JPH06322157A - High-dielectric constant prepreg for interlaminar bonding - Google Patents
High-dielectric constant prepreg for interlaminar bondingInfo
- Publication number
- JPH06322157A JPH06322157A JP10713593A JP10713593A JPH06322157A JP H06322157 A JPH06322157 A JP H06322157A JP 10713593 A JP10713593 A JP 10713593A JP 10713593 A JP10713593 A JP 10713593A JP H06322157 A JPH06322157 A JP H06322157A
- Authority
- JP
- Japan
- Prior art keywords
- prepreg
- dielectric constant
- epoxy resin
- resin
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 claims abstract description 43
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 43
- 239000000919 ceramic Substances 0.000 claims abstract description 34
- 239000011521 glass Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000000835 fiber Substances 0.000 claims abstract description 16
- 239000002966 varnish Substances 0.000 claims abstract description 16
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 13
- 238000002844 melting Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- 230000009477 glass transition Effects 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 239000004744 fabric Substances 0.000 claims description 16
- 239000011229 interlayer Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 14
- 238000001035 drying Methods 0.000 abstract description 5
- 229920005989 resin Polymers 0.000 description 33
- 239000011347 resin Substances 0.000 description 33
- 239000010410 layer Substances 0.000 description 25
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 25
- 239000004020 conductor Substances 0.000 description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 239000011889 copper foil Substances 0.000 description 15
- 239000004408 titanium dioxide Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 7
- 229920002492 poly(sulfone) Polymers 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910021523 barium zirconate Inorganic materials 0.000 description 1
- DQBAOWPVHRWLJC-UHFFFAOYSA-N barium(2+);dioxido(oxo)zirconium Chemical compound [Ba+2].[O-][Zr]([O-])=O DQBAOWPVHRWLJC-UHFFFAOYSA-N 0.000 description 1
- 229910002115 bismuth titanate Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、多層板の層間接着用の
高誘電率プリプレグに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-permittivity prepreg for bonding layers of multilayer boards.
【0002】[0002]
【従来の技術】電子機器の小形化・高密度化により、プ
リント配線板には多層板が多く使用されるようになって
きた。この多層板の内層に高誘電率の層を設けることに
より、導体幅をさらに小さくすることができ、これによ
り配線密度を高くすることができる。また、この層をコ
ンデンサとして積極的に利用し、例えば回路導体のスト
レーキャパシティによりバイパスコンデンサとして高周
波成分をグランド層に流したり、導体をコンデンサ
(C)やインダクタンス(L)としてさらに印刷抵抗に
より抵抗(R)を形成し、C,L,Rを内層表面に形成
し実装密度を向上させることができる。多層板の内層に
高誘電率の層を設けるには、特開昭55ー57212号
公報、特開昭61ー136281号公報、特開昭61ー
286129号公報にみられるようにエポキシ樹脂やポ
リテトラフルオロエチレン樹脂などの樹脂組成物中に例
えばチタン酸バリウムなどの高誘電率のセラミックスを
混合したワニスをガラスクロス繊維基材に含浸し乾燥し
て得られたプリプレグを複数枚重ね、最外層に銅箔を積
層しプレスにより圧縮成形し銅張り積層基板を製造す
る。そして得られた基板をエッチングにより回路形成し
て回路基板(以下、銅張り積層基板を回路加工した基板
を回路基板と称す)として用いプリプレグを介して積層
し多層板を製造する。2. Description of the Related Art Due to the miniaturization and high density of electronic devices, multilayer boards have come to be widely used for printed wiring boards. By providing a layer having a high dielectric constant as the inner layer of the multilayer board, the conductor width can be further reduced, and thus the wiring density can be increased. Further, by positively utilizing this layer as a capacitor, for example, a stray capacity of a circuit conductor allows a high frequency component to flow to the ground layer as a bypass capacitor, or a conductor can be used as a capacitor (C) or an inductance (L) and can be further resistive by a printing resistor. By forming (R) and forming C, L, and R on the inner layer surface, the mounting density can be improved. In order to provide a high dielectric constant layer as an inner layer of a multilayer board, epoxy resin or polyene is used as disclosed in JP-A-55-57212, JP-A-61-136281 and JP-A-61-286129. A plurality of prepregs obtained by impregnating a glass cloth fiber base material with a varnish mixed with a ceramic having a high dielectric constant such as barium titanate in a resin composition such as tetrafluoroethylene resin and drying the varnish are used as the outermost layer. Copper foils are laminated and compression molded by a press to produce a copper-clad laminated substrate. Then, the obtained substrate is formed into a circuit by etching and is used as a circuit substrate (hereinafter, a substrate obtained by circuit-processing a copper-clad laminated substrate is referred to as a circuit substrate) is laminated via a prepreg to manufacture a multilayer board.
【0003】[0003]
【発明が解決しようとする課題】高誘電率の基板を回路
基板として使用する例は多いが、最近、高誘電率のプリ
プレグを多層板の層間接着用に使用する要求が強くなっ
てきた。このプリプレグに要求されることは、回路基板
の導体回路をプリプレグで埋めなければならないことで
ある。この特性を内層回路充填性と称す。また内層基板
の樹脂と導体との接着性が良くなければならない。とこ
ろが、高誘電率のプリプレグは樹脂に高誘電率のセラミ
ックスを多量に添加してあるため樹脂分が少なく、流動
性が悪くなり、回路基板の導体回路を埋めきれずボイド
が発生する内層回路充填性に劣ったり、回路基板の導体
や樹脂との接着性に劣る問題点があった。これらの対策
としてセラミックスの添加量を下げ流動性を確保すれば
よいが、添加量を下げると、誘電率が下がるのでさらに
誘電率の高いセラミックスを使用しなければならなくな
る。Although there are many cases in which a substrate having a high dielectric constant is used as a circuit board, recently, there has been an increasing demand for using a prepreg having a high dielectric constant for interlayer adhesion of a multilayer board. What is required of this prepreg is that the conductor circuit of the circuit board must be filled with the prepreg. This property is called the inner layer circuit filling property. Also, the adhesion between the resin of the inner layer substrate and the conductor must be good. However, the high-permittivity prepreg has a large amount of high-permittivity ceramics added to the resin, so the resin content is low and the fluidity deteriorates. There is a problem in that it is inferior in performance and inferior in adhesiveness to a conductor or resin of a circuit board. As a countermeasure against this, it is sufficient to reduce the added amount of ceramics to secure the fluidity, but if the added amount is reduced, the dielectric constant decreases, so that ceramics having a higher dielectric constant must be used.
【0004】しかしながら、誘電率の高いセラミックス
は誘電正接が高く、また温度変化に対して誘電率の変化
が大きくなり、使用にあったては誘電率が多少変動して
も差し支えないようなところに制限されて使用されるの
みであり、回路にL,C,Rを部品と同じように使用す
る場合には、誘電率の変動は許されないものであり温度
にたいして誘電率の変化が少なくまた誘電正接の低いセ
ラミックスを使用しなければならない。さらに多層板の
回路にL,C,Rを設けるので最外層に設ける場合と異
なりトリミングによりCを調整することができず、回路
基板に精度よくコンデンサを形成できるものでなければ
ならない。そして、多層板にさらに要求されるのは、高
寸法安定性である。接着性を向上させるには高い圧力で
成形した方が接着強さが高くなるため高い圧力で成形し
た方がよいが、そのとき回路基板の導体回路によりガラ
スクロス基材が変形されてしまい、得られた多層板は寸
法安定性が悪くなりねじれやそりを生じたりする欠点が
あった。本発明はかかる状況に鑑みなされたものであっ
て、寸法安定性や接着性に優れた多層板の層間接着用高
誘電率プリプレグを提供することを目的とする。However, ceramics having a high dielectric constant have a high dielectric loss tangent and a large change in the dielectric constant with respect to temperature changes, so that the dielectric constant may slightly change during use. It is used only in a limited manner, and when L, C, and R are used in a circuit in the same manner as parts, fluctuations in the dielectric constant are not allowed, and there is little change in the dielectric constant with respect to temperature and the dielectric loss tangent. Low ceramics must be used. Further, since L, C, and R are provided in the circuit of the multilayer board, C cannot be adjusted by trimming, unlike the case where it is provided in the outermost layer, and a capacitor must be formed on the circuit board with high accuracy. Further, what is further required for the multilayer board is high dimensional stability. In order to improve the adhesiveness, it is better to mold at a high pressure because the bonding strength becomes higher, so it is better to mold at a high pressure, but at that time the conductor circuit of the circuit board deforms the glass cloth base material, The resulting multi-layer board has a drawback that dimensional stability is deteriorated and twisting or warpage occurs. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high dielectric constant prepreg for interlayer adhesion of a multilayer board which is excellent in dimensional stability and adhesiveness.
【0005】[0005]
【課題を解決するための手段】すなわち本発明は、17
0℃よりも高い融点またはガラス転移温度を有する熱可
塑性樹脂100重量部に高誘電率のセラミックス粉末1
00〜600phrを混合したワニスをガラスクロス繊維
基材に含浸乾燥して得られるプリプレグを、さらにエポ
キシ樹脂で被覆した構成とした層間接着用高誘電率プリ
プレグである。第1図を用いて本発明を説明する。第1
図はプリプレグの断面図である。1はガラスクロス繊維
基材であり、2は170℃よりも高い融点、ガラス転移
温度を有する熱可塑性樹脂であり、3は高誘電率のセラ
ミックスである。そして、4は1、2、3から構成され
るプリプレグ(1)(以下1、2、3で構成されるプリ
プレグをプリプレグ(1)と称す。)を被覆したエポキ
シ樹脂であり、被覆するエポキシ樹脂4中に高誘電率の
セラミックスを150phr以下添加してもよい。1、
2、3、4で構成されるプリプレグをプリプレグ(2)
とする。That is, the present invention provides 17
100 parts by weight of a thermoplastic resin having a melting point or glass transition temperature higher than 0 ° C. and a ceramic powder 1 having a high dielectric constant
A high-dielectric-constant prepreg for inter-layer adhesion, in which a prepreg obtained by impregnating a glass cloth fiber base material with a varnish mixed with 100 to 600 phr and drying it is further covered with an epoxy resin. The present invention will be described with reference to FIG. First
The figure is a sectional view of the prepreg. 1 is a glass cloth fiber base material, 2 is a thermoplastic resin having a melting point and a glass transition temperature higher than 170 ° C., and 3 is a ceramic having a high dielectric constant. Further, 4 is an epoxy resin coated with a prepreg (1) composed of 1, 2, and 3 (hereinafter, the prepreg composed of 1, 2, and 3 is referred to as prepreg (1)), and an epoxy resin to be coated. The high dielectric constant ceramics may be added to the above No. 4 in an amount of 150 phr or less. 1,
A prepreg consisting of 2, 3, and 4 is a prepreg (2).
And
【0006】熱可塑性樹脂の融点またはガラス転移温度
を170℃以上としたのは、被覆するエポキシ樹脂の成
形温度で樹脂を軟化させたり、流動させないためであ
る。被覆するエポキシ樹脂の成形温度は、通常170℃
であり高くとも180℃である。この熱可塑性樹脂は、
溶剤に可溶なものの方がワニスを形成し高誘電率のセラ
ミックスを分散させるのに好都合であるが、ポリテトラ
フルオロエチレン樹脂のように界面活性剤を使用し液体
中に分散させるものでもよい。好適な樹脂を例示する
と、ポリサルフォン樹脂、ポリエーテルサルフォン樹
脂、ポリフェニレンサルファイド樹脂、ポリフェニレン
エーテル樹脂、ポリエーテルイミド樹脂、ポリエーテル
エーテルケトン樹脂、ポリアリレート樹脂、ポリテトラ
フルオロエチレン樹脂、ポリ4−フッ化エチレン6−フ
ッ化プロピレン共重合体樹脂である。 これらの熱可塑
性樹脂は、溶剤に溶かしたり液体中に分散させて高誘電
率のセラミックスを分散させる。そしてガラスクロス繊
維基材に含浸後乾燥させてプリプレグ(1)を作製す
る。溶剤に溶解させた樹脂では、溶剤を飛散させるのみ
でよいが、例えば水に分散したポリテトラフルオロエチ
レン樹脂と高誘電率セラミックスのデスパージョンを使
用する場合、樹脂の融点付近まで加熱して溶融させる必
要がある。ただし多孔質状態でもよいが、セラミックス
粉がガラスクロス繊維基材から剥離して落ちない程度と
する。熱可塑性樹脂には、樹脂特性を改良するため架橋
性のポリマーやモノマー、過酸化物、カップリング剤、
着色剤、酸化防止剤、紫外線吸収剤等を添加してもよ
い。The reason why the melting point or glass transition temperature of the thermoplastic resin is 170 ° C. or higher is to prevent the resin from softening or flowing at the molding temperature of the epoxy resin to be coated. Molding temperature of epoxy resin to coat is usually 170 ℃
And at most 180 ° C. This thermoplastic resin is
The one soluble in a solvent is more convenient for forming a varnish to disperse a ceramic having a high dielectric constant, but it may be one which is dispersed in a liquid using a surfactant such as polytetrafluoroethylene resin. Examples of suitable resins include polysulfone resins, polyether sulfone resins, polyphenylene sulfide resins, polyphenylene ether resins, polyetherimide resins, polyether ether ketone resins, polyarylate resins, polytetrafluoroethylene resins, poly-4-fluorinated resins. It is an ethylene 6-fluorinated propylene copolymer resin. These thermoplastic resins are dissolved in a solvent or dispersed in a liquid to disperse high dielectric constant ceramics. Then, the glass cloth fiber base material is impregnated and dried to prepare a prepreg (1). With a resin dissolved in a solvent, it is only necessary to scatter the solvent, but for example, when using a dispersion of polytetrafluoroethylene resin and high dielectric constant ceramics dispersed in water, it is heated to near the melting point of the resin and melted. There is a need. However, the ceramic powder may be in a porous state, but the ceramic powder is not peeled off from the glass cloth fiber base material. Thermoplastic resins include crosslinkable polymers and monomers, peroxides, coupling agents, in order to improve resin properties,
Colorants, antioxidants, ultraviolet absorbers, etc. may be added.
【0007】高誘電率のセラミックスとして、ルチル型
の二酸化チタン、チタン酸バリウム、チタン酸ストロン
チウム、チタン酸カルシウム、チタン酸鉛、チタン酸ビ
スマス、チタン酸マグネシウム、ジルコン酸バリウム、
ジルコン酸鉛系セラミックスをあげることができる。こ
の中でも二酸化チタン、チタン酸ストロンチウム、チタ
ン酸カルシウム、及びこれらの混合物が好適に用いら
れ、誘電率の温度変化を小さくするために温度係数が+
100〜−5000ppm/℃のセラミックスを用いるの
が特によい。セラミックスは乾燥して用いことが重要で
ある。乾燥しないと水の影響により誘電正接が特に高く
なる。セラミックスの添加量は100phr以下では誘電
率を高くすることができなく、600phr以上では添加
量が多すぎてセラミックスの隙間を樹脂で埋めることが
できずボイドとなり、このボイドにより誘電率が低下し
てしまうためである。このボイドは、被覆するエポキシ
樹脂で埋めることができない。600phr以下の添加量
でのボイドは樹脂に余裕があるため埋めることができ
る。セラミックスの平均粒子径は0.1〜10μmが良
く、幅広い分布を持つものがよい。As high dielectric constant ceramics, rutile type titanium dioxide, barium titanate, strontium titanate, calcium titanate, lead titanate, bismuth titanate, magnesium titanate, barium zirconate,
An example is lead zirconate-based ceramics. Of these, titanium dioxide, strontium titanate, calcium titanate, and mixtures thereof are preferably used, and have a temperature coefficient of + in order to reduce the temperature change of the dielectric constant.
It is particularly preferable to use ceramics of 100 to -5000 ppm / ° C. It is important to dry ceramics before use. If not dried, the dielectric loss tangent becomes particularly high due to the influence of water. If the amount of ceramics added is less than 100 phr, the dielectric constant cannot be increased, and if it is more than 600 phr, the amount of addition is too large to fill the gaps between the ceramics with resin, resulting in voids. This is because it ends up. This void cannot be filled with the coating epoxy resin. Voids with an addition amount of 600 phr or less can be filled because the resin has a margin. The average particle diameter of the ceramics is preferably 0.1 to 10 μm, and it is preferable that the ceramics have a wide distribution.
【0008】被覆に用いるエポキシ樹脂は、基板に通常
用いられているものをそのまま使用することができる
が、多層板の層間接着用であるので硬化剤の添加量を少
し減らし硬化速度を遅くして流動性を向上させるように
するとよい。エポキシ樹脂で、被覆する方法としてプリ
プレグ(1)をエポキシ樹脂ワニス中に通し、余分なワ
ニスをしごき落とし乾燥して得たり、フィルム基材上に
エポキシ樹脂ワニスを一定厚みに流延して乾燥させたフ
ィルム状エポキシ樹脂をプリプレグ(1)にラミネート
して得る方法がある。前者の場合、エポキシ樹脂がプリ
プレグ(1)中の空隙に含浸して、その空隙を埋めるの
でボイドの少ないプリプレグが得られる。被覆するエポ
キシ樹脂の厚みは、薄い方がプリプレグ(2)の誘電率
を被覆するエポキシ樹脂で低下させる割合が少ないので
よいが、薄すぎると回路基板の導体回路を埋めきれなく
なってしまう。導体箔の厚み、残導体率(導体回路等の
導体が、基板面積に占める割合)により異なるが、導体
箔厚みが厚くなるほど厚くする。エポキシ樹脂には、流
動性を阻害しない150phr以下の高誘電率セラミック
スを添加するとプリプレグ(2)の誘電率の低下が少な
くできて良好となる。150phr以上の添加では樹脂の
粘度が高くなり、流動性に劣り内層回路充填性が悪化し
てしまう。The epoxy resin used for coating may be the same as the one usually used for substrates, but since it is for adhesion between layers of a multilayer board, the amount of the curing agent added is slightly reduced to slow down the curing speed. It is advisable to improve the fluidity. As a method of coating with an epoxy resin, pass the prepreg (1) through an epoxy resin varnish and wipe off excess varnish and dry it, or cast the epoxy resin varnish on a film base to a certain thickness and dry it. There is a method of laminating a film-shaped epoxy resin on the prepreg (1). In the former case, the epoxy resin impregnates the voids in the prepreg (1) and fills the voids, so that a prepreg with few voids can be obtained. As for the thickness of the epoxy resin to be coated, the thinner it is, the lower the rate of reduction of the dielectric constant of the prepreg (2) by the epoxy resin coating is, but it is too thin to fill the conductor circuit of the circuit board. Although it depends on the thickness of the conductor foil and the residual conductor ratio (the ratio of the conductor such as a conductor circuit to the substrate area occupying the substrate area), the thickness of the conductor foil increases as the conductor foil thickness increases. Addition of high dielectric constant ceramics of 150 phr or less, which does not impair the fluidity, to the epoxy resin makes it possible to reduce the decrease in the dielectric constant of the prepreg (2), which is favorable. If it is added in an amount of 150 phr or more, the viscosity of the resin becomes high, the fluidity becomes poor, and the inner layer circuit filling property deteriorates.
【0009】[0009]
【作用】170℃より高い融点またはガラス転移温度を
有する熱可塑性樹脂100重量部に高誘電率セラミック
ス100〜600phr混合したワニスをガラスクロス繊
維基材に含浸させ乾燥して得られるプリプレグ(1)を
さらにエポキシ樹脂で被覆した構成とする多層板層間接
着用プリプレグ(2)は、第2図に示すようにエポキシ
樹脂の成形温度で多層板を作製するためプレスにより圧
縮成形したとき、エポキシ樹脂は流動し回路板の導体回
路を埋めてしまうが、プリプレグ(1)中の熱可塑性樹
脂はエポキシ樹脂の成形温度では流動することなくその
形状を保持する。そしてプリプレグ(1)で導体回路が
止められてしまうので、回路基板間の厚みが均一となり
誘電率のばらつきが少なくなる。一方、第3図に示すよ
うに、エポキシ樹脂ワニスに高誘電率のセラミックスを
分散させて得たプリプレグのエポキシ樹脂で被覆したプ
リプレグは、エポキシ樹脂の成形温度で回路板の導体回
路がガラスクロス基材まで達し、これを変形させた状態
で硬化することになり内部歪を残した状態になる。従っ
て、第3図に示した状態で硬化させた多層板は、この後
の工程で表面実装部品などを装着し、はんだつけ工程で
加熱されるとこの歪が解放されそりやねじれ、寸法変化
を生じることになる。第2図に示した本発明の構成で
は、ガラスクロス繊維基材が変形されず歪が僅かなので
そりやねじれ、寸法変化は僅かとなる。また被覆する樹
脂がエポキシ樹脂であるので回路板の導体回路や樹脂と
の接着性が良好となる。熱可塑性樹脂との接着性は、プ
リプレグ(1)を作製するとき溶剤が飛散するときの通
路となった穴やプリプレグ表層ではセラミックス粒子表
面に被覆された樹脂が多孔質状態になっており、その多
孔質に被覆するエポキシ樹脂が入り込むのでアンカー効
果あるいは穴や多孔質による表面積増大による接触面積
増大効果により接着性が良くなる。The prepreg (1) obtained by impregnating a glass cloth fiber base material with a varnish obtained by mixing 100 parts by weight of a thermoplastic resin having a melting point or glass transition temperature higher than 170 ° C. and 100 to 600 phr of a high dielectric constant ceramic and drying the prepreg (1) Further, as shown in FIG. 2, the prepreg (2) for interlayer adhesion between multilayer boards, which is covered with an epoxy resin, is compressed by a press to produce a multilayer board at the molding temperature of the epoxy resin, so that the epoxy resin is fluidized. Although the conductor circuit of the circuit board is buried, the thermoplastic resin in the prepreg (1) retains its shape without flowing at the molding temperature of the epoxy resin. Then, since the conductor circuit is stopped by the prepreg (1), the thickness between the circuit boards becomes uniform and the variation in the dielectric constant is reduced. On the other hand, as shown in FIG. 3, a prepreg obtained by dispersing ceramics having a high dielectric constant in an epoxy resin varnish is coated with an epoxy resin, and the conductor circuit of the circuit board has a glass cloth base material at the molding temperature of the epoxy resin. After reaching the material, it will be hardened in the deformed state, and the internal strain will be left. Therefore, when the multilayer board cured in the state shown in FIG. 3 is mounted with surface mounting components in the subsequent steps and heated in the soldering step, this strain is released and warpage, twisting, and dimensional change occur. Will occur. In the configuration of the present invention shown in FIG. 2, since the glass cloth fiber base material is not deformed and the strain is slight, warpage, twist, and dimensional change are slight. Moreover, since the resin to be coated is an epoxy resin, the adhesiveness to the conductor circuit of the circuit board and the resin is good. The adhesiveness with the thermoplastic resin is such that the resin coated on the surface of the ceramic particles is in a porous state in the holes used as passages for the solvent to scatter when producing the prepreg (1) and the surface of the prepreg. Since the epoxy resin that coats the porous material enters, the adhesion is improved by the anchor effect or the effect of increasing the contact area due to the increase in the surface area due to the holes or the porous material.
【0010】[0010]
[実施例1]ポリサルフォン樹脂、ユーデルP1800
NT(アモコ社商品名)のN,N−ジメチルフォルムア
ミド15wt%溶液を調整し、この溶液667gに、二
酸化チタンCREL(石原産業(株)商品名)400g
(400phr)、チタネート系カップリング剤KR38
S(味の元(株)商品名)1g(1phr)を混合してワニ
スを得た。このワニスにガラスクロス繊維基材(厚み6
0μm,坪量47.5g/m2)を用いて含浸乾燥さ
せ、プリプレグ厚み120μmのプリプレグ(1)を得
た。このプリプレグ(1)を単独でプレスにより圧縮成
形(300℃)したとき80μmの厚みを示した。プリ
プレグ(1)にエポキシ樹脂として表1に示した配合を
準備し、プリプレグ(1)の両面に厚み15μmとなる
ようエポキシ樹脂を塗工し乾燥させて厚み150μmの
プリプレグ(2)を得た。次に多層板を作製するため、
回路基板として厚み35μmの銅箔を最外層に積層した
厚み0.2mmのエポキシ樹脂銅張り積層基板をエッチ
ングにより最大導体回路幅1mm、最小導体回路幅0.
1mmを有する銅箔回路を形成した。これを回路基板と
し、この基板2枚の間にプリプレグ(2)を挟み170
℃、90分、20Kg/cm2で加熱加圧して4層基板
を得た。この基板数カ所を切断し、エポキシ樹脂で注型
後研磨して基板断面を電子顕微鏡により観察した。回路
基板の35μm銅箔回路は、プリプレグ(2)により完
全に埋まりボイドは観察されなかった。また銅箔の先端
は、プリプレグ(1)のポリサルフォン樹脂と二酸化チ
タン層にまで達していた。またプリプレグ(2)の両面
に厚み50μmのTPXフィルム(三井石油化学工業
(株)商品名)を離型フィルムとし170℃、90分、
10Kg/cm2でプレスにより圧縮成形し離型フィル
ムを剥し、空胴共振器法により12GHzで誘電特性を
測定したところ、誘電率7.4、誘電正接0.014で
あった。プリプレグ(2)の両面に厚み35μmの銅箔
を積層し170℃、90分、10Kg/cm2でプレス
により圧縮成形し銅張り積層基板を得た。これを10m
m幅の銅箔が残るようエッチングし銅箔引きはがし強さ
を測定したところ1.5Kg/cmであった。Example 1 Polysulfone resin, Udel P1800
A 15 wt% N, N-dimethylformamide solution of NT (Amoco's trade name) was prepared, and 667 g of this solution was added with titanium dioxide CREL (trade name of Ishihara Sangyo Co., Ltd.) of 400 g.
(400 phr), titanate coupling agent KR38
1 g (1 phr) of S (trade name of Ajinomoto Co., Ltd.) was mixed to obtain a varnish. A glass cloth fiber substrate (thickness 6
0 μm, basis weight 47.5 g / m 2 ) was used for impregnation and drying to obtain a prepreg (1) having a prepreg thickness of 120 μm. When this prepreg (1) was alone compression-molded (300 ° C.) by a press, it had a thickness of 80 μm. The formulation shown in Table 1 was prepared as an epoxy resin for the prepreg (1), and the epoxy resin was applied to both surfaces of the prepreg (1) so that the thickness was 15 μm and dried to obtain a prepreg (2) having a thickness of 150 μm. Next, to make a multilayer board,
As a circuit board, a 0.2-mm-thick epoxy-resin-copper-clad laminated board in which a copper foil having a thickness of 35 μm is laminated as the outermost layer is etched to have a maximum conductor circuit width of 1 mm and a minimum conductor circuit width of 0.
A copper foil circuit having 1 mm was formed. This is used as a circuit board, and the prepreg (2) is sandwiched between the two boards 170
A four-layer substrate was obtained by heating and pressurizing at 20 ° C. for 90 minutes at 20 Kg / cm 2 . This substrate was cut at several places, cast with an epoxy resin, and then polished, and the cross section of the substrate was observed with an electron microscope. The 35 μm copper foil circuit of the circuit board was completely filled with the prepreg (2) and no void was observed. Further, the tip of the copper foil reached the polysulfone resin of the prepreg (1) and the titanium dioxide layer. Further, a TPX film having a thickness of 50 μm (trade name of Mitsui Petrochemical Industry Co., Ltd.) was used as a release film on both surfaces of the prepreg (2) at 170 ° C. for 90 minutes.
The release film was peeled off by compression molding at 10 Kg / cm 2 , and the dielectric properties were measured at 12 GHz by the cavity resonator method. The dielectric constant was 7.4 and the dielectric loss tangent was 0.014. A copper foil having a thickness of 35 μm was laminated on both surfaces of the prepreg (2) and compression-molded by pressing at 170 ° C. for 90 minutes at 10 Kg / cm 2 to obtain a copper-clad laminated substrate. This is 10m
When the copper foil was peeled off by etching so that a copper foil of m width was left, the peel strength was 1.5 kg / cm.
【0011】[0011]
【表1】 [Table 1]
【0012】[実施例2]実施例1と同様にして得たプ
リプレグ(1)に、表1に示したエポキシ樹脂配合に二
酸化チタン150phrを加えてプリプレグ(1)の両面
に厚み15μmとなるようにエポキシ樹脂を塗工し乾燥
させて厚み150μmのプリプレグ(2)を得た。プリ
プレグ(2)を用いて実施例1と同様にして4層板を作
製して、回路基板の断面の銅箔回路を観察したところ、
回路はプリプレグ(2)により完全に埋まりボイドは観
察されなかった。実施例1と同様に誘電特性を測定した
ところ誘電率12.7、誘電正接0.011のものが得
られた。被覆するエポキシ樹脂にセラミックスを添加し
てあるので誘電率の低下は少なくなり、誘電正接は樹脂
よりも低いセラミックスを使用しているのでさらに低く
なる。実施例1と同様に銅箔引きはがし強さを測定した
ところ、1.3Kg/cmであった。被覆するエポキシ
樹脂にセラミックスを添加してあるので少し低下するが
実用上は問題ない値である。Example 2 To the prepreg (1) obtained in the same manner as in Example 1, 150 phr of titanium dioxide was added to the epoxy resin composition shown in Table 1 so that the thickness of both sides of the prepreg (1) was 15 μm. Epoxy resin was applied to and dried to obtain a prepreg (2) having a thickness of 150 μm. A four-layer board was prepared in the same manner as in Example 1 using the prepreg (2), and the copper foil circuit in the cross section of the circuit board was observed.
The circuit was completely filled with prepreg (2) and no void was observed. When the dielectric characteristics were measured in the same manner as in Example 1, a dielectric constant of 12.7 and a dielectric loss tangent of 0.011 was obtained. Since the ceramics are added to the epoxy resin to be coated, the decrease of the dielectric constant is small, and the dielectric loss tangent is lower because the ceramics lower than the resin is used. When the peeling strength of the copper foil was measured in the same manner as in Example 1, it was 1.3 Kg / cm. Since ceramics are added to the epoxy resin to be coated, the value will drop a little, but it is a value that poses no problem in practice.
【0013】[実施例3]エポキシ樹脂配合に二酸化チ
タン50phrを加えること以外実施例2と同様にプリプ
レグ(2)を作製した。4層板を同様にして作製し、回
路基板の断面銅箔回路を観察したところ、回路はプリプ
レグ(2)により完全に埋まりボイドは観察されなかっ
た。誘電特性を測定したところ誘電率9.3、誘電正接
0.013であった。銅箔引きはがし強さは1.4Kg
/cmであった。Example 3 A prepreg (2) was prepared in the same manner as in Example 2 except that 50 phr of titanium dioxide was added to the epoxy resin composition. When a four-layer board was prepared in the same manner and a copper foil circuit having a cross section of the circuit board was observed, the circuit was completely filled with the prepreg (2) and no void was observed. When the dielectric properties were measured, the dielectric constant was 9.3 and the dielectric loss tangent was 0.013. Copper foil peeling strength is 1.4Kg
Was / cm.
【0014】[比較例1]表1のエポキシ樹脂100重
量部(ワニス重量197g)に二酸化チタンCREL4
00phr(400g)、チタネート系カップリング剤K
R38S1phr(1g)を混合しエポキシ樹脂ワニスを
得た。これに実施例1と同じガラスクロス繊維を用いて
含浸乾燥させ厚み120μmのプリプレグ(1)を得
た。実施例1と同様、プリプレグ(1)を170℃、9
0分、20Kg/cm2でプレスにより圧縮成形して得
られた厚みは80μmであった。プリプレグ(1)に表
1に示したエポキシ樹脂ワニスを用いてプリプレグ
(1)の両面に厚み15μmとなるよう塗工、乾燥させ
厚み150μmのプリプレグ(2)を得た。プリプレグ
(1)は、表面がざらざらした状態であったが、エポキ
シ樹脂で被覆したプリプレグ(2)の表面は平滑であっ
た。これを実施例1と同様にして4層板を作製し、回路
基板の35μm銅箔回路を観察したところ、回路はプリ
プレグ(2)により完全に埋まりボイドは観察されなか
った。銅箔回路の先端は、ガラスクロス層まで達してい
た。実施例1、比較例1で得られた多層板を200mm
角に切断し、その内部に100mm角の正方形の頂点に
ドリルで穴をあけ各辺の長さを測定し加熱寸法測定用基
準位置とした。次にこの基板を260℃のはんだ浴に2
0秒フロートさせ冷却してから各寸法を同様にして測定
したところ、実施例1で寸法収縮率は平均して0.00
3%であったが、比較例1では0.060%収縮した。
本発明では、寸法収縮の少ない基板が得られる。 [比較例2]表1のエポキシ樹脂配合に二酸化チタン1
75phrを加えること以外実施例2と同様にしてプリプ
レグ(2)を作製した。同様にして4層板を作製し回路
基板の断面銅箔回路を観察したところ、回路の所々にプ
リプレグ(2)で充填されてないボイドが観察された。 [比較例3]ポリサルフォン樹脂ユーデルP1800N
T(アモコ社商品名)100重量部に、ガラス単繊維F
FG−010(富士ファイバーグラス(株)商品名)4
3phr、二酸化チタンCREL(石原産業(株)商品
名)400phrを混合し、ラボプラストミル押出し機
(L/D=20,(株)東洋精機製作所商品名)を用い
てバレル温度300℃で押しだそうとしたところ、混練
トルクが高くシートに押し出すことができなかった。添
加する二酸化チタンの量を減らし安定してシートを押し
出すには、200phr付近が良かった。押し出し成形で
は、二酸化チタン200phrまでしか添加できないが実
施例1では400phr添加することができる。同様にし
て実験したところ600phrまで添加することができ
た。[Comparative Example 1] 100 parts by weight of the epoxy resin shown in Table 1 (weight of varnish: 197 g) and titanium dioxide CREL4.
00 phr (400 g), titanate coupling agent K
R38S1 phr (1 g) was mixed to obtain an epoxy resin varnish. This was impregnated with the same glass cloth fiber as in Example 1 and dried to obtain a prepreg (1) having a thickness of 120 μm. As in Example 1, the prepreg (1) was heated at 170 ° C. for 9
The thickness obtained by compression molding with a press at 20 Kg / cm 2 for 0 minutes was 80 μm. The epoxy resin varnishes shown in Table 1 were applied to the prepreg (1) so that both surfaces of the prepreg (1) were coated to a thickness of 15 μm and dried to obtain a prepreg (2) having a thickness of 150 μm. The surface of the prepreg (1) was rough, but the surface of the prepreg (2) coated with the epoxy resin was smooth. A four-layer board was prepared in the same manner as in Example 1 and a 35 μm copper foil circuit of the circuit board was observed. The circuit was completely filled with the prepreg (2) and no void was observed. The tip of the copper foil circuit reached the glass cloth layer. The multilayer board obtained in Example 1 and Comparative Example 1 is 200 mm
It was cut into a square, and a hole was opened in the inside of a square of 100 mm square by a drill to measure the length of each side, which was used as a reference position for heating dimension measurement. Next, this board is placed in a solder bath at 260 ° C.
When each dimension was measured in the same manner after being floated for 0 second and cooled, the dimension shrinkage in Example 1 was 0.00 on average.
Although it was 3%, Comparative Example 1 shrank by 0.060%.
According to the present invention, a substrate with less dimensional shrinkage can be obtained. [Comparative Example 2] Titanium dioxide 1 was added to the epoxy resin formulation of Table 1.
A prepreg (2) was prepared in the same manner as in Example 2 except that 75 phr was added. When a four-layer board was prepared in the same manner and the cross-section copper foil circuit of the circuit board was observed, voids that were not filled with the prepreg (2) were observed in various places of the circuit. [Comparative Example 3] Polysulfone resin Udel P1800N
100 parts by weight of T (Amoco's trade name), glass monofilament F
FG-010 (trade name of Fuji Fiber Glass Co., Ltd.) 4
3 phr and 400 phr of titanium dioxide CREL (trade name of Ishihara Sangyo Co., Ltd.) were mixed and extruded at a barrel temperature of 300 ° C. using a Labo Plastomill extruder (L / D = 20, trade name of Toyo Seiki Seisakusho Co., Ltd.). When I tried to do so, the kneading torque was so high that it could not be extruded into the sheet. Around 200 phr was good for reducing the amount of titanium dioxide to be added and stably extruding the sheet. In extrusion molding, up to 200 phr of titanium dioxide can be added, but in Example 1, 400 phr can be added. When the same experiment was conducted, it was possible to add up to 600 phr.
【0015】比較例3に示したように、熱可塑性樹脂、
ポリサルフォン樹脂にガラス単繊維、二酸化チタンを混
合しシートに押し出し成形できるのはガラス単繊維を含
め243phr付近までであった。ところが実施例1に示
したようにポリサルフォン樹脂を溶剤に溶かしワニスに
してセラミックスを添加すると400phrでも混合する
ことができ、誘電率が高く誘電正接の低い誘電体を得る
ことができる。As shown in Comparative Example 3, a thermoplastic resin,
It was up to about 243 phr including the glass single fiber that the sheet could be extruded by mixing the glass single fiber and titanium dioxide with the polysulfone resin. However, as shown in Example 1, by dissolving the polysulfone resin in a solvent, forming a varnish and adding the ceramics, the ceramics can be mixed even at 400 phr, and a dielectric having a high dielectric constant and a low dielectric loss tangent can be obtained.
【0016】[0016]
【発明の効果】本発明によれば、ガラスクロス繊維基材
が変形することがないので寸法変化が小さく、またエポ
キシ樹脂で被覆してあるので接着強さの良好で誘電率の
低下が少ない多層板の層間接着用高誘電率プリプレグの
提供が可能になった。According to the present invention, since the glass cloth fiber base material is not deformed, the dimensional change is small, and since the glass cloth fiber base material is covered with the epoxy resin, the adhesive strength is good and the decrease in the dielectric constant is small. It has become possible to provide a high-permittivity prepreg for adhesion between boards.
【図1】本発明の高誘電率プリプレグの断面図である。FIG. 1 is a cross-sectional view of a high dielectric constant prepreg of the present invention.
【図2】本発明の高誘電率プリプレグを使用した4層板
の部分断面図である。FIG. 2 is a partial cross-sectional view of a four-layer board using the high dielectric constant prepreg of the present invention.
【図3】比較例のプリプレグを使用した4層板の部分断
面図である。FIG. 3 is a partial cross-sectional view of a four-layer board using a prepreg of a comparative example.
1 ガラスクロス繊維基材 2 熱可塑性樹脂 3 セラミックス粒子 4 エポキシ樹脂 5 回路基板の誘電体 6 回路基板の回路 1 glass cloth fiber base material 2 thermoplastic resin 3 ceramic particles 4 epoxy resin 5 circuit board dielectric 6 circuit board circuit
Claims (2)
移温度を有する熱可塑性樹脂100重量部に、高誘電率
のセラミックス粉末100〜600phrを混合したワニ
スをガラスクロス繊維基材に含浸乾燥して得たプリプレ
グを、さらにエポキシ樹脂で被覆してなることを特徴と
する層間接着用高誘電率プリプレグ。1. A glass cloth fiber substrate is impregnated with a varnish prepared by mixing 100 parts by weight of a thermoplastic resin having a melting point or a glass transition temperature higher than 170.degree. A high-dielectric-constant prepreg for interlayer adhesion, characterized by further coating the prepreg with an epoxy resin.
率セラミックス粉末を混合したものである請求項1記載
の層間接着用高誘電率プリプレグ。2. The high dielectric constant prepreg for interlayer adhesion according to claim 1, wherein the epoxy resin is a mixture of high dielectric constant ceramic powder of 150 phr or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10713593A JPH06322157A (en) | 1993-05-10 | 1993-05-10 | High-dielectric constant prepreg for interlaminar bonding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10713593A JPH06322157A (en) | 1993-05-10 | 1993-05-10 | High-dielectric constant prepreg for interlaminar bonding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06322157A true JPH06322157A (en) | 1994-11-22 |
Family
ID=14451399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10713593A Pending JPH06322157A (en) | 1993-05-10 | 1993-05-10 | High-dielectric constant prepreg for interlaminar bonding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06322157A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002232152A (en) * | 2001-01-30 | 2002-08-16 | Kyocera Corp | Multilayer wiring board |
WO2003026371A1 (en) * | 2001-09-14 | 2003-03-27 | Tonoga Inc. | Low signal loss bonding ply for multilayer circuit boards |
US6783841B2 (en) | 2001-09-14 | 2004-08-31 | Tonoga, Inc. | Low signal loss bonding ply for multilayer circuit boards |
WO2006054601A1 (en) * | 2004-11-19 | 2006-05-26 | Matsushita Electric Industrial Co., Ltd. | Multilayer substrate with built-in capacitor, method for manufacturing same, and cold cathode tube lighting device |
CN102480842A (en) * | 2011-09-05 | 2012-05-30 | 深圳光启高等理工研究院 | Preparation method of dielectric substrate |
-
1993
- 1993-05-10 JP JP10713593A patent/JPH06322157A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002232152A (en) * | 2001-01-30 | 2002-08-16 | Kyocera Corp | Multilayer wiring board |
JP4587576B2 (en) * | 2001-01-30 | 2010-11-24 | 京セラ株式会社 | Multilayer wiring board |
WO2003026371A1 (en) * | 2001-09-14 | 2003-03-27 | Tonoga Inc. | Low signal loss bonding ply for multilayer circuit boards |
US6783841B2 (en) | 2001-09-14 | 2004-08-31 | Tonoga, Inc. | Low signal loss bonding ply for multilayer circuit boards |
US6861092B2 (en) | 2001-09-14 | 2005-03-01 | Tonoga, Inc. | Low signal loss bonding ply for multilayer circuit boards |
WO2006054601A1 (en) * | 2004-11-19 | 2006-05-26 | Matsushita Electric Industrial Co., Ltd. | Multilayer substrate with built-in capacitor, method for manufacturing same, and cold cathode tube lighting device |
CN102480842A (en) * | 2011-09-05 | 2012-05-30 | 深圳光启高等理工研究院 | Preparation method of dielectric substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7155820B2 (en) | Method for manufacturing printed circuit board | |
CA1276758C (en) | Process for making substrates for printed circuit boards | |
JP3676379B2 (en) | Metal foil with resin for multilayer wiring board, manufacturing method thereof, multilayer wiring board, and electronic device | |
US5652055A (en) | Matched low dielectric constant, dimensionally stable adhesive sheet | |
JP4520416B2 (en) | High capacitance sheet adhesive and its production method | |
KR100716824B1 (en) | Printed circuit board with embedded capacitors using hybrid materials, and manufacturing process thereof | |
US7658988B2 (en) | Printed circuits prepared from filled epoxy compositions | |
KR20190090031A (en) | Dielectric layer with improved thermal conductivity | |
CN112109391B (en) | Metal foil laminate and method for producing the same | |
JP7053976B1 (en) | Double-sided copper-clad laminate | |
CN114479322A (en) | Fluorine resin prepreg and circuit substrate using same | |
KR101939449B1 (en) | Metal laminate and method for preparing the same | |
WO2003096775A2 (en) | Thermal dissipating printed circuit board and methods | |
JPH06322157A (en) | High-dielectric constant prepreg for interlaminar bonding | |
EP0397177A2 (en) | Asymmetric adhesive sheet | |
EP1408726B1 (en) | Method of manufacturing a printed wiring board | |
EP1353541B1 (en) | Circuit board and production method therefor | |
JP2001185853A (en) | Base board for circuit board and printed circuit board using the same | |
JPH06322158A (en) | High-dielectric constant prepreg for interlaminar bonding | |
JP3728059B2 (en) | Multilayer wiring board | |
JPH11207870A (en) | Board for metal foil-clad circuit, circuit board using it, and metal foil-clad circuit board | |
JPH07133359A (en) | High-permittivity prepreg | |
JP3342565B2 (en) | Method for producing sintered sheet and laminate for high-frequency circuit | |
JP3400416B2 (en) | Composite dielectric substrate | |
JPH10208548A (en) | Composite dielectric material composition |