[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06335330A - Algal field proliferating material and artificial fish reef - Google Patents

Algal field proliferating material and artificial fish reef

Info

Publication number
JPH06335330A
JPH06335330A JP6081071A JP8107194A JPH06335330A JP H06335330 A JPH06335330 A JP H06335330A JP 6081071 A JP6081071 A JP 6081071A JP 8107194 A JP8107194 A JP 8107194A JP H06335330 A JPH06335330 A JP H06335330A
Authority
JP
Japan
Prior art keywords
weight
iron
terms
fish reef
artificial fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6081071A
Other languages
Japanese (ja)
Other versions
JP2577319B2 (en
Inventor
Masamichi Saiki
正道 斎木
Sadao Ueda
定雄 上田
Shuji Kitao
修二 北尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TETORAPOTSUTO KK
Toyo Glass Co Ltd
Nippon Tetrapod Co Ltd
Original Assignee
NIPPON TETORAPOTSUTO KK
Toyo Glass Co Ltd
Nippon Tetrapod Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TETORAPOTSUTO KK, Toyo Glass Co Ltd, Nippon Tetrapod Co Ltd filed Critical NIPPON TETORAPOTSUTO KK
Priority to JP6081071A priority Critical patent/JP2577319B2/en
Publication of JPH06335330A publication Critical patent/JPH06335330A/en
Application granted granted Critical
Publication of JP2577319B2 publication Critical patent/JP2577319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

PURPOSE:To provide an algal field proliferating material affording algal field effective for proliferating sea algae or phytoplankton growing undersea, and to provide an artificial fish reef enabling such algal field to be proliferated and thus enabling fish and shellfish gathering there to be bred and proliferated. CONSTITUTION:The algal field proliferating material consisting of a vitreous material composed of (A) 30-70wt.% of silicon in terms of SiO2, (B) 10-50wt.% of sodium and/or potassium in terms of Na2O and/or K2O and (C) 5-50wt.% of iron in terms of Fe2O3 with the content of divalent iron being >=1wt.%. The other objective artificial fish reef can be obtained by arranging such algal field proliferating material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海中にて生育する海藻
類や植物プランクトンなどの生物の増殖に有効な藻場を
形成することができる藻場増殖材に関する。また、本発
明は、そのような藻場を増殖させ、これによりその藻場
に集まる魚介類を育成、増殖させることを可能にする人
工魚礁にも関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seaweed bed growth material capable of forming a seaweed bed that is effective for growing organisms such as seaweeds and phytoplankton that grow in the sea. The present invention also relates to an artificial fish reef that makes it possible to grow such a seaweed bed and thereby grow and grow seafood that gathers at the seaweed bed.

【0002】[0002]

【従来の技術】従来より、人工的に魚介類を育成、増殖
する方法としては、鋼材、石材、木材などを水中に沈め
て人工魚礁とし、これにより魚礁空間を形成し、この空
間内に海藻類や植物プランクトンを着生棲息させて藻場
を形成する方法が広範に利用されている。このような人
工魚礁は、魚介類の卵の保護や浮遊生活期間における幼
稚仔の保護や育成を行なうものではなく、ある程度成長
した魚介類を集めて人工的な漁場を形成するものであ
る。しかし、このようにして形成した漁場では、魚礁の
沈設後数年で魚礁への藻類の着生が極端に減少する傾向
がある。このため、藻類や植物プランクトンなどの着生
を長期間にわたって継続的に維持できる人工魚礁材料の
開発が求められている。
2. Description of the Related Art Conventionally, as a method for artificially growing and multiplying seafood, a fish reef space is formed by immersing steel, stone, wood, etc. in water to form a fish reef space, and seaweed in this space. A method of forming a seaweed bed by inhabiting species and phytoplankton is widely used. Such an artificial fish reef does not protect eggs of seafood or protects or raises young larvae in a floating life period, but collects seafood that has grown to some extent to form an artificial fishing ground. However, in the fishing ground thus formed, the algae settlement on the fish reef tends to be extremely reduced within a few years after the fish reef is deposited. Therefore, there is a demand for the development of artificial fish reef materials that can sustain epiphytes such as algae and phytoplankton for a long period of time.

【0003】一方、北海道大学の松永教授の研究によれ
ば、海藻類や植物プランクトンなどの藻場生物の増殖に
は、海水中に溶存している鉄、マンガン、ケイ素、リン
などの成分が必要であることが判明しており、特に鉄が
二価のイオンとして溶存している場合にその増殖効果は
極めて高くなることが報告されている(日刊政経情報昭
和63年1月1日号)。
On the other hand, according to a study by Professor Matsunaga of Hokkaido University, the growth of seaweed organisms such as seaweeds and phytoplankton requires components such as iron, manganese, silicon and phosphorus dissolved in seawater. It has been reported that the proliferative effect is extremely high especially when iron is dissolved as a divalent ion (Nikkan Seikei Information January 1, 1988 issue).

【0004】また、海中の沈没船や廃船などで形成され
た鉄魚礁には藻場生物が密生し、これを餌とする魚介類
が集まることが経験的に知られている。このような現象
は、沈没船等の素材である鉄の一部が二価の鉄イオンの
状態で海中に溶存していて、これを藻場生物が直接利用
できるためであると推測されている。この推測は、鉄魚
礁で生育した海藻類に含まれる鉄分の濃度と岩礁で生育
した海藻類の鉄濃度とを測定比較すると、前者の鉄濃度
が後者の鉄濃度の2倍以上となるとのデータからも裏付
けられている。
It is also empirically known that seagrass organisms are densely present on iron fish reefs formed by sunken ships or abandoned ships in the sea, and seafoods that feed on them are collected. It is speculated that this phenomenon is due to the fact that part of the iron, which is the material for sunken ships, is dissolved in the sea in the state of divalent iron ions, which can be directly used by seaweed beds. . This estimation is based on the data that the concentration of iron contained in seaweeds grown on iron fish reefs and the concentration of iron in seaweeds grown on reefs are measured and compared, the iron concentration of the former is more than twice that of the latter. It is also supported by.

【0005】[0005]

【発明が解決しようとする課題】従って、人工魚礁等の
藻場増殖材を形成する素材中に特に二価の鉄、そして更
にマンガン、ケイ素、リンなどの成分を含有させておけ
ば、藻場生物の増殖を図ることが可能になることは充分
に予測される。しかしながら、従来より用いられている
鋼材、石材、木材などの藻場増殖材に、二価の鉄、そし
て更にマンガン、ケイ素、リンなどを含有させ、かつそ
れらの成分が長期間にわたって安定に海水中に継続して
溶出するような方法はこれまでに見い出されていなかっ
た。
Accordingly, if the material forming the seaweed bed breeding material such as artificial fish reef contains particularly divalent iron, and further components such as manganese, silicon and phosphorus, the seaweed bed It is fully predicted that it will be possible to grow organisms. However, conventionally used steel, stone, wood, and other seaweed bed breeding materials contain divalent iron, and further manganese, silicon, phosphorus, etc., and their components are stable in seawater for a long period of time. Up to now, no method for continuous elution has been found.

【0006】[0006]

【課題を解決するための手段】本発明はまず、ケイ素、
ナトリウムおよび/またはカリウム、そして鉄を、それ
ぞれ、SiO2 換算で30〜70重量%(好ましくは、
35〜60重量%)、Na2 Oおよび/またはK2 O換
算で10〜50重量%(好ましくは、20〜30重量
%)、そしてFe2 3 換算で5〜50重量%(好まし
くは、10〜35重量%)にあたる量含有し、かつ二価
の鉄の含有量が1重量%以上(好ましくは3重量%以
上、さらに好ましくは5重量%以上、最も好ましくは8
重量%以上、別に好ましくは30重量%以下)であるガ
ラス質材料からなる藻場増殖材にある。なお、これらの
重量%は、藻場増殖材(ガラス質材料)の全体量に対す
る割合を意味する。
SUMMARY OF THE INVENTION The present invention firstly comprises silicon,
Sodium and / or potassium, and iron, in terms of SiO 2 , are each 30 to 70% by weight (preferably,
35 to 60% by weight), 10 to 50% by weight (preferably 20 to 30% by weight) in terms of Na 2 O and / or K 2 O, and 5 to 50% by weight (preferably, in terms of Fe 2 O 3 ). 10 to 35% by weight) and the content of divalent iron is 1% by weight or more (preferably 3% by weight or more, more preferably 5% by weight or more, most preferably 8% by weight).
It is a seaweed bed breeding material made of a glassy material in an amount of at least 1% by weight, preferably 30% by weight or less. In addition, these weight% means the ratio with respect to the whole amount of the seaweed bed growth material (glassy material).

【0007】また本発明は、ケイ素、ナトリウムおよび
/またはカリウム、そして鉄を、それぞれ、SiO2
算で30〜70重量%(好ましくは、35〜60重量
%)、Na2 Oおよび/またはK2 O換算で10〜50
重量%(好ましくは、20〜35重量%)、そしてFe
2 3 換算で5〜50重量%(好ましくは、10〜35
重量%)にあたる量含有し、かつ二価の鉄の含有量が1
重量%以上(好ましくは3重量%以上、さらに好ましく
は5重量%以上、最も好ましくは8重量%以上、別に好
ましくは30重量%以下)であるガラス質材料で被覆さ
れてなる人工魚礁にもある。
In the present invention, silicon, sodium and / or potassium and iron are added in an amount of 30 to 70% by weight (preferably 35 to 60% by weight) in terms of SiO 2 , Na 2 O and / or K 2 respectively. 10-50 in O conversion
Wt% (preferably 20-35 wt%), and Fe
5 to 50% by weight in terms of 2 O 3 (preferably 10 to 35%
(% By weight) and the content of divalent iron is 1
There is also an artificial fish reef coated with a glassy material in an amount of not less than 5% by weight (preferably not less than 3% by weight, more preferably not less than 5% by weight, most preferably not less than 8% by weight, preferably not more than 30% by weight). .

【0008】本発明は、金属材やコンクリート材とは異
なるガラス質の非晶質構造の特性に着目し、このガラス
質材料をマトリックス材料として、二価の鉄を一定以上
含む鉄分を閉じ込めることによって、その二価の鉄から
生成する二価の鉄イオンなどの鉄イオンを海中に長期に
わたって安定にゆっくりと放出し続けることが可能とな
るとの本願発明者の新たな知見に基づいて完成されたも
のである。
The present invention focuses on the characteristics of a glassy amorphous structure different from metal materials and concrete materials, and by using this glassy material as a matrix material, the iron content containing a certain amount or more of divalent iron is confined. Completed based on the new finding of the present inventor that it becomes possible to stably and slowly release iron ions such as divalent iron ions generated from the divalent iron into the sea for a long period of time. Is.

【0009】なお、本願発明の藻場増殖材および人工魚
礁を構成しているガラス質材料は、さらにリンおよび/
またはマンガンを、それぞれP2 5 換算で1〜30重
量%そしてマンガンを、MnO換算で0.1〜5重量%
含有することが好ましい。
The vitreous material constituting the seaweed bed breeding material and artificial fish reef of the present invention is further composed of phosphorus and / or
Alternatively, manganese is 1 to 30% by weight in terms of P 2 O 5 , and manganese is 0.1 to 5% by weight in terms of MnO.
It is preferable to contain.

【0010】なお、ガラス質材料は、その非晶質網目構
造を形成するケイ素と酸素を中心とする網目形成原子、
そしてその網目構造の中に入り込むナトリウム、カリウ
ムなどの網目修飾原子、そして網目形成原子あるいは網
目修飾原子として機能する鉄を含んでおり、そのような
ガラス質材料を海水に浸漬すると、水分子がガラス質材
料の網目構造の網目を徐々にゆっくりと切断するため、
そのガラス質成分が長期間にわたって徐々に溶出する
(水溶出性)。そしてガラス質材料に更に、網目形成原
子として機能するリンや、網目形成原子あるいは網目修
飾原子として機能するマンガンが含まれていれば、それ
らの網目の切断と共に長期間にわたって徐々に溶出する
ことになる。従って、本発明の藻場増殖材の構成元素成
分の種類と量を、その藻場増殖材の製造時に調整してお
けば、目的の成分を目的の速度で溶出させることも可能
となる。
The vitreous material is a network-forming atom centered on silicon and oxygen forming the amorphous network structure,
And it contains network modifying atoms such as sodium and potassium that enter into the network structure, and iron that functions as a network forming atom or a network modifying atom. When such a glassy material is immersed in seawater, water molecules become glass. In order to gradually and slowly cut the mesh of the quality material mesh structure,
The vitreous component gradually elutes over a long period of time (water elution property). If the vitreous material further contains phosphorus that functions as a network-forming atom and manganese that functions as a network-forming atom or a network-modifying atom, it will gradually elute over a long period of time as the network is cut. . Therefore, if the kind and amount of the constituent element components of the seaweed bed growing material of the present invention are adjusted at the time of manufacturing the seaweed bed growing material, the target component can be eluted at a target rate.

【0011】本発明の藻場増殖材を製造するためには、
ケイ素、鉄、ナトリウムおよび/またはカリウムなどの
元素成分を含む公知の材料を用い、高温に加熱(たとえ
ば、1300〜1500℃で、約10分間以上加熱)し
て、溶融させ、次いで冷却させる公知のガラス化法を利
用することができる。なお、このガラス化法の実施の際
に、溶融雰囲気を、コークスなどの還元剤を使用する
か、あるいは一酸化炭素ガスなどの還元性ガスを用いて
還元性とすることにより、カラス質中の二価の鉄の含有
量を増加させることが可能となる。また、マンガンやリ
ンなどの、添加元素成分をガラス質に導入する場合も、
同様にそれらの元素成分を含む原料を用意し、それを前
記のガラス質原料に混合し、その後、高温加熱による溶
融を行なうことによる方法を利用することができる。な
お、本発明のガラス質材料の藻場増殖材は、所望により
多孔質とすることができる。すなわち、多孔質ガラスで
藻場増殖材を構成することによって、藻場増殖材と海水
との接触面積が増大するため、藻場増殖材中の構成元素
成分の溶出が促進される。
In order to produce the seaweed bed growth material of the present invention,
A known material containing an elemental component such as silicon, iron, sodium and / or potassium is used, which is heated to a high temperature (for example, heated at 1300 to 1500 ° C. for about 10 minutes or more), melted, and then cooled. Vitrification methods can be used. During the vitrification process, the melting atmosphere is reduced by using a reducing agent such as coke or reducing gas such as carbon monoxide gas. It is possible to increase the content of divalent iron. Also, when introducing additional elemental components such as manganese and phosphorus into the glass,
Similarly, a method may be used in which a raw material containing those elemental components is prepared, the raw material is mixed with the above-mentioned glassy raw material, and then the raw material is melted by heating at high temperature. The glassy material seaweed bed multiplying material of the present invention can be made porous if desired. That is, by forming the seaweed bed breeding material with porous glass, the contact area between the seaweed bed breeding material and seawater increases, so that the elution of the constituent element components in the seaweed bed breeding material is promoted.

【0012】なお、本発明の藻場増殖材の原料として
は、使用済みの廃ガラスも使用することができる。すな
わち、使用済みのガラス瓶などを破砕し、これに必要な
追加元素成分を含む原料を添加したのち、これを同様に
して還元雰囲気下で加熱溶融するような方法を利用して
も、本発明の藻場増殖材を製造することができる。
Used waste glass can also be used as a raw material for the seaweed bed growing material of the present invention. That is, even if a method such as crushing a used glass bottle, adding a raw material containing additional elemental components necessary for this, and then heating and melting the same in a reducing atmosphere is used, A seaweed bed breeding material can be manufactured.

【0013】また、本発明の藻場増殖材となるガラス質
材料を、他の構造体(コンクリート構造物、鋼材、石
材、建設廃棄物、天然の岩場など)の表面に、そのま
ま、あるいは他の材料と混合して、塗布などの方法によ
って配設することによって、人工魚礁とすることもでき
る。このような、ケイ素、鉄、ナトリウムおよび/また
はカリウムなどの元素成分を含むガラス質からなり二価
の鉄の含有量が高められた藻場増殖材を表面の全体ある
いは一部に有する人工魚礁は、ケイ素や二価の鉄を海水
中に長期にわたって安定して溶出させるため、その周囲
に単に魚介類を集めるのみでなく、海藻類や植物プラン
クトンなどを増殖させるため、魚介類の増殖にも有効と
なる。従って、人工魚礁としての長期の使用が可能とな
る。
Further, the vitreous material to be used as the seaweed bed breeding material of the present invention may be applied to the surface of other structures (concrete structures, steel materials, stone materials, construction wastes, natural rock fields, etc.) as it is or other materials. An artificial fish reef can also be obtained by mixing the material and disposing it by a method such as coating. Such an artificial fish reef having a seaweed bed breeding material, which is made of glass containing elemental components such as silicon, iron, sodium and / or potassium, and has an increased content of divalent iron, on all or part of its surface is , It is effective not only for collecting fish and shellfish around it to stably elute silicon and divalent iron into sea water for a long time, but also for growing seaweed and phytoplankton, which is also effective for the growth of fish and shellfish. Becomes Therefore, it can be used for a long time as an artificial fish reef.

【0014】[0014]

【実施例】【Example】

[例1]ガラス質原料として、ヘマタイト粉末10部
(重量部、以下同じ)、珪砂50部、燐酸カリウム50
部、正燐酸15部、二酸化マンガン2部、そしてコーク
ス2部を取り、これらを充分に混合したのち、るつぼに
入れた。次いで、このるつぼを1400℃に予熱した炉
に入れ、都市ガスで還元雰囲気にしながら、ガラス質原
料を1時間加熱溶融し、その後室温まで冷却し、ガラス
質成形体A(本発明の藻場増殖材A)を得た。
[Example 1] As a glassy raw material, 10 parts of hematite powder (parts by weight, the same applies hereinafter), 50 parts of silica sand, 50 parts of potassium phosphate.
Parts, 15 parts of orthophosphoric acid, 2 parts of manganese dioxide and 2 parts of coke were thoroughly mixed and then placed in a crucible. Then, this crucible was placed in a furnace preheated to 1400 ° C., the vitreous raw material was heated and melted for 1 hour in a reducing atmosphere with city gas, and then cooled to room temperature, and the vitreous compact A (seaweed bed growth of the present invention). Material A) was obtained.

【0015】ガラス質原料として、ヘマタイト粉末30
部(重量部、以下同じ)、珪砂50部、炭酸ナトリウム
25部、燐酸カリウム15部、二酸化マンガン2部、そ
してコークス5部を取り、これらを充分に混合したの
ち、るつぼに入れた。次いで、このるつぼを1400℃
に予熱した炉に入れ、都市ガスで還元雰囲気にしなが
ら、ガラス質原料を1時間加熱溶融し、その後室温まで
冷却し、ガラス質成形体B(本発明の藻場増殖材B)を
得た。
As a glassy raw material, hematite powder 30
Parts (parts by weight, the same hereinafter), 50 parts of silica sand, 25 parts of sodium carbonate, 15 parts of potassium phosphate, 2 parts of manganese dioxide, and 5 parts of coke were taken and mixed well, and then put in a crucible. The crucible is then placed at 1400 ° C
The glassy raw material was heated and melted for 1 hour under a reducing atmosphere with city gas, and then cooled to room temperature to obtain a glassy molded body B (seaweed bed breeding material B of the present invention).

【0016】[例2]ガラス質原料として、ヘマタイト
粉末30部(重量部、以下同じ)、珪砂50部、ソーダ
灰25、燐酸カリウム15部、そしてコークス5部を取
り、これらを充分に混合したのち、るつぼに入れた。次
いで、このるつぼを1400℃に予熱した炉に入れ、都
市ガスで還元雰囲気にしながら、ガラス質原料を1時間
加熱溶融し、その後室温まで冷却し、ガラス質成形体C
(本発明の藻場増殖材C)を得た。
Example 2 As a glassy raw material, 30 parts of hematite powder (parts by weight, the same applies hereinafter), 50 parts of silica sand, 25 parts of soda ash, 15 parts of potassium phosphate, and 5 parts of coke were taken, and these were thoroughly mixed. After that, I put it in the crucible. Then, this crucible was placed in a furnace preheated to 1400 ° C., the vitreous raw material was heated and melted for 1 hour in a reducing atmosphere with city gas, and then cooled to room temperature to obtain a vitreous compact C
(The seaweed bed growth material C of the present invention) was obtained.

【0017】ガラス質原料として、ヘマタイト粉末9部
(重量部、以下同じ)、珪砂50部、ソーダ灰20部、
燐酸カリウム18部、そしてコークス4部を取り、これ
らを充分に混合したのち、るつぼに入れた。次いで、こ
のるつぼを1400℃に予熱した炉に入れ、都市ガスで
還元雰囲気にしながら、ガラス質原料を1時間加熱溶融
し、その後室温まで冷却し、ガラス質成形体D(本発明
の藻場増殖材D)を得た。
As a glassy raw material, 9 parts of hematite powder (weight part, the same applies hereinafter), 50 parts of silica sand, 20 parts of soda ash,
After taking 18 parts of potassium phosphate and 4 parts of coke and mixing them well, they were put in a crucible. Then, this crucible was placed in a furnace preheated to 1400 ° C., the vitreous raw material was heated and melted for 1 hour in a reducing atmosphere with city gas, and then cooled to room temperature, and the vitreous compact D (seaweed bed growth of the present invention). Material D) was obtained.

【0018】ガラス質原料として、ヘマタイト粉末20
部(重量部、以下同じ)、珪砂50部、燐酸カリウム3
7.3部、炭酸カリウム44.1部、そしてコークス1
部を取り、これらを充分に混合した後、るつぼに入れ
た。次いで、るつぼを1400℃に予熱した炉に入れ、
都市ガスで還元雰囲気にしながら、ガラス質原料を1時
間加熱溶融し、その後室温まで冷却し、ガラス質成形体
E(本発明の藻場増殖材E)を得た。
As a glassy raw material, hematite powder 20
Parts (parts by weight, the same applies hereinafter), 50 parts silica sand, 3 potassium phosphates
7.3 parts, potassium carbonate 44.1 parts, and coke 1
Parts were taken, these were mixed well and then placed in a crucible. The crucible was then placed in a furnace preheated to 1400 ° C,
The glassy raw material was heated and melted for 1 hour in a reducing atmosphere with city gas, and then cooled to room temperature to obtain a glassy molded body E (seaweed bed breeding material E of the present invention).

【0019】[ガラス質成形体(藻場増殖材)の評価]
例1および例2で得られたガラス質成形体(藻場増殖
材)A、B、C、D、Eのそれぞれの元素成分組成(酸
化物として表示)は第1表の通りであった。
[Evaluation of glassy molded body (seaweed breeding material)]
Table 1 shows the respective elemental component compositions (expressed as oxides) of the glassy molded products (algae bed growth materials) A, B, C, D and E obtained in Examples 1 and 2.

【0020】[0020]

【表1】 第1表 ──────────────────────────────────── 増殖材 ガラス質組成(重量%) Fe2O3 SiO2 Na2O K2O P2O5 MnO Al2O3 ──────────────────────────────────── A 8.8 44.8 -- 23.7 21.6 1.1 0.04 B 27.2 46.4 13.5 7.4 3.7 1.1 0.04 C 27.7 47.2 13.8 7.5 3.8 -- 0.04 D 10.4 58.9 13.8 11.3 5.7 -- 0.04 E 15.1 38.6 -- 38.5 7.7 -- 0.03 ────────────────────────────────────[Table 1] Table 1 ──────────────────────────────────── Breeding material glass composition (weight %) Fe 2 O 3 SiO 2 Na 2 OK 2 OP 2 O 5 MnO Al 2 O 3 ────────────────────────────── ──────── A 8.8 44.8 --23.7 21.6 1.1 0.04 B 27.2 46.4 13.5 7.4 3.7 1.1 0.04 C 27.7 47.2 13.8 7.5 3.8 --0.04 D 10.4 58.9 13.8 11.3 5.7 --0.04 E 15.1 38.6 --38.5 7.7- -0.03 ─────────────────────────────────────

【0021】また、ガラス質成形体(藻場増殖材)A、
B、C、D、およびEのそれぞれについて、2価の鉄
(Fe2+)をメスバウワースペクトル法によって定量し
た。その結果は次の通りであった。A(Fe2+:4.9
重量%)、B(Fe2+:15.2重量%)、C(F
2+:15.5重量%)、D(Fe2+:5.8重量
%)、E(Fe2+:8.5重量%)
Further, a glassy molded body (algal bed growth material) A,
For each of B, C, D, and E, divalent iron (Fe 2+ ) was quantified by the Mossbauer spectroscopy. The results were as follows. A (Fe 2+ : 4.9
Wt%), B (Fe 2+ : 15.2 wt%), C (F
e 2+ : 15.5% by weight), D (Fe 2+ : 5.8% by weight), E (Fe 2+ : 8.5% by weight)

【0022】次に、ガラス質成形体(藻場増殖材)A、
B、C、D、およびEのそれぞれについて、下記の方法
により鉄とケイ素の溶出試験を行なった。ガラス質成形
体をめのう乳鉢で粉砕し、粉砕した試料をふるい18号
(850μm)にかけ、その通過物を今度は、ふるい5
0号(300μm)にかけ、これを通過する微細粒子を
除いた。ふるい50号に残留した粒子を、ふるいと共に
水中で1分間ゆるくふるいながら洗い、さらにエタノー
ル中で1分間洗ったのち、100℃で30分間乾燥し、
次いでデシケータ中に置いて冷却して試験試料を得た。
この試験試料10gを200mLの硬質ガラス製三角フ
ラスコに入れ、これに純水100mLを加え、時計皿で
蓋をして、水浴中で2時間加熱した。加熱の終了後、直
ちに流水中で冷却して、試料溶出液を得た。なお、上記
の溶出試験方法は、常温の水中での溶出に換算すると約
7箇月間に発生する溶出に該当する。上記の方法で得た
試料溶出液を用い、下記の方法により、鉄(鉄の総
量)、二価の鉄、マンガンそして二酸化ケイ素の溶出量
を測定した。なお、比較対照のため、鋳物粉末(化学組
成(重量%)C:3.6、Si:2.0、Mn:0.
6、Ni:1.0、Fe:92.0、残部P、S、C
r)と電炉製鋼スラグ(化学組成(重量%)Fe2O3:44.
7、 FeO:14.4、 SiO2:8.2、 CaO:11.0、 MgO:4.3、 MnO:4.7、
Al2O3:6.8、 Cr2O3:2.1)のそれぞれについても同様な
粉砕、溶出処理を行ない、対照試料溶出液を得て、同様
の測定を行なった。測定結果を第2表に示す。
Next, a glassy molded body (seaweed breeding material) A,
For each of B, C, D, and E, an elution test of iron and silicon was performed by the following method. The vitreous molding was crushed in an agate mortar, and the crushed sample was passed through a sieve No. 18 (850 μm).
Particle No. 0 (300 μm) was passed through to remove fine particles passing therethrough. The particles remaining on the sieve No. 50 are washed with the sieve in water with gentle sieving for 1 minute, further washed with ethanol for 1 minute, and then dried at 100 ° C. for 30 minutes.
Then, it was placed in a desiccator and cooled to obtain a test sample.
10 g of this test sample was placed in a 200 mL hard glass Erlenmeyer flask, 100 mL of pure water was added thereto, the lid was covered with a watch glass, and the mixture was heated in a water bath for 2 hours. Immediately after the heating, the sample eluate was obtained by cooling in running water. The above dissolution test method corresponds to the dissolution that occurs in about 7 months when converted to the dissolution in water at room temperature. Using the sample eluate obtained by the above method, the elution amount of iron (total iron amount), divalent iron, manganese, and silicon dioxide was measured by the following method. For comparison, the casting powder (chemical composition (% by weight) C: 3.6, Si: 2.0, Mn: 0.
6, Ni: 1.0, Fe: 92.0, balance P, S, C
r) and electric furnace steelmaking slag (chemical composition (% by weight) Fe 2 O 3 : 44.
7, FeO: 14.4, SiO 2 : 8.2, CaO: 11.0, MgO: 4.3, MnO: 4.7,
Al 2 O 3 : 6.8 and Cr 2 O 3 : 2.1) were also pulverized and eluted in the same manner to obtain a control sample eluate, and the same measurement was performed. The measurement results are shown in Table 2.

【0023】(1)鉄の定量(鉄の総量の定量) 試料溶出液25mL(試料溶出液に着色があった時は1
0mL)を100mLのメスフラスコに採り、5w/V
(重量/容量)%のアスコルビン酸溶液2mLを加えた
のち、これに0.1W/V%のo−フェナントロリン水
溶液10mLを添加し、更に20W/V%の酢酸アンモ
ニウム水溶液15mLを加えたのち、水で標線まで薄
め、30分間放置する。この溶液の一部を測光セルに入
れ、測定波長510nmで吸光度を測定し、その吸光度
と対照の水の吸光度とから、鉄の濃度を算出する。
(1) Quantification of iron (quantification of the total amount of iron) 25 mL of sample eluate (1 when the sample eluate is colored)
(0 mL) in a 100 mL volumetric flask, 5 w / V
(Weight / volume)% ascorbic acid solution (2 mL) was added, and then 0.1 W / V% o-phenanthroline aqueous solution (10 mL) was added, and further 20 W / V% ammonium acetate aqueous solution (15 mL) was added. Dilute to the marked line with and leave for 30 minutes. A part of this solution is put into a photometric cell, the absorbance is measured at a measurement wavelength of 510 nm, and the concentration of iron is calculated from the absorbance and the absorbance of control water.

【0024】(2)二価の鉄の定量 試料溶出液25mLを100mLのメスフラスコに採
り、これに0.1W/V%のo−フェナントロリン水溶
液10mLを添加し、さらに20W/V%の酢酸アンモ
ニウム水溶液15mLを加えたのち、水で標線まで薄
め、30分間放置する。この溶液の一部を測光セルに入
れ、測定波長510nmで吸光度を測定し、その吸光度
と対照の水の吸光度とから、鉄の濃度を算出する。
(2) Determination of divalent iron 25 mL of the sample eluate was placed in a 100 mL volumetric flask, to which was added 10 mL of 0.1 W / V% o-phenanthroline aqueous solution, and further 20 W / V% ammonium acetate. After adding 15 mL of the aqueous solution, dilute to the marked line with water and leave for 30 minutes. A part of this solution is put into a photometric cell, the absorbance is measured at a measurement wavelength of 510 nm, and the concentration of iron is calculated from the absorbance and the absorbance of control water.

【0025】(3)マンガンの定量 原子吸光分析にて、試料溶出液の波長279.5nmの
吸光度を測定して、マンガン濃度を算出する。
(3) Quantification of manganese The atomic absorption spectrometry is used to measure the absorbance of the sample eluate at a wavelength of 279.5 nm to calculate the manganese concentration.

【0026】(4)二酸化ケイ素の定量 試料溶出液25mLを100mLのプラスチックビーカ
に採り、これにふっ化水素酸水溶液(ふっ化水素酸1容
量部+水9容量部)2mLを加え、10分間放置したの
ち、ホウ酸水溶液50mLを加える。次にモリブデン酸
アンモニウム2mLを加えて撹拌し、その後10分間放
置する。次いで、酒石酸水溶液5mLを加えたのち、5
w/V%のアスコルビン酸水溶液2mLを添加し、これ
を100mLのメスフラスコに移し入れ、水で標線まで
薄め、30分間放置する。この溶液の一部を測光セルに
入れ、測定波長650nmで吸光度を測定し、その吸光
度と対照の水の吸光度とから、二酸化ケイ素の濃度を算
出する。
(4) Quantification of silicon dioxide 25 mL of the sample eluate was placed in a 100 mL plastic beaker, and 2 mL of an aqueous solution of hydrofluoric acid (1 part by volume of hydrofluoric acid + 9 parts by volume of water) was added and left for 10 minutes. After that, 50 mL of boric acid aqueous solution is added. Next, 2 mL of ammonium molybdate is added and stirred, and then left for 10 minutes. Next, after adding 5 mL of a tartaric acid aqueous solution, 5
Add 2 mL of w / V% ascorbic acid aqueous solution, transfer this to a 100 mL volumetric flask, dilute to the marked line with water, and leave for 30 minutes. A part of this solution is put into a photometric cell, the absorbance is measured at a measurement wavelength of 650 nm, and the concentration of silicon dioxide is calculated from the absorbance and the absorbance of control water.

【0027】[0027]

【表2】 第2表 ──────────────────────────────────── 増殖材 溶 出 量 (μg/10g) 鉄総量 二価の鉄 マンガン 二酸化ケイ素 ──────────────────────────────────── A 56100 1530 290 1100 B 1120 330 70 11400 C 1120 410 − 10100 D 1810 540 − 72500 E 22800 690 − 15700 ──────────────────────────────────── 鋳物粉末 86 29 − − 電炉製鋼スラグ 14 3 − − ────────────────────────────────────[Table 2] Table 2 ──────────────────────────────────── Breeding material elution amount (μg / 10g) Total iron divalent iron manganese silicon dioxide ───────────────────────────────────── A 56100 1530 290 1100 B 1120 330 330 70 11400 C 1120 410 -10100 D 1810 540-72500 E 22800 690-15700 ─────────────────────────── ───────── Cast powder 86 29 − − Electric furnace steelmaking slag 14 3 − − ───────────────────────────── ────────

【0028】上記の結果から、本発明の藻場増殖材は、
鋳物粉末や電炉製鋼スラグに比べて充分な量の鉄(特に
二価の鉄)や二酸化ケイ素などを長期にわたって溶出す
ることがわかる。従って、藻場増殖材として非常に有効
であることが予測される。
From the above results, the seaweed bed growth material of the present invention is
It can be seen that a sufficient amount of iron (especially divalent iron), silicon dioxide, etc. are eluted over a long period of time as compared with casting powder and electric furnace steel slag. Therefore, it is expected to be very effective as a seaweed bed growth material.

【0029】[例3]ガラス質原料として、ヘマタイト
粉末50部(重量部、以下同じ)、数ミリ〜数センチの
大きさのソーダ石灰ガラス片(びんガラスの破片)50
部、そしてコークス5部を取り、これらを充分に混合し
たのち、るつぼに入れた。次いで、このるつぼを炉に入
れ、2時間かけて室温から1200℃にまで昇温加熱し
た後室温まで冷却し、ガラス質成形体F(本発明の藻場
増殖材F)を得た。
[Example 3] As a glassy raw material, 50 parts of hematite powder (parts by weight, the same applies hereinafter), 50 pieces of soda-lime glass having a size of several millimeters to several centimeters (fragment of bottle glass) 50
Parts, and 5 parts of coke were taken, mixed well and then put in a crucible. Next, this crucible was placed in a furnace and heated from room temperature to 1200 ° C. over 2 hours and then cooled to room temperature to obtain a glassy molded body F (seaweed bed growth material F of the present invention).

【0030】上記のガラス質成形体Fについて、前述の
方法により鉄、二価の鉄、そして二酸化ケイ素の溶出試
験を行なった。その結果を第3表に示す。
The glass molded article F was subjected to an elution test of iron, divalent iron and silicon dioxide by the method described above. The results are shown in Table 3.

【0031】[0031]

【表3】 第3表 ──────────────────────────────────── 増殖材 溶 出 量 (μg/10g) 鉄総量 二価の鉄 二酸化ケイ素 ──────────────────────────────────── F 59 12 1060 ────────────────────────────────────[Table 3] Table 3 ──────────────────────────────────── Amount of leachable breeder (μg / 10g) Total iron amount Divalent iron Silicon dioxide ──────────────────────────────────── F 59 12 1060 ─────────────────────────────────────

【0032】上記の結果から、本発明の藻場増殖材は、
微粒子としなくても、鉄(特に二価の鉄)や二酸化ケイ
素などを長期にわたって溶出することがわかる。従っ
て、藻場増殖材として有効であることが予測される。
From the above results, the seaweed bed growth material of the present invention is
It can be seen that iron (especially divalent iron), silicon dioxide, etc. can be eluted over a long period without using fine particles. Therefore, it is expected to be effective as a seaweed bed growth material.

【0033】[ガラス質成形体(藻場増殖材)による藻
場増殖試験] コントロール培養液:NaNO3 :75mg、NaH2
PO4 ・2H2 O:6mg、Na2 SiO3 ・9H
2 O:10mg、CoSO4 ・7H2 O:12μg、Z
nSO4 ・7H2 O:21μg、MnCl2 ・4H
2 O:180μg、CuSO4 ・5H2 O:7μg、N
2 MoO4 ・2H2 O:7μg、そして海水1000
mLを混合して調製。
[Algal bed growth test using glassy molded product (algal bed growth material)] Control culture solution: NaNO 3 : 75 mg, NaH 2
PO 4 · 2H 2 O: 6mg , Na 2 SiO 3 · 9H
2 O: 10mg, CoSO 4 · 7H 2 O: 12μg, Z
nSO 4 · 7H 2 O: 21μg , MnCl 2 · 4H
2 O: 180 μg, CuSO 4 .5H 2 O: 7 μg, N
a 2 MoO 4 · 2H 2 O: 7 μg, and seawater 1000
Prepared by mixing mL.

【0034】(1)試料培養液の調製 試料培養液G:上記のコントロール培養液のみ 試料培養液H:コントロール培養液100mLに前記増
殖材C(粒度:300〜850μm)10mgを添加 試料培養液I:コントロール培養液100mLに前記増
殖材D(粒度:300〜850μm)10mgを添加 試料培養液J:コントロール培養液100mLに前記増
殖材E(粒度:300〜850μm)10mgを添加
(1) Preparation of sample culture solution Sample culture solution G: Only the above-mentioned control culture solution Sample culture solution H: 10 mg of the above-mentioned growth material C (particle size: 300 to 850 μm) was added to 100 mL of the control culture solution Sample culture solution I : 10 mg of the proliferation material D (particle size: 300 to 850 μm) was added to 100 mL of the control culture medium Sample culture fluid J: 10 mg of the proliferation material E (particle size: 300 to 850 μm) was added to the 100 mL of the control culture fluid

【0035】(2)試料培養液の培養試験I 試料培養液に、プランクトンとして珪藻(Chaetocerros
sociale)をセル(細胞)濃度が300セル/mLとな
るように添加し、培養温度を5℃に維持して、初めの1
2時間は3000ルックスの照明下、次の12時間は照
明無し、とするサイクルで培養を21日間続けた後、珪
藻のセル濃度を測定したところ、図1に示す結果を得
た。
(2) Cultivation test of sample culture solution I In the sample culture solution, diatom (Chaetocerros) was used as plankton.
sociale) was added so that the cell concentration would be 300 cells / mL, the culture temperature was maintained at 5 ° C, and the first 1
After culturing was continued for 21 days in a cycle of lighting at 3000 lux for 2 hours and no lighting for the next 12 hours, the cell concentration of diatom was measured, and the results shown in FIG. 1 were obtained.

【0036】(3)試料培養液の培養試験II 試料培養液に、プランクトンとして鞭毛藻(Gymnodiniu
m mikimotoi)を、セル(細胞)濃度が100セル/mL
となるように添加し、培養温度を5℃に維持して、初め
の12時間は3000ルックスの照明下、次の12時間
は照明無し、とするサイクルで培養を22日間続けた
後、鞭毛藻のセル濃度を測定したところ、図2に示す結
果を得た。
(3) Cultivation test of sample culture solution II In the sample culture solution, flagellates (Gymnodiniu) as plankton were used.
m mikimotoi) with a cell concentration of 100 cells / mL
After maintaining the culture temperature at 5 ° C, the culture was continued for 22 days under the cycle of 3000 lux illumination for the first 12 hours and no illumination for the next 12 hours. When the cell concentration of was measured, the results shown in FIG. 2 were obtained.

【0037】(4)評価 図1と図2から明らかなように、コントロール培養液
(培養液G)では、珪藻や鞭毛藻のセル濃度はそれぞれ
21日間と22日間培養後も、殆ど増加していないが、
これに対して本発明の藻場増殖材を加えた培養液(培養
液H、I、J)では、珪藻のセル濃度は21日間培養後
には培養当初の約130〜300倍に増加しており、一
方、鞭毛藻のセル濃度は22日間培養後培養には当初の
約3〜8倍に増加していた。従って、本発明の藻場増殖
材はプランクトンなどの藻場生物の増殖に極めて有効で
あることがわかる。また、同様に、本発明の藻場増殖材
層を表面に有する人工魚礁も、プランクトンなどの藻場
生物の増殖に極めて有効であることは明らかである。
(4) Evaluation As is clear from FIG. 1 and FIG. 2, in the control culture solution (culture solution G), the cell concentrations of diatom and flagella were almost increased even after 21 days and 22 days of culture, respectively. But not
On the other hand, in the culture fluids (culture fluids H, I, and J) to which the algae bed growth material of the present invention was added, the cell concentration of diatoms increased to about 130 to 300 times that of the initial culture after 21 days of culture. On the other hand, the cell concentration of flagella was increased about 3 to 8 times as much as the initial concentration after 22 days of culture. Therefore, it is understood that the material for growing seaweed beds of the present invention is extremely effective for growing seaweed beds such as plankton. Similarly, it is apparent that the artificial fish reef having the seaweed bed breeding material layer of the present invention on the surface is also extremely effective for growing seaweed bed organisms such as plankton.

【0038】[ガラス質成形体(藻場増殖材)によるコ
ンブへの鉄分の移行試験]海水1リットルに、前記藻場
増殖材C(粒度:300〜850μm)10mgを添加
して四個の試料液を調製した。これらの四個の試料液の
それぞれに、長さ約20cmの採取直後のコンブK、
L、M、Nのそれぞれを入れ、温度を10℃に維持し、
初めの12時間は3000ルックスの照明下、次の12
時間は照明無し、とするサイクルでコンブの培養実験を
10日間続けた。その後、各コンブを硫酸で溶解して得
たコンブ溶解液について、前述の方法で鉄の定量を行な
った。なお、上記のコンブK、L、M、Nについては、
上記の実験開始前にも同様にして鉄の定量を行なった。
得られた結果を、第4表に示す。
[Test for Transferring Iron Content to Kombu by Glassy Molded Body (Algae Bed Growth Material)] 10 samples of the seaweed bed growth material C (particle size: 300 to 850 μm) were added to 1 liter of seawater to obtain four samples. A liquid was prepared. For each of these four sample liquids, kelp K of about 20 cm in length immediately after collection,
Add L, M, N respectively and maintain the temperature at 10 ° C.
For the first 12 hours, under the lighting of 3000 lux, the next 12 hours
The kelp culture experiment was continued for 10 days in a cycle of no illumination. After that, iron was quantified by the method described above with respect to the kelp solution obtained by dissolving each kelp with sulfuric acid. In addition, about the above kelp K, L, M, N,
Before the start of the above experiment, iron was similarly quantified.
The results obtained are shown in Table 4.

【0039】[0039]

【表4】 第4表 ──────────────────────────────────── コ ン ブ 中 の 鉄 含 有 量 (μg/g乾燥重量) コンブ K L M N 平均 ──────────────────────────────────── 採取直後 7.3 8.9 9.4 8.8 8.6 培養実験後 16.5 15.5 16.3 17.4 16.4 ────────────────────────────────────[Table 4] Table 4 ──────────────────────────────────── Including iron in the components Amount (μg / g dry weight) Kelp K L M N Average ──────────────────────────────────── ─ Immediately after collection 7.3 8.9 9.4 8.8 8.6 After culture experiment 16.5 15.5 16.3 17.4 16.4 ────────────── ──────────────────────

【0040】表4の結果から明らかなように、各コンブ
の鉄の含有量は採取直後に比べて、培養実験後には平均
して約2倍に増加している。この結果から、本発明の藻
場増殖材から溶出する鉄は、コンブなどの海藻類に効率
良く採り込まれることが分った。このように海藻類に効
率良く採り込まれる鉄分は、海藻類の増殖に有効である
ことは先に述べた日刊政経情報昭和63年1月1日号に
報告されている。同様に、本発明の藻場増殖材層を表面
に有する人工魚礁もまた、海藻類の増殖に有効であるこ
とは明らかである。
As is clear from the results shown in Table 4, the iron content in each kelp increases on average about twice after the culture experiment as compared to immediately after the collection. From this result, it was found that the iron eluted from the material for growing seaweed beds of the present invention is efficiently incorporated into seaweeds such as kelp. It is reported in the January 1, 1988 issue of Nikkan Seikei Information that the iron content efficiently incorporated into seaweed is effective for the growth of seaweed. Similarly, it is clear that the artificial fish reef having the seaweed bed propagation material layer of the present invention on the surface is also effective for the growth of seaweeds.

【0041】[0041]

【発明の効果】本発明の藻場増殖材あるいは人工魚礁を
用いることにより、鉄分(特に二価の鉄)やケイ素を、
そして更にリン、マンガンなどを含有させた場合にはリ
ンやマンガンなども、海中に長期間安定に溶出し続ける
ため、海中にて生育する海藻類や植物プランクトンなど
の生物の増殖に有効な藻場を形成することができ、その
ような藻場を増殖させることによりその藻場に集まる魚
介類を育成、増殖させることも可能になる。また、本発
明の藻場増殖材および人工魚礁は、廃ビンガラスや廃板
ガラスなどの廃棄物を原料とし、それらに必要な成分調
整を施すことにより製造することができるため、廃棄物
の有効利用としても有用である。また、本発明の藻場増
殖材および人工魚礁では、溶出すべき元素成分の調整も
容易であるとの利点もある。
By using the seaweed bed breeding material or artificial fish reef of the present invention, iron (particularly divalent iron) and silicon can be obtained.
When phosphorus and manganese are further contained, phosphorus and manganese are also stably eluted into the sea for a long period of time, which is effective for the growth of organisms such as seaweeds and phytoplankton that grow in the sea. Can be formed, and by proliferating such a seaweed bed, it becomes possible to grow and grow seafood that gathers at the seaweed bed. Further, the seaweed bed breeding material and artificial fish reef of the present invention can be produced by using waste materials such as waste bottle glass and waste plate glass as raw materials, and adjusting the necessary components to them, so that the waste is effectively used. Is also useful. The seaweed bed breeding material and artificial fish reef of the present invention also have an advantage that the elemental components to be eluted can be easily adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る藻場増殖材を加えた培養液と加え
ない培養液とによりプランクトンとしての珪藻を培養し
たのちの珪藻の増殖量を調べた実験の結果を示すグラフ
である。
FIG. 1 is a graph showing the results of an experiment in which the growth amount of diatoms was investigated after culturing diatoms as plankton with a culture solution to which a seaweed bed growth material according to the present invention was added and a culture solution to which the material was not added.

【図2】本発明に係る藻場増殖材を加えた培養液と加え
ない培養液とによりプランクトンとしての鞭毛藻を培養
したのちの鞭毛藻の増殖量を調べた実験の結果を示すグ
ラフである。
FIG. 2 is a graph showing the results of an experiment in which the growth amount of flagellates was investigated after cultivating flagellates as plankton using a culture solution containing the algal bed growth material according to the present invention and a culture solution containing no material. .

【符号の説明】[Explanation of symbols]

G 試料培養液(コントロール培養液) H 試料培養液(コントロール培養液+本発明の藻場増
殖材C) I 試料培養液(コントロール培養液+本発明の藻場増
殖材D) J 試料培養液(コントロール培養液+本発明の藻場増
殖材E)
G sample culture solution (control culture solution) H sample culture solution (control culture solution + seaweed bed growth material C of the present invention) I sample culture solution (control culture solution + seaweed bed growth material D of the present invention) J sample culture solution ( Control culture solution + seaweed bed growth material E of the present invention)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素、ナトリウムおよび/またはカリ
ウム、そして鉄を、それぞれ、SiO2 換算で30〜7
0重量%、Na2 Oおよび/またはK2 O換算で10〜
50重量%、そしてFe2 3 換算で5〜50重量%に
あたる量含有し、かつ二価の鉄の含有量が1重量%以上
であるガラス質材料からなる藻場増殖材。
1. Silicon, sodium and / or potassium, and iron in an amount of 30 to 7 in terms of SiO 2 , respectively.
0% by weight, 10 in terms of Na 2 O and / or K 2 O
A seaweed bed multiplying material comprising a glassy material containing 50% by weight and 5 to 50% by weight in terms of Fe 2 O 3 and having a divalent iron content of 1% by weight or more.
【請求項2】 さらにリンを、P2 5 換算で1〜30
重量%含有する請求項1に記載の藻場増殖材。
2. Further, phosphorus is contained in an amount of 1 to 30 in terms of P 2 O 5.
The seaweed bed growth material according to claim 1, wherein the material is contained in a weight percentage.
【請求項3】 さらにマンガンを、MnO換算で0.1
〜5重量%含有する請求項1もしくは請求項2に記載の
藻場増殖材。
3. Manganese is further converted into MnO in an amount of 0.1.
The seaweed bed growth material according to claim 1 or 2, wherein the content is 5 wt%.
【請求項4】 ケイ素、ナトリウムおよび/またはカリ
ウム、そして鉄を、それぞれ、SiO2 換算で30〜7
0重量%、Na2 Oおよび/またはK2 O換算で10〜
50重量%、そしてFe2 3 換算で5〜50重量%に
あたる量含有し、かつ二価の鉄の含有量が3重量%以上
であるガラス質材料で被覆されてなる人工魚礁。
4. Silicon, sodium and / or potassium, and iron in an amount of 30 to 7 in terms of SiO 2 , respectively.
0% by weight, 10 in terms of Na 2 O and / or K 2 O
An artificial fish reef coated with a glassy material containing 50% by weight and 5 to 50% by weight in terms of Fe 2 O 3 and having a divalent iron content of 3% by weight or more.
【請求項5】 さらにリンを、P2 5 換算で1〜30
重量%含有する請求項4に記載の人工魚礁。
5. Further, phosphorus is contained in an amount of 1 to 30 in terms of P 2 O 5.
The artificial fish reef according to claim 4, wherein the artificial fish reef is contained in a weight percentage.
【請求項6】 さらにマンガンを、MnO換算で0.1
〜5重量%含有する請求項4もしくは請求項5に記載の
人工魚礁。
6. Manganese is further converted into MnO in an amount of 0.1.
The artificial fish reef according to claim 4 or 5, containing 5 to 5% by weight.
JP6081071A 1993-03-30 1994-03-29 Seaweed bed propagation material and artificial reef Expired - Lifetime JP2577319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6081071A JP2577319B2 (en) 1993-03-30 1994-03-29 Seaweed bed propagation material and artificial reef

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-93894 1993-03-30
JP9389493 1993-03-30
JP6081071A JP2577319B2 (en) 1993-03-30 1994-03-29 Seaweed bed propagation material and artificial reef

Publications (2)

Publication Number Publication Date
JPH06335330A true JPH06335330A (en) 1994-12-06
JP2577319B2 JP2577319B2 (en) 1997-01-29

Family

ID=26422106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081071A Expired - Lifetime JP2577319B2 (en) 1993-03-30 1994-03-29 Seaweed bed propagation material and artificial reef

Country Status (1)

Country Link
JP (1) JP2577319B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1042741A (en) * 1996-07-30 1998-02-17 Tetra Co Ltd Growth of plant plankton in sea area having artificial upwelling and device therefor
JPH1094341A (en) * 1996-07-30 1998-04-14 Tetra Co Ltd Method for preventing harmful red tide
WO1998024298A1 (en) * 1996-12-04 1998-06-11 Tetra Co., Ltd. Materials for growing algae and artificial fishing banks
JP2000157094A (en) * 1998-11-27 2000-06-13 Nkk Corp Stone material for sinking and disposing in water and its production
JP2012217438A (en) * 2011-04-13 2012-11-12 Daito Kogyo Kk Concrete structure
JP2016129512A (en) * 2015-01-15 2016-07-21 太平洋セメント株式会社 Cultivation material and manufacturing method thereof
JP2019017372A (en) * 2017-07-13 2019-02-07 ヒューバースジャパン株式会社 Iron-sprayed-resin fishing bank block
JP2019170342A (en) * 2018-03-29 2019-10-10 Jfeスチール株式会社 Phosphorus supply material for water area and production method thereof
WO2024167136A1 (en) * 2023-02-10 2024-08-15 엘지전자 주식회사 Glass composition for algae growth and method for manufacturing glass powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199317B1 (en) 1996-04-12 2001-03-13 Tetra Co., Ltd Materials for growing algae and artificial fishing banks
JPH1042741A (en) * 1996-07-30 1998-02-17 Tetra Co Ltd Growth of plant plankton in sea area having artificial upwelling and device therefor
JPH1094341A (en) * 1996-07-30 1998-04-14 Tetra Co Ltd Method for preventing harmful red tide
WO1998024298A1 (en) * 1996-12-04 1998-06-11 Tetra Co., Ltd. Materials for growing algae and artificial fishing banks
JP3357990B2 (en) * 1996-12-04 2002-12-16 株式会社テトラ Algal growth material and artificial reef
JP2000157094A (en) * 1998-11-27 2000-06-13 Nkk Corp Stone material for sinking and disposing in water and its production
JP2012217438A (en) * 2011-04-13 2012-11-12 Daito Kogyo Kk Concrete structure
JP2016129512A (en) * 2015-01-15 2016-07-21 太平洋セメント株式会社 Cultivation material and manufacturing method thereof
JP2019017372A (en) * 2017-07-13 2019-02-07 ヒューバースジャパン株式会社 Iron-sprayed-resin fishing bank block
JP2019170342A (en) * 2018-03-29 2019-10-10 Jfeスチール株式会社 Phosphorus supply material for water area and production method thereof
WO2024167136A1 (en) * 2023-02-10 2024-08-15 엘지전자 주식회사 Glass composition for algae growth and method for manufacturing glass powder

Also Published As

Publication number Publication date
JP2577319B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
Emerson et al. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies
CA2274104C (en) Materials for growing algae and artificial reefs
DE19520398B4 (en) Magnetic pigment
Pentecost Blue–green algae and freshwater carbonate deposits
EP2603577A1 (en) Magnetic glass particles for use in biogas plants, fermentation processes and separation processes
US5639657A (en) Process for formation of artificial seaweed bed
WO1992009536A1 (en) Mineral fibre composition
EP4071124A1 (en) Concrete oyster attachment base and preparation method therefor, and marine ecological engineering construction method
JPH06335330A (en) Algal field proliferating material and artificial fish reef
JPH0450878B2 (en)
US20220298076A1 (en) Settlement substrate of portland cement concrete or lightweight concrete for oyster and preparation method thereof
CN111268961A (en) Cement concrete oyster attachment base with rough surface and preparation method thereof
RU2451350C2 (en) Method to immobilise nuclear waste
CN111268957B (en) Oyster attaching base of portland cement concrete and preparation method thereof
Abo-Mosallam et al. New high nickel-containing glass-ceramics based on Li2O–CaO–SiO2 eutectic (954 C) system for magnetic applications
JP6893414B2 (en) A simple detection method for corrosion inhibitors, a composition for simple detection of the presence or absence of corrosion inhibitors, and a kit for simple detection of the presence or absence of corrosion inhibitors.
JP3999582B2 (en) Algae growth material and artificial reef
CN111268954A (en) Oyster attaching base of lightweight concrete and preparation method thereof
JP4166407B2 (en) Silicon elution material for diatom growth
JP7107514B1 (en) Mortar composition and hardened body
JP2024136692A (en) Iron ion-releasing glass material for algae propagation, and algae propagation material and artificial fish reef equipped with the same
TW202106377A (en) Water purification material and water purification method using the same
Wogo et al. The influence of Ag concentration on the antibacterial properties of plastic made from silica immobilized with EDTA-Ag combined with chitosan
Kumar et al. Zirconium-induced precipitation of phosphate as a means of controlling eutrophication
Machuga et al. Effect of high energy radiation on electrical properties of synthetic bone materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 17

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 17

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term