrates coated in this manner
US7819989B2 (en) 2002-03-05 2010-10-26 Nihon Parkerizing Co., Ltd. Surface treating solution for surface treatment of aluminum or magnesium metal and a method for surface treatment
JP2011111678A (en) * 2009-11-23 2011-06-09 Kc Chemical Co Ltd Method for forming conversion coating on outer surface of magnesium or magnesium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070782A3 (en) * 2001-03-06 2003-12-11 Chemetall Gmbh Method for coating metallic surfaces and use of the substrates coated in this manner
US7819989B2 (en) 2002-03-05 2010-10-26 Nihon Parkerizing Co., Ltd. Surface treating solution for surface treatment of aluminum or magnesium metal and a method for surface treatment
JP2011111678A (en) * 2009-11-23 2011-06-09 Kc Chemical Co Ltd Method for forming conversion coating on outer surface of magnesium or magnesium alloy

Similar Documents

Publication Publication Date Title
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
CA1200470A (en) Low zinc content, replenishment
EP0106459A1 (en) Phosphate coating metal surfaces
US20040163735A1 (en) Chemical conversion coating agent and surface-treated metal
WO2004055237A1 (en) Treating fluid for surface treatment of metal and method for surface treatment
JP3992173B2 (en) Metal surface treatment composition, surface treatment liquid, and surface treatment method
US4486241A (en) Composition and process for treating steel
EP0544650B1 (en) A process for phosphate-coating metal surfaces
CA2373089A1 (en) Pretreatment of aluminum surfaces with chrome-free solutions
JPS5811515B2 (en) Composition for forming a zinc phosphate film on metal surfaces
US5207840A (en) Process for preparing zinc phosphate coatings containing manganese and magnesium
US4422886A (en) Surface treatment for aluminum and aluminum alloys
JPH06506263A (en) Phosphate treatment method for metal surfaces
JPH0288777A (en) Phosphating solution
EP0675972B1 (en) Substantially nickel-free phosphate conversion coating composition and process
US4391652A (en) Surface treatment for aluminum and aluminum alloys
JPH08501829A (en) Method for phosphating steel with zinc coating on one side
US5536336A (en) Method of phosphating metal surfaces and treatment solution
JPH04341574A (en) Treatment of zinc phosphate onto metal surface
JPH08134661A (en) Formation of zinc phosphate film on netal surface
EP0904425B1 (en) Moderate temperature manganese phosphate conversion coating composition and process
JPH06330341A (en) Pretreatment of magnesium or magnesium alloy material before coating
EP0135622B1 (en) Phosphating metal surfaces
US4643778A (en) Composition and process for treating steel
CA1197674A (en) Composition and process for the treatment of phosphatized metal surfaces