JPH0633701A - Single crystal moving blade for gas turbine and production thereof - Google Patents
Single crystal moving blade for gas turbine and production thereofInfo
- Publication number
- JPH0633701A JPH0633701A JP18945592A JP18945592A JPH0633701A JP H0633701 A JPH0633701 A JP H0633701A JP 18945592 A JP18945592 A JP 18945592A JP 18945592 A JP18945592 A JP 18945592A JP H0633701 A JPH0633701 A JP H0633701A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- orientation
- gas turbine
- single crystal
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はガスタービン用動翼に係
り、特にクリープ疲労強度に優れた単結晶動翼及びその
製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine rotor blade, and more particularly to a single crystal rotor blade excellent in creep fatigue strength and a method for manufacturing the same.
【0002】[0002]
【従来の技術】ガスタービンの動翼材料は、従来から主
としてNi基の超合金が使用されてきたが、ガスタービ
ンの熱効率向上を図るため、年々燃焼ガス温度が上昇し
てきた。そして、それに伴い動翼の耐熱強度を上げるた
め、普通鋳造による等軸晶翼から一方向凝固による柱状
晶翼、更には単結晶翼へと変化すると共に、翼内部に複
雑形状な空孔を設け、内部からの冷却を図ってきた。2. Description of the Related Art Ni-based superalloys have been mainly used as the moving blade material for gas turbines, but the combustion gas temperature has been increasing year by year in order to improve the thermal efficiency of the gas turbine. In order to increase the heat-resistant strength of the rotor blade, along with this, the equiaxed crystal blade formed by normal casting is changed to a columnar crystal blade formed by unidirectional solidification, and further a single crystal blade is formed. , I tried to cool it from the inside.
【0003】単結晶鋳物の大部分は、特公昭45−40
661号や特開昭59−42171号に示されるセレク
タを用いた一方向凝固法や、特公昭60−44168号
や特公平1−26796号に示される種を用いた一方向
凝固法で製造されている。この方法は、加熱した炉の中
から鋳型を下方に引出し、下端から上方に漸次凝固させ
る方法である。この方法により、遠心応力が作用する長
手方向Z軸の結晶方位を〈001〉方位した単結晶動翼
が製造され、クリ−プ強度特性や熱疲労強度特性の飛躍
的に改善されてきた。Most of the single crystal castings are made in Japanese Patent Publication No. 45-40.
No. 661 and Japanese Unexamined Patent Publication No. 59-42171, a unidirectional solidification method using a selector, and a unidirectional solidification method using a seed shown in Japanese Patent Publication No. 60-44168 and Japanese Patent Publication No. 1-26796. ing. This method is a method in which a mold is pulled out from a heated furnace and gradually solidified upward from the lower end. By this method, a single crystal blade having a crystal orientation of the longitudinal Z axis acting on centrifugal stress of <001> was manufactured, and creep strength characteristics and thermal fatigue strength characteristics have been dramatically improved.
【0004】[0004]
【発明が解決しようとする課題】しかし、更に高効率化
を図るため、燃焼ガス温度を高めると共に、内部冷却を
強化すると、翼内外の温度差により大きな熱応力が発生
するようになってきた。この応力は翼厚さのほぼ中心を
境にして、燃焼ガスがぶつかり高温となっている外側で
は圧縮応力、冷却を受ける内側は引っ張り応力となる。
この状態で長時間使用すると、外側は圧縮クリープ変形
を受ける。一方内側は、引っ張りクリープ状態である
が、温度が低いためクリープ変形はほとんど生じない。
このような状態になっているとき、運転を停止すると、
翼温度が低下し熱収縮を生じる。このとき温度が高い外
側は、温度が低い内側より収縮量が大きいため、引っ張
り応力が発生する。これが繰り返されると、やがて亀裂
が発生してくる。このとき発生する引っ張り応力は使用
中のクリープ変形が大きいほど大きくなる。また、亀裂
は一般の熱疲労よりも短時間で発生し、使用中の翼外側
と内側の温度差が大きいほど発生しやすい。このように
燃焼ガス温度を高め、内部冷却を強化した翼では、クリ
ープ変形と疲労が組合わさったクリープ疲労が、ガスタ
ービンの亀裂発生の原因となり、翼寿命を決定する大き
な要因となってきた。単結晶は結晶方位によって特性が
大きく変化し、クリープ強度は、〈111〉方位が最も
優れ、次が〈100〉方位、その次が〈110〉方位の
順である。一方、熱応力は、弾性率が小さいほど小さく
なることから、同じ温度差の場合、〈100〉方位が最
も小さい熱応力となり、次が〈110〉方位、その次が
〈111〉方位となる。クリープ疲労強度を高めるに
は、クリープ強度を高め、熱応力を小さくすることが有
効であり、前記2つの要求を満たす方位は〈100〉方
位となる。However, when the combustion gas temperature is raised and the internal cooling is strengthened in order to further improve the efficiency, a large thermal stress has been generated due to the temperature difference between the inside and outside of the blade. This stress becomes a compressive stress on the outside where the combustion gas hits and becomes high temperature, and a tensile stress on the inside where it is cooled, with the center of the blade thickness as the boundary.
When used for a long time in this state, the outside undergoes compressive creep deformation. On the other hand, the inside is in a tensile creep state, but creep deformation hardly occurs because the temperature is low.
When the operation is stopped while in this state,
The blade temperature decreases and heat shrinkage occurs. At this time, the outer side having a higher temperature has a larger contraction amount than the inner side having a lower temperature, so that tensile stress occurs. When this is repeated, cracks will eventually occur. The tensile stress generated at this time increases as the creep deformation during use increases. Further, cracks occur in a shorter time than general thermal fatigue, and are more likely to occur as the temperature difference between the outer side and the inner side of the blade in use increases. In the blade in which the combustion gas temperature is increased and the internal cooling is strengthened in this manner, creep fatigue, which is a combination of creep deformation and fatigue, causes cracks in the gas turbine and has become a major factor in determining blade life. The characteristics of a single crystal change greatly depending on the crystal orientation, and the creep strength is highest in the <111> orientation, next in the <100> orientation, and then in the <110> orientation. On the other hand, since the thermal stress decreases as the elastic modulus decreases, the <100> orientation has the smallest thermal stress, the <110> orientation is next, and the <111> orientation is next, for the same temperature difference. In order to increase the creep fatigue strength, it is effective to increase the creep strength and reduce the thermal stress, and the azimuth satisfying the above two requirements is the <100> azimuth.
【0005】しかし、従来は、熱応力が小さくまた翼の
使用温度も低かったため、クリープ疲労を考慮する必要
がなく、そのため、クリ−プ特性のみを考慮し、遠心応
力が作用する長手方向Z軸の結晶方位を〈001〉方位
にさせるだけであり、横方向の方位については特に考慮
されていなかった。そのため、従来技術で製造した単結
晶動翼は、横方向の結晶方位が一定でなく、特性にばら
つきがあるため、最も弱い方位での熱疲労強度を基準と
しなければならなかった。横方向の方位を考慮し一定と
した場合でも、単純な熱疲労強度の向上を図ったもので
あり、クリープ疲労強度の向上に対しては不充分であっ
た。However, conventionally, since the thermal stress is small and the temperature at which the blade is used is low, it is not necessary to consider the creep fatigue. Therefore, only the creep characteristics are considered, and the longitudinal Z-axis in which the centrifugal stress acts is taken into consideration. The crystal orientation of is only the <001> orientation, and the lateral orientation is not particularly considered. Therefore, in the single crystal moving blade manufactured by the conventional technique, the crystal orientation in the lateral direction is not constant and the characteristics vary, so that the thermal fatigue strength in the weakest orientation must be used as a reference. Even when the orientation in the lateral direction was taken into consideration, it was intended to simply improve the thermal fatigue strength, and it was insufficient to improve the creep fatigue strength.
【0006】以上述べたように、上記従来技術による単
結晶動翼は、遠心応力の作用する長手方向の特性向上や
熱疲労寿命の向上を図ったものであり、翼断面内の熱応
力によるクリープ疲労については考慮されておらず、横
方向の方位が適正化されていないため、動翼の長寿命化
と熱効率の向上を図ることができなかった。As described above, the above-mentioned conventional single crystal moving blade is intended to improve the characteristics in the longitudinal direction under the action of centrifugal stress and the thermal fatigue life, and the creep due to the thermal stress in the blade cross section is caused. Fatigue was not taken into consideration, and the lateral orientation was not optimized, so it was not possible to extend the life of the moving blade and improve the thermal efficiency.
【0007】本発明の目的は、クリ−プ強度とクリープ
疲労強度に優れたガスタービン用単結晶動翼及びその製
造法を提供することにある。An object of the present invention is to provide a single crystal moving blade for a gas turbine which is excellent in creep strength and creep fatigue strength, and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本発明に係るガスタービン用動翼は、動翼内部に複
雑な冷却孔を有し、遠心応力が作用する長手方向Z軸の
結晶方位が〈001〉方位であり、長手方向Z軸の〈0
01〉方位に垂直な〈100〉方位が、翼部のZ軸に平
行な面での熱応力が最大となる断面の法線方向であるも
のである。In order to achieve the above object, a gas turbine rotor blade according to the present invention has a complicated cooling hole inside the rotor blade, and crystals in the longitudinal Z-axis on which centrifugal stress acts. The azimuth is the <001> direction, and the <0> direction of the longitudinal Z axis is <0>.
The <100> orientation, which is perpendicular to the 01> orientation, is the normal direction of the cross section where the thermal stress is maximum on the plane parallel to the Z axis of the blade.
【0009】また、本発明に係るガスタービン用動翼
は、長手方向Z軸の結晶方位が〈001〉方位であり、
長手方向Z軸の〈001〉方位に垂直な〈100〉方位
が、翼部のZ軸に平行な面での熱応力が最大となる断面
の法線方向との角度差が20°以内であるものである。Further, in the gas turbine blade according to the present invention, the crystal orientation of the longitudinal Z-axis is the <001> orientation,
The <100> orientation perpendicular to the <001> orientation of the longitudinal Z-axis has an angular difference of 20 ° or less from the normal direction of the cross section where the thermal stress is maximum on the plane parallel to the Z-axis of the blade. It is a thing.
【0010】また、本発明に係るガスタービン用動翼
は、最大熱応力の発生する位置が翼先端部とプラットホ
−ム部のほぼ中間であり、且つ翼前縁部であるものであ
る。In the gas turbine moving blade according to the present invention, the position where the maximum thermal stress is generated is approximately in the middle between the blade tip portion and the platform portion, and is the blade leading edge portion.
【0011】また、本発明に係るガスタービン用動翼は
翼内部に冷却孔を有し、前記冷却孔が数個の通路に仕切
られているものである。The blade for a gas turbine according to the present invention has cooling holes inside the blade, and the cooling holes are divided into several passages.
【0012】また、本発明に係る単結晶翼の製造方法
は、鋳型底部に、種の横方向の方位を〈100〉方位と
し、この〈100〉方位が翼部のZ軸に平行な面での熱
応力が最大となる断面の法線方向と一致するように種結
晶をセットする工程と、鋳造原料を溶解後鋳型内に鋳込
む工程と、鋳型を高温の加熱炉から相対的に引き抜い
て、一端側から他端側へ漸次一方向凝固させる工程を含
むものである。Further, in the method for manufacturing a single crystal blade according to the present invention, the lateral direction of the seed is set to the <100> orientation at the bottom of the mold, and the <100> orientation is a plane parallel to the Z axis of the blade portion. The step of setting the seed crystal so as to match the normal direction of the cross section where the thermal stress of the maximum is, the step of casting the casting raw material into the mold after melting, and the mold is relatively pulled out from the high-temperature heating furnace. The step of gradually unidirectionally solidifying from one end side to the other end side is included.
【0013】[0013]
【作用】本発明に係るガスタービン用動翼は、遠心応力
が作用する長手方向Z軸の結晶方位が〈001〉方位で
あり、長手方向Z軸の〈001〉方位に垂直な〈10
0〉方位が、翼部のZ軸に平行な面での熱応力が最大と
なる断面の法線方向であることから、高クリ−プ強度と
高耐クリープ疲労強度を有する動翼とすることができ
る。In the rotor blade for a gas turbine according to the present invention, the crystal orientation of the longitudinal Z axis on which the centrifugal stress acts is the <001> orientation, and the <10 1> orientation of the longitudinal Z axis is <10>.
Since the 0> orientation is the normal direction of the cross section where the thermal stress is maximized on the plane parallel to the Z axis of the blade, the blade should have high creep strength and high creep fatigue strength. You can
【0014】[0014]
【実施例】図1は本発明に係るガスタービン用単結晶動
翼の斜視図を示し、図2は本発明の方法による前記動翼
の製造方法の概略を示した断面図である。1 is a perspective view of a single crystal moving blade for a gas turbine according to the present invention, and FIG. 2 is a sectional view showing an outline of a method for manufacturing the moving blade according to the method of the present invention.
【0015】図2において、最初、水冷銅チル4の上
に、種の横方向の方位を〈100〉方位とし、この〈1
00〉方位が翼部Z軸に平行な面での熱応力が最大とな
る断面の法線方向と一致するように種結晶5をセットし
たアルミナを主成分とするセラミック鋳型6を固定し、
それを鋳型加熱ヒ−タ7の中にセットし、セラミック鋳
型6をNi基超合金の融点以上に加熱する。次に溶解し
たNi基超合金をセラミック鋳型6の中に鋳込み、その
後水冷銅チル4を下方に引出し、一方向凝固させた。一
方向凝固させると種結晶5からエピタキシャル成長し拡
大部で大きな単結晶となり、長手方向Z軸の結晶方位が
〈001〉方位で、長手方向Z軸の〈001〉方位に垂
直な〈100〉方位が、翼部のZ軸に平行な面での熱応
力が最大となる断面の法線方向である単結晶動翼が得ら
れた。この場合、鋳型加熱ヒ−タ7はセラミック鋳型6
が完全に引出され、凝固が終了するまで高温に保った。
また、上記工程は、全て真空中で行った。In FIG. 2, first, on the water-cooled copper chill 4, the lateral direction of the seed is defined as a <100> direction, and this <1>
00> orientation is fixed by fixing the ceramic mold 6 containing alumina as a main component in which the seed crystal 5 is set so as to match the normal direction of the cross section in which the thermal stress is maximum on the plane parallel to the Z axis of the blade,
It is set in a mold heating heater 7 and the ceramic mold 6 is heated above the melting point of the Ni-based superalloy. Next, the melted Ni-base superalloy was cast into a ceramic mold 6, and then the water-cooled copper chill 4 was drawn out downward and solidified in one direction. When it is unidirectionally solidified, it grows epitaxially from the seed crystal 5 and becomes a large single crystal in the expanded portion, and the crystal orientation of the longitudinal Z axis is the <001> orientation, and the <100> orientation perpendicular to the <001> orientation of the longitudinal Z axis is , A single crystal rotor blade having a cross-section in which the thermal stress is maximum on a plane parallel to the Z-axis of the blade portion is the normal direction. In this case, the mold heating heater 7 is the ceramic mold 6
Was pulled out completely and kept at high temperature until the solidification was completed.
In addition, all the above steps were performed in vacuum.
【0016】表1に上記単結晶動翼の鋳造条件を示す。
表2に鋳造に用いたNi基超合金の化学組成を示す。
尚、上記方法で鋳造した単結晶動翼は、鋳造後1300
〜1350℃で、真空中2〜20時間の溶体化処理を行
って、凝固によって形成された共晶γ’相と、凝固後の
冷却過程で形成された析出γ’相をγ相に変え、その後
980〜1080℃で4〜20時間と、800〜900
℃で10〜30時間の時効熱処理を行い、γ相中に平均
0.3〜2μmのγ’相を析出させた。Table 1 shows the casting conditions for the above-mentioned single crystal moving blade.
Table 2 shows the chemical composition of the Ni-based superalloy used for casting.
The single crystal rotor blade cast by the above method was
At ˜1350 ° C., a solution treatment is performed in vacuum for 2 to 20 hours to change the eutectic γ ′ phase formed by solidification and the precipitated γ ′ phase formed in the cooling process after solidification to the γ phase, After that, at 980 to 1080 ° C for 4 to 20 hours and 800 to 900
Aging heat treatment was performed at 10 ° C. for 10 to 30 hours to precipitate a γ ′ phase with an average of 0.3 to 2 μm in the γ phase.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【表2】 [Table 2]
【0019】図3に図1に示した単結晶動翼の翼先端と
プラットホ−ムの中間部横断面での最大熱応力発生領域
8を示す。有限要素法を用いた非弾性応力解析の結果、
図1に示した動翼は、最大熱応力発生領域8が前縁部で
あることが判った。そこで、最大熱応力発生領域8(曲
率半径の最も小さい部分)の中心位置での前縁部円弧の
接線方向を、〈100〉方位とした。その結果、本発明
の遠心応力が作用する長手方向Z軸の結晶方位を〈00
1〉方位とし、長手方向Z軸の〈001〉方位に垂直な
〈100〉方位を、翼部のZ軸に平行な面での熱応力が
最大となる断面の法線方向と一致させた単結晶動翼は、
従来の横方向の方位を制御しない単結晶動翼に対し、ク
リープ疲労寿命が2000回から8000回と約4倍向
上した。尚、従来の単結晶動翼の法線方向の方位は〈1
10〉方位を仮定した。FIG. 3 shows the maximum thermal stress generation region 8 in the transverse section of the blade tip of the single crystal moving blade shown in FIG. 1 and the intermediate portion of the platform. Results of inelastic stress analysis using the finite element method,
In the blade shown in FIG. 1, it was found that the maximum thermal stress generation region 8 was the leading edge portion. Therefore, the tangent direction of the leading edge arc at the center position of the maximum thermal stress generation region 8 (the portion having the smallest radius of curvature) is defined as the <100> orientation. As a result, the crystallographic orientation of the longitudinal Z axis on which the centrifugal stress of the present invention acts is <00.
1> orientation, and the <100> orientation, which is perpendicular to the <001> orientation of the longitudinal Z-axis, is aligned with the normal direction of the cross section where the thermal stress is maximum on the plane parallel to the Z-axis of the blade. Crystal blades
The creep fatigue life was improved from 2000 times to 8000 times, which is about 4 times that of the conventional single crystal blade that does not control the lateral direction. Incidentally, the azimuth in the normal direction of the conventional single crystal moving blade is <1
10> azimuth was assumed.
【0020】一方、3次元的に形状が変化している翼の
場合、長手方向Z軸の〈001〉方位に垂直な〈10
0〉方位を、翼部のZ軸に平行な面での熱応力が最大と
なる断面の法線方向と完全に一致させることが困難な場
合が多い。この場合ある程度の角度差を許容する必要が
ある。図4に〈100〉方位からのずれとクリープ疲労
特性の関係を示す。〈100〉方位からのずれが20°
以内ではクリープ疲労特性の大巾な低下みられない。従
って、長手方向Z軸の結晶方位が〈001〉方位であ
り、長手方向Z軸の〈001〉方位に垂直な〈100〉
方位と、翼部のZ軸に平行な面での熱応力が最大となる
断面の法線方向との角度差が20°以内であれば従来の
単結晶動翼よりも大幅な長寿命化が可能である。On the other hand, in the case of a blade whose shape is three-dimensionally changed, <10> perpendicular to the <001> direction of the longitudinal Z-axis.
In many cases, it is difficult to perfectly match the 0> orientation with the normal direction of the cross section where the thermal stress is maximum on the plane parallel to the Z axis of the blade. In this case, it is necessary to allow some angular difference. FIG. 4 shows the relationship between the deviation from the <100> direction and the creep fatigue characteristics. 20 ° deviation from <100> direction
Within the range, the creep fatigue property is not significantly deteriorated. Therefore, the crystal orientation of the longitudinal Z-axis is the <001> orientation, and the <100> orientation perpendicular to the <001> orientation of the longitudinal Z-axis.
If the angle difference between the azimuth and the normal direction of the cross section where the thermal stress is maximum on the plane parallel to the Z axis of the blade portion is within 20 °, the life will be significantly longer than that of the conventional single crystal rotor blade. It is possible.
【0021】また、実施例では最大熱応力の発生する位
置が前縁部である動翼について示したが、最大熱応力の
発生する位置は翼形状や冷却方式により当然異なってく
る。しかし、この場合にも、長手方向Z軸の〈001〉
方位に垂直な〈100〉方位を、翼部のZ軸に平行な面
での熱応力が最大となる断面の法線方向とを一致させる
ことにより、実施例の場合と同様に長寿命化を図ること
ができる。Further, in the embodiment, the position where the maximum thermal stress is generated is the leading edge, but the position where the maximum thermal stress is generated naturally varies depending on the blade shape and the cooling system. However, even in this case, the <001>
By aligning the <100> azimuth, which is perpendicular to the azimuth, with the normal direction of the cross section where the thermal stress is maximum on the plane parallel to the Z axis of the blade, the life is extended as in the case of the embodiment. Can be planned.
【0022】[0022]
【発明の効果】本発明に係るガスタービン用動翼によれ
ば、高クリ−プ強度と高耐クリープ疲労強度を有する動
翼が得られるため、動翼の長寿命化と燃焼ガス温度の上
昇によるガスタービンの熱効率向上を図ることに効果が
ある。According to the gas turbine rotor blade of the present invention, since a rotor blade having high creep strength and high creep fatigue strength can be obtained, the life of the rotor blade is extended and the combustion gas temperature is increased. This is effective in improving the thermal efficiency of the gas turbine.
【0023】また、本発明によるガスタービン用動翼の
製造法によれば、上記の動翼を容易に製造できる。According to the method for manufacturing a gas turbine moving blade of the present invention, the above moving blade can be easily manufactured.
【図1】本発明に係るガスタービン用単結晶動翼の斜視
図である。FIG. 1 is a perspective view of a single crystal moving blade for a gas turbine according to the present invention.
【図2】図1に示したガスタービン用単結晶動翼の製造
法の概略を示す構成図である。FIG. 2 is a configuration diagram showing an outline of a method for manufacturing the single crystal moving blade for gas turbine shown in FIG.
【図3】最大熱応力発生位置と〈100〉方位との関係
を示す説明図である。FIG. 3 is an explanatory diagram showing a relationship between a maximum thermal stress generation position and a <100> direction.
【図4】〈100〉方位からのずれとクリープ疲労特性
の関係を示す図である。FIG. 4 is a diagram showing the relationship between deviation from <100> orientation and creep fatigue characteristics.
1 〈001〉方位 2 〈100〉方位 3 〈010〉方位 4 水冷銅チル 5 種結晶 6 セラミック鋳型 7 鋳型加熱ヒ−タ 8 最大熱応力発生位置 1 <001> orientation 2 <100> orientation 3 <010> orientation 4 water-cooled copper chill 5 seed crystal 6 ceramic mold 7 mold heating heater 8 maximum thermal stress generation position
───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯島 活巳 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 石田 忠美 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 岡山 昭 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 平根 輝夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 狩野 公男 宮城県仙台市青葉区一番町三丁目7番1号 東北電力株式会社内 (72)発明者 松崎 裕之 宮城県仙台市青葉区一番町三丁目7番1号 東北電力株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Iijima 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Institute Ltd. (72) Tadami Ishida 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitsuryu Corporation Hitachi, Ltd. (72) Akira Okayama, Akira Okayama 4026, Kuji-machi, Hitachi, Hitachi, Ibaraki Hitachi, Ltd., Hitachi Research Institute (72) Teruo Hirane 4026, Kuji, Hitachi, Ibaraki, Hitachi, Ltd., Hitachi, Ltd. (72) Inventor Kimio Kano 3-7-1, Ichibancho, Aoba-ku, Sendai-shi, Miyagi Tohoku Electric Power Co., Inc. (72) Hiroyuki Matsuzaki 3-7-1, Ichibancho, Aoba-ku, Sendai, Miyagi Prefecture Tohoku Electric power company
Claims (5)
おいて、遠心応力が作用する長手方向Z軸の結晶方位が
〈001〉方位であり、長手方向Z軸の〈001〉方位
に垂直な〈100〉方位が、翼部のZ軸に平行な面での
熱応力が最大となる断面の法線方向であることを特徴と
するガスタービン用単結晶動翼。1. A rotor blade used in a gas turbine for power generation, wherein the crystallographic orientation of the longitudinal Z axis on which centrifugal stress acts is the <001> orientation, and the <001> orientation of the longitudinal Z axis is perpendicular to the <001> orientation. A single crystal moving blade for a gas turbine, wherein the 100> orientation is a normal direction of a cross section in which a thermal stress is maximum in a plane parallel to the Z axis of the blade portion.
動翼において、長手方向Z軸の〈001〉方位に垂直な
〈100〉方位と、翼部のZ軸に平行な面での熱応力が
最大となる断面の法線方向との角度差が20°以内であ
るガスタービン用単結晶動翼。2. The single crystal moving blade for a gas turbine according to claim 1, wherein heat is generated in a <100> orientation perpendicular to the <001> orientation of the longitudinal Z axis and in a plane parallel to the Z axis of the blade portion. A single-crystal moving blade for a gas turbine having an angle difference of 20 ° or less with a normal line direction of a cross section having the maximum stress.
単結晶動翼において、最大熱応力の発生する位置が翼先
端部とプラットホ−ム部のほぼ中間であり、且つ翼前縁
部であるガスタービン用単結晶動翼。3. The single crystal moving blade for a gas turbine according to claim 1, wherein the position where the maximum thermal stress is generated is approximately in the middle between the blade tip portion and the platform portion, and at the blade leading edge portion. A single crystal rotor blade for a gas turbine.
用単結晶動翼において、単結晶動翼は翼内部に冷却孔を
有し、前記冷却孔が数個の通路に仕切られているガスタ
ービン用単結晶動翼。4. The single crystal moving blade for a gas turbine according to claim 1, 2 or 3, wherein the single crystal moving blade has a cooling hole inside the blade, and the cooling hole is divided into several passages. Single crystal rotor blade for a gas turbine.
鋳造原料を溶解後鋳型内に鋳込む工程と、鋳型を高温の
加熱炉から相対的に引き抜いて、一端側から他端側へ漸
次一方向凝固させる工程を含むガスタービン用単結晶動
翼の製造方法において、種の横方向の方位を〈100〉
方位とし、この〈100〉方位が翼部のZ軸に平行な面
での熱応力が最大となる断面の法線方向とが一致するよ
うに種と鋳型との相対的位置関係を一定としたガスター
ビン用単結晶動翼の製造方法。5. A step of setting a seed crystal on the bottom of the mold,
Manufacture of single-crystal blades for gas turbines, including the steps of melting the casting raw material into the mold and then relatively withdrawing the mold from a high-temperature heating furnace to gradually and unidirectionally solidify from one end to the other end. In the method, the lateral orientation of the seed is <100>
The relative positional relationship between the seed and the mold was fixed so that the <100> orientation coincided with the normal direction of the cross section in which the thermal stress on the plane parallel to the Z axis of the blade was the maximum. Manufacturing method of single crystal moving blade for gas turbine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18945592A JPH0633701A (en) | 1992-07-16 | 1992-07-16 | Single crystal moving blade for gas turbine and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18945592A JPH0633701A (en) | 1992-07-16 | 1992-07-16 | Single crystal moving blade for gas turbine and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0633701A true JPH0633701A (en) | 1994-02-08 |
Family
ID=16241549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18945592A Pending JPH0633701A (en) | 1992-07-16 | 1992-07-16 | Single crystal moving blade for gas turbine and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0633701A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1217170A2 (en) * | 2000-12-14 | 2002-06-26 | General Electric Company | Method to tune the natural frequency of turbine blades by using the orientation of the secondary axes |
WO2008049465A1 (en) * | 2006-10-23 | 2008-05-02 | Manfred Renkel | Method for production of turbine blades by centrifugal casting |
JP2015194137A (en) * | 2014-03-31 | 2015-11-05 | 株式会社東芝 | Method for manufacturing turbine blade |
-
1992
- 1992-07-16 JP JP18945592A patent/JPH0633701A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1217170A2 (en) * | 2000-12-14 | 2002-06-26 | General Electric Company | Method to tune the natural frequency of turbine blades by using the orientation of the secondary axes |
EP1217170A3 (en) * | 2000-12-14 | 2003-10-15 | General Electric Company | Method to tune the natural frequency of turbine blades by using the orientation of the secondary axes |
WO2008049465A1 (en) * | 2006-10-23 | 2008-05-02 | Manfred Renkel | Method for production of turbine blades by centrifugal casting |
US8136573B2 (en) | 2006-10-23 | 2012-03-20 | Manfred Renkel | Method for production of turbine blades by centrifugal casting |
JP2015194137A (en) * | 2014-03-31 | 2015-11-05 | 株式会社東芝 | Method for manufacturing turbine blade |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0475428B1 (en) | Gas turbine, gas turbine blade used therefor and manufacturing method for gas turbine blade | |
CN1061123C (en) | Blade for gas turbine, manufacturing method of the same, and gas turbine including the blade | |
US5489194A (en) | Gas turbine, gas turbine blade used therefor and manufacturing method for gas turbine blade | |
US6755921B2 (en) | Nickel-based single crystal alloy and a method of manufacturing the same | |
US7762309B2 (en) | Integral single crystal/columnar grained component and method of casting the same | |
JP5235383B2 (en) | Ni-based single crystal alloy and casting | |
CN103817313A (en) | Manufacturing method of one-piece fine-grain centripetal impeller casting | |
Onyszko et al. | Turbine blades of the single crystal nickel based CMSX-6 superalloy | |
JPH0119992B2 (en) | ||
JPH0633701A (en) | Single crystal moving blade for gas turbine and production thereof | |
US6800148B2 (en) | Single crystal vane segment and method of manufacture | |
JP3395019B2 (en) | Manufacturing method of single crystal blade for gas turbine | |
US4830679A (en) | Heat-resistant Ni-base single crystal alloy | |
JPH09317402A (en) | Monocrystal stationary blade for gas turbine and stationary blade segment, and manufacture thereof | |
CA2349412C (en) | Single crystal vane segment and method of manufacture | |
JPH1085928A (en) | Formation of extending part of product by melting mandrel in ceramic mold | |
JPH07310502A (en) | Turbine rotor blade | |
JPH09144502A (en) | Gas turbine blade and its manufacture and gas turbine | |
JP2002283043A (en) | Method for producing turbine blade having unidirectional solidified columnar crystal structure and turbine blade produced by the method | |
JP3538464B2 (en) | Turbine blade | |
JP2002331353A (en) | Manufacturing method for casting having fine unidirectional solidified columnar crystal structure | |
JP4223627B2 (en) | Nickel-based single crystal heat-resistant superalloy, manufacturing method thereof, and turbine blade using nickel-based single crystal heat-resistant superalloy | |
JPH0770678A (en) | High strength cemented carbide and high strength single crystal casting | |
JPH10131705A (en) | Turbine blade and manufacture thereof | |
Toloraya et al. | Formation of single-crystal structure of large-size cast GTE and GTU turbine blades in facilities for high-gradient directed crystallization |