JPH06323650A - Annual operation type air-cooling chiller unit - Google Patents
Annual operation type air-cooling chiller unitInfo
- Publication number
- JPH06323650A JPH06323650A JP5115602A JP11560293A JPH06323650A JP H06323650 A JPH06323650 A JP H06323650A JP 5115602 A JP5115602 A JP 5115602A JP 11560293 A JP11560293 A JP 11560293A JP H06323650 A JPH06323650 A JP H06323650A
- Authority
- JP
- Japan
- Prior art keywords
- blower
- pressure
- refrigeration cycle
- side heat
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は年間を通じて冷房負荷を
有する、コンピュータ,プラスティック成形加工機、そ
の他工業プロセス等の年間運転を必要とする年間運転形
空冷式チラーユニットに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an annual operation type air-cooling type chiller unit which requires annual operation of a computer, a plastic molding machine, and other industrial processes having a cooling load throughout the year.
【0002】[0002]
【従来の技術】従来の装置は、特開平4−6351 号公報に
記載のように、一つの冷凍サイクルを構成する空気側熱
交換器が左右に二分割され、各冷凍サイクルは前後に配
置されて、一つの冷凍サイクル内においての左右の空気
側熱交換器の圧力を調整する様に送風機制御を行ってい
た。しかも前後の空気側熱交換器は冷凍サイクルも独立
しているので、前後の空気側熱交換器の圧力調整は独立
して行われている。2. Description of the Related Art In a conventional apparatus, as described in Japanese Patent Laid-Open No. 4-6351, an air side heat exchanger that constitutes one refrigeration cycle is divided into two parts, left and right, and each refrigeration cycle is arranged in front and rear. Then, the blower control is performed so as to adjust the pressures of the left and right air side heat exchangers in one refrigeration cycle. Moreover, since the front and rear air side heat exchangers also have independent refrigeration cycles, the pressure adjustment of the front and rear air side heat exchangers is performed independently.
【0003】[0003]
【発明が解決しようとする課題】各冷凍サイクルの空気
側熱交換器が左右に配置された場合、同一容量で圧縮機
が運転していても一方向からの季節風の影響で左右の空
気側熱交換器での冷媒凝縮性能に差異が発生し、左右の
冷凍サイクルの高圧圧力にアンバランスを生じる。ま
た、圧縮機が一つの冷凍サイクルで最大容量、他方の冷
凍サイクルで半分以下の容量で運転しているときは、冷
媒循環量の影響で左右の空気側熱交換器での冷媒凝縮性
能に差異が発生し、左右の冷凍サイクルの高圧圧力にア
ンバランスを生じる。従って、左右の空気側熱交換器毎
に圧力を調整させる制御が必要となる。また一つの冷凍
サイクルが運転を停止しているときは、その冷凍サイク
ルは圧力が上昇しないので、その方の送風機も運転しな
くても良いが、そのサイクルの送風機を全て停止させる
と、別の冷凍サイクルの送風機は運転させる必要があ
る。しかし、運転している方の送風機か停止している送
風機より風がバイパスし、運転している側の空気側熱交
換器を通過する風量が減少し、その冷凍サイクルの圧力
が上昇するので、この圧力上昇防止も解決する必要があ
る。When the air side heat exchangers of each refrigeration cycle are arranged on the left and right sides, the left and right air side heat exchangers are affected by the seasonal wind from one direction even if the compressor is operating with the same capacity. A difference occurs in the refrigerant condensing performance in the exchanger, causing an imbalance in the high pressures of the left and right refrigeration cycles. Also, when the compressor is operating at maximum capacity in one refrigeration cycle and less than half capacity in the other refrigeration cycle, there is a difference in refrigerant condensing performance in the left and right air side heat exchangers due to the influence of the refrigerant circulation amount. Occurs, and the high pressures of the left and right refrigeration cycles are unbalanced. Therefore, it is necessary to control the pressure for each of the left and right air side heat exchangers. Also, when one refrigeration cycle is stopped, the pressure does not rise in that refrigeration cycle, so it is not necessary to operate the blower of that refrigeration cycle either, but if all the blowers of that cycle are stopped, another The blower of the refrigeration cycle needs to be operated. However, since the air bypasses the blower that is operating or the blower that is stopped, the amount of air passing through the air-side heat exchanger on the operating side decreases, and the pressure of the refrigeration cycle rises, It is also necessary to solve this pressure rise prevention.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するさせ
るために、本発明は左右の冷凍サイクル毎に、すなわ
ち、左右の空気側熱交換器毎に構成される全ての送風機
の運転停止制御または回転数制御をさせて冷凍サイクル
の圧力制御を行う。この制御において、全て圧力開閉器
によるフル回転停止制御を行うと、運転圧力が上昇しす
ぎまたはフル運転停止のハンチングを行うので、各冷凍
サイクル毎に一つの送風機は回転数制御を行う手段をと
る。残りの送風機は圧力開閉器でフル運転停止制御させ
る。回転数制御およびフル回転停止制御する送風機を左
右対称に配置すると停止した送風機よりの風がバイパス
する量が増えるので、逆対称として回転数制御する送風
機の回転数で全体の風量を調整させる。また一つの冷凍
サイクルが停止しているときは高圧圧力が上昇しないの
で、そのサイクルの送風機は運転する必要ないが、停止
するとそこから他の冷凍サイクルの送風機の風量がバイ
パスするので、このときは停止している冷凍サイクルの
送風機も運転させる必要がある。これを停止している圧
縮機の電磁接触器のB接点を利用して送風機を回転させ
る。In order to achieve the above-mentioned object, the present invention is to control the stoppage of operation of all the blowers constituted for each of the left and right refrigeration cycles, that is, for each of the left and right air side heat exchangers. The rotation speed is controlled to control the pressure of the refrigeration cycle. In this control, if full rotation stop control by the pressure switch is performed, the operating pressure rises excessively or hunting for full operation stop is performed, so one blower for each refrigeration cycle takes a means for controlling the rotation speed. . The rest of the blower is controlled by a pressure switch to stop the operation. If the fans for controlling the rotation speed and for controlling the full rotation stop are arranged symmetrically, the amount of the bypassed wind from the blower increases, so that the total air volume is adjusted by the rotation speed of the fan for controlling the rotation as anti-symmetric. Also, when one refrigeration cycle is stopped, the high-pressure does not rise, so it is not necessary to operate the blower of that cycle, but when stopped, the air volume of the blower of the other refrigeration cycle is bypassed, so at this time It is also necessary to operate the blower of the refrigeration cycle that is stopped. The blower is rotated by using the B contact of the electromagnetic contactor of the compressor which is stopped.
【0005】[0005]
【作用】各冷凍サイクル毎すなわち各空気側熱交換器毎
に配置された1個のファンコントローラは送風機の回転
数制御により空気側熱交換器を通過する風量を調整し、
高圧圧力開閉器は冷凍サイクルの高圧圧力が上昇したと
きのみフル回転制御、逆に高圧圧力が一定圧力以下に低
下したとき送風機を停止させて空気側熱交換器を通過す
る風量を調整する。また、回転数制御される送風機は逆
方向に配置されているので、停止した送風機よりのバイ
パスした風量はそのとなりの回転数制御の送風機回転が
速くなり風量を増加させるので、バイパスによる高圧圧
力が上昇しすぎることもない。また一方の冷凍サイクル
が停止しているときは、圧縮機の停止信号を受けて送風
機が回転するので同様にバイパスすることなく運転して
いる冷凍サイクルの高圧圧力が上昇しすぎることもな
い。[Function] One fan controller arranged for each refrigeration cycle, that is, for each air side heat exchanger adjusts the amount of air passing through the air side heat exchanger by controlling the rotation speed of the blower,
The high-pressure pressure switch controls full rotation only when the high-pressure pressure of the refrigeration cycle rises, and conversely, when the high-pressure pressure drops below a certain pressure, the blower is stopped and the air volume passing through the air-side heat exchanger is adjusted. In addition, since the fan whose speed is controlled is arranged in the opposite direction, the bypassed air volume from the stopped fan speeds up the rotation of the blower for the speed control next to it, increasing the air volume, so the high pressure due to the bypass It won't rise too high. Further, when one of the refrigeration cycles is stopped, the blower rotates in response to the stop signal of the compressor, so that the high pressure of the refrigeration cycle operating without bypassing does not rise too much.
【0006】[0006]
【実施例】送風機の回転数制御の方法は高圧圧力と空気
側熱交換器の冷媒液出口温度を読み、高圧圧力を温度換
算し、その温度換算値と冷媒液出口温度との差で行うも
の、または高圧圧力の上限値と下限値の一つの範囲で行
うもの、または、空気側熱交換器の冷媒出口温度の上限
値と下限値の一つの範囲でもって行うものの三つのタイ
プのファンコントローラが考えられるが、最も一般的で
容易なものである高圧圧力の上限値と下限値の一つの範
囲で行うもので説明する。これらはいずれのタイプのも
のでも差異はない。[Embodiment] The method for controlling the rotation speed of a blower is to read the high pressure and the refrigerant liquid outlet temperature of the air side heat exchanger, convert the high pressure to a temperature, and perform the difference between the temperature conversion value and the refrigerant liquid outlet temperature. , Or one of the upper and lower limits of the high pressure, or one of the upper and lower limits of the refrigerant outlet temperature of the air side heat exchanger. Although it is conceivable, the explanation will be given by using one range of the upper limit value and the lower limit value of the high pressure, which is the most general and easy one. There is no difference between these types.
【0007】以下、本発明の一実施例を図1により説明
する。また図2は空気側熱交換器内に配置された回転数
制御とフル回転・停止制御する送風機の位置を示す。図
3は一つの冷凍サイクルが停止しているとき圧縮機の停
止信号で送風機を回転させるための操作回路図の一実施
例である。An embodiment of the present invention will be described below with reference to FIG. Further, FIG. 2 shows the position of the blower for controlling the rotation speed and controlling the full rotation / stop arranged in the air side heat exchanger. FIG. 3 is an embodiment of an operation circuit diagram for rotating the blower by a compressor stop signal when one refrigeration cycle is stopped.
【0008】外気温度が高い場合は高圧圧力は上昇する
ので、設定した圧力以上になっているため、回転数制御
する回路はフル回転制御し、運転停止制御する回路は運
転を制御する。すなわち、送風機は全てフル回転運転さ
れるが、外気温度が低下し、かつ、季節風が一方の冷凍
サイクルの空気側熱交換器を通過してそのサイクルの側
の高圧圧力が低下したときおよび容易制御運転で高圧圧
力が低下したとき、風量を調整して高圧圧力を一定値以
上に維持する必要がある。本発明では空気側熱交換器1
の高圧圧力が低下すると、空気側熱交換器1のガス入口
側に接続されている回転数制御ファンコントローラ7が
その圧力を検知して、回転数制御送風機3の回転数を低
下させ高圧圧力を上昇させる。回転数を低下させてもま
だ高圧圧力が低下して高圧圧力開閉器9のオフ設定値に
なるとその電気接点が移動して、運転停止送風機5が停
止する。これが停止すると風量が急に減少するので冷凍
サイクルの高圧圧力は上昇する。この高圧圧力が上昇す
ると、回転数制御ファンコントローラ7が再検知して、
回転数制御送風機3の回転数を上昇させ風量を増加させ
て高圧圧力を少し低下させる。このとき同様に空気側熱
交換器2は回転数制御送風機4の回転数を下げたところ
で一定の高圧圧力を維持して運転している。運転停止制
御送風機5が停止しているので、空気側熱交換器2では
この熱交換器を構成する回転数制御送風機4は運転停止
送風機5より風量がバイパスするので、空気側熱交換器
2を通過する風量が減少し、冷凍サイクルの高圧圧力は
上昇する。すると回転数制御ファンコントローラ8が検
知して、回転数制御送風機4は回転数が上昇し、そのサ
イクルの高圧圧力は少し低下したところでバランスして
運転する。逆に空気側熱交換器2が先に高圧圧力を低下
すると、前述の動作は全てを中心に動作(逆動作とな
る)。また一方の冷凍サイクルが停止しているとき、仮
に空気側熱交換器2の圧縮機が停止しているときは、そ
のサイクルの高圧圧力は全く上昇しないので、回転数制
御送風機4および運転停止制御送風機6共に停止状態の
制御となるので空気側熱交換器1の送風機は冷凍サイク
ルの停止している送風機より空気がバイパスして冷凍サ
イクルの高圧圧力は上昇してしまう。このため圧縮機電
磁開閉器のB接点11が閉じて、運転停止制御送風機6
を強制運転させ、冷凍サイクルの送風機のバイパスを防
止する。冷凍サイクルの圧縮機が停止している場合は前
述の逆動作となる。When the outside air temperature is high, the high pressure rises, so that the pressure exceeds the set pressure. Therefore, the circuit for controlling the rotation speed controls the full rotation and the circuit for controlling the operation stop controls the operation. That is, all the blowers are operated at full rotation, but when the outside air temperature drops and the seasonal wind passes through the air side heat exchanger of one refrigeration cycle and the high pressure side of that cycle drops, and easy control is performed. When the high pressure drops during operation, it is necessary to adjust the air volume to maintain the high pressure above a certain level. In the present invention, the air side heat exchanger 1
When the high pressure of is decreased, the rotation speed control fan controller 7 connected to the gas inlet side of the air side heat exchanger 1 detects the pressure and lowers the rotation speed of the rotation speed control blower 3 to reduce the high pressure. To raise. Even if the number of rotations is reduced, when the high pressure still drops and reaches the OFF set value of the high pressure switch 9, the electric contact moves and the operation stop blower 5 stops. When this stops, the air volume suddenly decreases and the high pressure of the refrigeration cycle rises. When this high pressure rises, the rotation speed control fan controller 7 detects again,
The rotation speed of the rotation speed control blower 3 is increased to increase the air volume, and the high pressure is slightly decreased. At this time, similarly, the air side heat exchanger 2 is operated while maintaining a constant high pressure when the rotation speed of the rotation speed control blower 4 is lowered. Since the operation stop control blower 5 is stopped, the rotation speed control blower 4 which constitutes this heat exchanger in the air side heat exchanger 2 bypasses the air flow heat exchanger 2 because the air volume bypasses the stop air blower 5. The amount of air passing through is reduced and the high pressure of the refrigeration cycle is increased. Then, the rotation speed control fan controller 8 detects the rotation speed, and the rotation speed control blower 4 operates in a balanced manner when the rotation speed increases and the high-pressure pressure in the cycle slightly decreases. On the contrary, when the air-side heat exchanger 2 lowers the high-pressure pressure first, the above-mentioned operations are mainly performed (reverse operations). Further, when one of the refrigeration cycles is stopped and if the compressor of the air-side heat exchanger 2 is stopped, the high pressure of the cycle does not rise at all, so the rotation speed control blower 4 and the operation stop control are performed. Since the blower 6 is controlled to be in a stopped state, the blower of the air-side heat exchanger 1 bypasses air from the blower in which the refrigeration cycle is stopped, and the high pressure of the refrigeration cycle rises. Therefore, the B contact 11 of the compressor electromagnetic switch is closed, and the operation stop control blower 6
To prevent the bypass of the blower of the refrigeration cycle. When the compressor of the refrigeration cycle is stopped, the above-mentioned reverse operation is performed.
【0009】[0009]
【発明の効果】一方の冷凍サイクルの高圧圧力が低下し
た場合、高圧圧力開閉器が開き運転停止制御送風機が停
止して風量が減少し、高圧圧力が上昇する。高圧圧力が
上昇すると、回転数制御ファンコントローラが圧力上昇
分だけ回転数制御送風機の回転数を増加させるので高圧
圧力は少し下がった所でバランスする。このとき他の冷
凍サイクルの方は一方の冷凍サイクル側で停止している
送風機から風量がバイパスし他方の冷凍サイクルの空気
側熱交換器を通過する風量が減少するので他方の冷凍サ
イクルは高圧圧力が上昇し、その冷凍サイクルの回転数
制御送風機が回転数を増加させてそのサイクルの風量を
増加させ、高圧圧力を徐々に低下せてバランスさせる様
に制御される。このため両方の冷凍サイクルは回転数制
御送風機の回転数の増減で風量を微調整するので高圧圧
力は一定の範囲内に維持させて運転させる効果がある。When the high pressure of one refrigerating cycle is lowered, the high pressure switch is opened, the operation stop control blower is stopped, the air volume is decreased, and the high pressure is increased. When the high-pressure pressure rises, the rotation-speed control fan controller increases the rotation speed of the rotation-speed control blower by the amount of the pressure increase, so that the high-pressure pressure balances at a place where it falls a little. At this time, in the other refrigeration cycle, the air volume bypasses from the blower stopped on the one refrigeration cycle side and the air volume passing through the air side heat exchanger of the other refrigeration cycle decreases, so the other refrigeration cycle has a high pressure. Is increased, and the rotation speed control blower of the refrigeration cycle is controlled to increase the rotation speed to increase the air volume of the cycle and gradually reduce the high pressure to balance it. Therefore, both refrigeration cycles finely adjust the air volume by increasing / decreasing the rotation speed of the rotation speed control blower, so that there is an effect that the high pressure is maintained within a certain range for operation.
【図1】空気側熱交換器の送風機制御の説明図。FIG. 1 is an explanatory diagram of a blower control of an air side heat exchanger.
【図2】空気側熱交換器送風機の配置図。FIG. 2 is a layout view of an air-side heat exchanger blower.
【図3】送風機制御操作回路図。FIG. 3 is a blower control operation circuit diagram.
1,2…空気側熱交換器、3,4…回転数制御送風機、
5,6…運転停止制御送風機、7,8…回転数制御ファ
ンコントローラ、9,10…運転停止制御用高圧圧力開
閉器、11,12…圧縮機用電磁開閉器のB接点。1, 2 ... Air side heat exchanger, 3, 4 ... Rotation speed control blower,
5, 6 ... Operation stop control blower, 7, 8 ... Rotation speed control fan controller, 9, 10 ... Operation stop control high-pressure pressure switch, 11, 12 ... B contact of the compressor electromagnetic switch.
Claims (1)
体化された一つの空気側熱交換器と複数の送風機がそれ
ぞれ冷凍サイクルを構成する様に左右に配置され、それ
らに対応した圧縮機と膨張弁と水冷却器より成る冷凍装
置において、各冷凍サイクル毎に複数の送風機のうち一
個は高圧圧力と空気側熱交換器の冷媒液出口温度を読
み、高圧圧力を温度換算し、その温度換算値と前記冷媒
出口温度との差で送風機の回転数制御をするファンコン
トローラまたは高圧圧力の上限値と下限値の一つの範囲
で送風機の回転数制御をするファンコントローラまたは
前記空気側熱交換器の冷媒液出口温度の上限値と下限値
との一つの範囲でもって送風機の回転数制御をするファ
ンコントローラのいずれかで、各冷凍サイクル毎に独自
の制御を行い、また残りの送風機は全て、各冷凍サイク
ル毎に、かつ送風機毎に高圧圧力開閉器が設けられ、設
定された圧力以上になったとき閉となって送風機をフル
回転させ、逆に設定された圧力とディファレンシャル分
だけ低い圧力になったとき開となって送風機を停止させ
る制御を行い、 前記送風機の回転数制御およびフル回転・停止制御の配
置は左右の空気側熱交換器で、左右逆に配置させ、 一つの冷凍サイクルの圧縮機が停止しているときは、圧
縮機の停止を制御する電磁接触器の補助接点のB接点
で、圧力開閉器の開閉で運転・停止する送風機のみフル
回転させる制御を行うことを特徴とする年間運転形空冷
式チラーユニット。1. An independent two refrigeration cycle, one integrated air-side heat exchanger and a plurality of blowers are arranged on the left and right sides so as to form a refrigeration cycle, and a compressor corresponding to them is provided. In a refrigeration system consisting of an expansion valve and a water cooler, one of a plurality of blowers for each refrigeration cycle reads the high-pressure pressure and the refrigerant liquid outlet temperature of the air-side heat exchanger, converts the high-pressure pressure into a temperature, and then reads that temperature. A fan controller for controlling the rotation speed of the blower by the difference between the converted value and the refrigerant outlet temperature, or a fan controller for controlling the rotation speed of the blower within one of the upper limit value and the lower limit value of the high pressure, or the air side heat exchanger. One of the fan controllers that controls the rotation speed of the blower within one range of the upper limit value and the lower limit value of the refrigerant liquid outlet temperature of All blowers are equipped with a high-pressure pressure switch for each refrigeration cycle and for each blower.When the pressure exceeds a set pressure, the blower closes and the blower is fully rotated. When the pressure becomes lower by the differential pressure, it opens to control the blower to stop, and the rotation speed control and full rotation / stop control of the blower are arranged on the left and right air side heat exchangers, and the left and right sides are reversed. , When the compressor of one refrigeration cycle is stopped, the B contact of the auxiliary contact of the electromagnetic contactor that controls the stop of the compressor is used to control only the blower that is operated and stopped by opening and closing the pressure switch to fully rotate. Annual operation type air-cooled chiller unit characterized by performing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5115602A JPH06323650A (en) | 1993-05-18 | 1993-05-18 | Annual operation type air-cooling chiller unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5115602A JPH06323650A (en) | 1993-05-18 | 1993-05-18 | Annual operation type air-cooling chiller unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06323650A true JPH06323650A (en) | 1994-11-25 |
Family
ID=14666695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5115602A Pending JPH06323650A (en) | 1993-05-18 | 1993-05-18 | Annual operation type air-cooling chiller unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06323650A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0924480A3 (en) * | 1997-12-22 | 2002-03-06 | Carrier Corporation | Vapor line pressure control |
JP2013076544A (en) * | 2011-09-30 | 2013-04-25 | Daikin Industries Ltd | Outdoor unit of refrigerating device |
-
1993
- 1993-05-18 JP JP5115602A patent/JPH06323650A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0924480A3 (en) * | 1997-12-22 | 2002-03-06 | Carrier Corporation | Vapor line pressure control |
JP2013076544A (en) * | 2011-09-30 | 2013-04-25 | Daikin Industries Ltd | Outdoor unit of refrigerating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0145021B1 (en) | Outdoor fan rotating speed variable airconditioner | |
US11859849B2 (en) | HVAC systems with evaporator bypass and supply air recirculation and methods of using same | |
JPH0684839B2 (en) | Air conditioner | |
JPH06323650A (en) | Annual operation type air-cooling chiller unit | |
JP2000088327A (en) | Indoor machine for air conditioning and control method of outlet air temperature thereof | |
JPH03241260A (en) | Multi-room air-conditioner | |
JPH1183125A (en) | Air conditioner | |
JPH01314840A (en) | Water-cooling type air conditioner | |
JPH0621714B2 (en) | Engine heat pump device | |
JP6614190B2 (en) | Air volume control system for direct expansion air conditioner | |
JP2912696B2 (en) | Air conditioner | |
JPH076651U (en) | Heat pump system controller | |
JPH03217744A (en) | Operation control system for temperature control device | |
JP7512639B2 (en) | Air Conditioning Equipment | |
WO2022163267A1 (en) | Dehumidification device, and method for controlling dehumidification device | |
JP3257294B2 (en) | Heat pump cooling / heating dehumidification control device for electric vehicles | |
JP2719401B2 (en) | Air conditioner | |
JPH0541909B2 (en) | ||
JPH1026391A (en) | Method for controlling air conditioner | |
JPH05172388A (en) | Air conditioner | |
JPH07305881A (en) | Air conditioner | |
JP2771583B2 (en) | Engine driven air conditioner | |
JPH10267431A (en) | Outdoor unit for multitype heat pump type air-conditioner | |
JPS60233439A (en) | Controlling method on multi-chamber separation type air conditioner | |
JPH046351A (en) | Year-round operation type air-cooled chiller unit |