[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06310173A - Electrochemical device and secondary battery - Google Patents

Electrochemical device and secondary battery

Info

Publication number
JPH06310173A
JPH06310173A JP5117792A JP11779293A JPH06310173A JP H06310173 A JPH06310173 A JP H06310173A JP 5117792 A JP5117792 A JP 5117792A JP 11779293 A JP11779293 A JP 11779293A JP H06310173 A JPH06310173 A JP H06310173A
Authority
JP
Japan
Prior art keywords
polyaniline
electrolyte
solution
electrode
dimercapto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5117792A
Other languages
Japanese (ja)
Other versions
JP3115153B2 (en
Inventor
Yoshiko Miyamoto
佳子 宮本
Yasushi Uemachi
裕史 上町
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP05117792A priority Critical patent/JP3115153B2/en
Publication of JPH06310173A publication Critical patent/JPH06310173A/en
Application granted granted Critical
Publication of JP3115153B2 publication Critical patent/JP3115153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To charge and discharge reversible electrodes containing polyaniline at heavy-current by employing specified organic solvent as electrolyte. CONSTITUTION:In the electrochemical device equipped with reversible electrodes containing polyaniline, and a secondary battery employing a positive electrode containing polyaniline, electrolyte is equipped therewith, which is in contact with the reversible electrodes containing polyaniline, or in contact with a positive and a negative electrode containing polyaniline. When peroxide lithium and organic solvent containing 25-dimercapto-1,3,4-thiadiazole, is used as electrolyte, the charge/discharge of the reversible electrodes containing polyaniline can thereby be carried out at heavy-current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリアニリンを含む可
逆性電極を備えた電気化学装置、および、ポリアニリン
を含む正極を用いた二次電池に関する。
TECHNICAL FIELD The present invention relates to an electrochemical device provided with a reversible electrode containing polyaniline, and a secondary battery using a positive electrode containing polyaniline.

【0002】[0002]

【従来の技術】導電性高分子を電極材料に用いると、軽
量で高エネルギー密度の電池や、大面積のエレクトロク
ロミック素子、微小電極を用いた生物化学センサーなど
の電気化学装置の実現が期待できることから、導電性高
分子電極の実用が盛んに検討されている。1971年に
白川らが発見したポリアセチレンに始まり、ポリアニリ
ン、ポリピロール、ポリアセン、ポリチオフェンなどの
π電子共役系導電性高分子が見いだされ、これらを電極
として用いた二次電池が開発されるに及んでいる。これ
らの導電性高分子を用いた電極のエネルギー密度として
は、導電性高分子あたりで250〜400Wh/kg
で、実際の電池を構成する段階での実効的なエネルギー
密度は、この10〜30%程度すなわち20〜120W
h/kgとなる。これらの導電性高分子の中でも、ポリ
アニリンを正極とし、負極に金属リチウム、リチウムア
ルミニウム合金、あるいは、リチウムイオンを可逆的に
出し入れできる炭素材料などを用いた場合、理論的なエ
ネルギー密度が、ポリアニリンあたり約400Wh/k
gであることから、高容量の二次電池として期待でき
る。
2. Description of the Related Art When conductive polymers are used as electrode materials, it can be expected to realize lightweight and high energy density batteries, large-area electrochromic devices, and electrochemical devices such as biochemical sensors using microelectrodes. Therefore, the practical use of the conductive polymer electrode has been actively studied. Beginning with polyacetylene discovered by Shirakawa et al. In 1971, π-electron conjugated conductive polymers such as polyaniline, polypyrrole, polyacene and polythiophene were found, and secondary batteries using these as electrodes were developed. . The energy density of the electrode using these conductive polymers is 250 to 400 Wh / kg per conductive polymer.
Then, the effective energy density at the stage of forming an actual battery is about 10 to 30%, that is, 20 to 120 W.
It becomes h / kg. Among these conductive polymers, when polyaniline is used as the positive electrode and metallic lithium, a lithium aluminum alloy, or a carbon material capable of reversibly taking lithium ions in and out is used for the negative electrode, the theoretical energy density is about polyaniline. About 400 Wh / k
Since it is g, it can be expected as a high capacity secondary battery.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、導電性
高分子を電極にした二次電池においては、面積あたりの
酸化還元電流が小さく、大電流の充放電が困難であると
いう欠点を有していた。本発明は、ポリアニリンを含む
可逆性電極の大電流での充放電を可能にすることを目的
とする。
However, the secondary battery using a conductive polymer as an electrode has a drawback that the redox current per area is small and it is difficult to charge and discharge a large current. . An object of the present invention is to enable charging / discharging of a reversible electrode containing polyaniline with a large current.

【0004】[0004]

【課題を解決するための手段】本発明は、ポリアニリン
を含む電極を電解酸化還元する際の電解質として、少な
くとも過塩素酸リチウムと化1で表される2,5−ジメ
ルカプト−1,3,4−チアジアゾールを含む有機溶媒
を用いることを特徴とする。
According to the present invention, at least lithium perchlorate and 2,5-dimercapto-1,3,4 represented by Chemical Formula 1 are used as electrolytes for electrolytic redox of electrodes containing polyaniline. -Characterized by using an organic solvent containing thiadiazole.

【0005】[0005]

【化1】 [Chemical 1]

【0006】ここで、2,5−ジメルカプト−1,3,
4−チアジアゾールの添加量は、1ミリモル/lから1
00ミリモル/lの間であることが好ましい。
Here, 2,5-dimercapto-1,3
The amount of 4-thiadiazole added is from 1 mmol / l to 1
It is preferably between 00 mmol / l.

【0007】[0007]

【作用】2,5−ジメルカプト−1,3,4−チアジア
ゾールを電解質中に存在させることで、ポリアニリンへ
の電解質アニオンのドープ脱ドープ反応(酸化還元反
応)が活性化され、大電流での充放電が可能となる。特
に、有機電解質に含まれるリチウム金属塩が過塩素酸リ
チウムであり、ドープ脱ドープする電解質アニオンが過
塩素酸アニオンであるときに有効である。本発明におい
て、少なくとも過塩素酸リチウム、および、2,5−ジ
メルカプト−1,3,4−チアジアゾールを含む有機溶
媒としては、プロピレンカーボネート、エチレンカーボ
ネート、ジメトキシエタン、テトラヒドロフラン、スル
ホラン、ジメチルスルホキシドの単独溶媒、または、こ
れらの中から選んだ2種類以上の混合溶媒が用いられる
が、これらに限定されるものではない。
By allowing 2,5-dimercapto-1,3,4-thiadiazole to exist in the electrolyte, the dope dedoping reaction (oxidation-reduction reaction) of the electrolyte anion to polyaniline is activated, and charging with a large current is performed. Discharge becomes possible. In particular, it is effective when the lithium metal salt contained in the organic electrolyte is lithium perchlorate and the electrolyte anion to be doped and dedoped is the perchlorate anion. In the present invention, as the organic solvent containing at least lithium perchlorate and 2,5-dimercapto-1,3,4-thiadiazole, propylene carbonate, ethylene carbonate, dimethoxyethane, tetrahydrofuran, sulfolane, and a single solvent of dimethyl sulfoxide. Alternatively, two or more kinds of mixed solvents selected from these may be used, but are not limited thereto.

【0008】さらに、ポリエチレンオキシドやポリプロ
ピレンオキシドの末端架橋ポリマーやエチレンオキシド
とプロピレンオキシドの共重合体等の末端架橋ポリマ
ー、ポリアクリロニトリルやアクリロニトリルとメタク
リル酸の共重合体を、少なくとも過塩素酸リチウムと
2,5−ジメルカプト−1,3,4−チアジアゾールと
を含む有機溶媒に加えて、ゲル化したものも本発明の電
解質として用いることもできる。また、過塩素酸リチウ
ムと2,5−ジメルカプト−1,3,4−チアジアゾー
ルを溶解する媒質としては、高分子固体電解質も用いる
ことができる。このようなポリマーとしては、ポリエチ
レンオキシドやポリプロピレンオキシドの末端架橋ポリ
マーやエチレンオキシドとプロピレンオキシドの共重合
体の末端架橋ポリマーがあるが、これらに限定されるも
のではない。
Further, a terminal cross-linked polymer of polyethylene oxide or polypropylene oxide, a terminal cross-linked polymer such as a copolymer of ethylene oxide and propylene oxide, a polyacrylonitrile or a copolymer of acrylonitrile and methacrylic acid, and at least lithium perchlorate, 2, In addition to an organic solvent containing 5-dimercapto-1,3,4-thiadiazole, a gelled product can also be used as the electrolyte of the present invention. A solid polymer electrolyte can also be used as a medium for dissolving lithium perchlorate and 2,5-dimercapto-1,3,4-thiadiazole. Such polymers include, but are not limited to, end-crosslinked polymers of polyethylene oxide and polypropylene oxide and end-linked polymers of copolymers of ethylene oxide and propylene oxide.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。 [実施例1]還元脱ドープ型ポリアニリン粉末(日東電
工製)25mgをN−メチル−2−ピロリジノン10g
に溶解し、キャスティング溶液を作成した。この溶液5
mgを0.28cm2のグラッシーカーボン電極面上に
キャスティングし、60℃で2時間真空乾燥してポリア
ニリン修飾電極を作成した。一方、1モル/lの濃度で
作成した過塩素酸リチウムのプロピレンカーボネート溶
液に2,5−ジメルカプト−1,3,4−チアジアゾー
ルを1ミリモル/lの濃度で添加し、電解液を作成し
た。
EXAMPLES Examples of the present invention will be described below. [Example 1] 25 mg of reductive dedoped polyaniline powder (manufactured by Nitto Denko) and 10 g of N-methyl-2-pyrrolidinone
To prepare a casting solution. This solution 5
mg was cast on a glassy carbon electrode surface of 0.28 cm 2 and vacuum dried at 60 ° C. for 2 hours to prepare a polyaniline-modified electrode. On the other hand, 2,5-dimercapto-1,3,4-thiadiazole was added at a concentration of 1 mmol / l to a propylene carbonate solution of lithium perchlorate prepared at a concentration of 1 mol / l to prepare an electrolytic solution.

【0010】ポリアニリン修飾電極をこの溶液中でAg
/Ag+参照電極に対し、−0.75〜+0.5Vの間
で電位を100mV/秒の速度で直線的に増減させて電
解したところ、図1の曲線Aで示される電流電位特性を
得た。さらに、上記ポリアニリンのN−メチル−2−ピ
ロリジノン溶液を集電体の上に塗布し、60℃で2時間
真空乾燥させて得られた正極と、リチウム金属箔とセパ
レータを用いて構成したモデル電池で、電解液に1モル
/lの濃度で作成した過塩素酸リチウムのプロピレンカ
ーボネート溶液に2,5−ジメルカプト−1,3,4−
チアジアゾールを1ミリモル/l添加したものを用いて
充放電試験をしたところ、作動電圧3.5V以上で、電
流密度2mA/cm2で安定な充放電が可能であった。
A polyaniline-modified electrode was added to the Ag solution in this solution.
/ Ag + reference electrode, the potential was linearly increased and decreased at a rate of 100 mV / sec between −0.75 and +0.5 V, and electrolysis was performed. As a result, the current-potential characteristics shown by the curve A in FIG. 1 were obtained. It was Further, a model battery constituted by using a positive electrode obtained by applying the N-methyl-2-pyrrolidinone solution of polyaniline on a current collector and vacuum drying at 60 ° C. for 2 hours, a lithium metal foil and a separator. Then, in a propylene carbonate solution of lithium perchlorate prepared at a concentration of 1 mol / l in the electrolytic solution, 2,5-dimercapto-1,3,4-
A charge / discharge test was carried out using a thiadiazole-containing 1 mmol / l addition, and it was possible to perform stable charge / discharge at an operating voltage of 3.5 V or more and a current density of 2 mA / cm 2 .

【0011】[比較例1]還元脱ドープ型ポリアニリン
粉末(日東電工製)25mgをN−メチル−2−ピロリ
ジノン10gに溶解し、キャスティング溶液を作成し
た。この溶液5mgを0.28cm2のグラッシーカー
ボン電極面上にキャスティングし、60℃で2時間真空
乾燥してポリアニリン修飾電極を作成した。一方、1モ
ル/lの濃度で作成した過塩素酸リチウムのプロピレン
カーボネート溶液を電解液とした。ポリアニリン修飾電
極をこの溶液中でAg/Ag+参照電極に対し、−0.
75〜+0.5Vの間で電位を100mV/秒の速度で
直線的に増減させて電解したところ、図1の曲線Bで示
される電流電位特性を得た。
Comparative Example 1 25 mg of reductive dedoped polyaniline powder (manufactured by Nitto Denko) was dissolved in 10 g of N-methyl-2-pyrrolidinone to prepare a casting solution. 5 mg of this solution was cast on a 0.28 cm 2 glassy carbon electrode surface and vacuum dried at 60 ° C. for 2 hours to prepare a polyaniline-modified electrode. On the other hand, a propylene carbonate solution of lithium perchlorate prepared at a concentration of 1 mol / l was used as an electrolytic solution. A polyaniline-modified electrode was added in this solution to an Ag / Ag + reference electrode at −0.
When electrolysis was performed by linearly increasing and decreasing the potential between 75 and +0.5 V at a rate of 100 mV / sec, the current-potential characteristics shown by the curve B in FIG. 1 were obtained.

【0012】実施例1と同様に、上記ポリアニリンのN
−メチル−2−ピロリジノン溶液を集電体の上に塗布
し、60℃で2時間真空乾燥させて得られた正極と、リ
チウム金属箔とセパレータを用いて構成したモデル電池
で、電解液に1モル/lの濃度で作成した過塩素酸リチ
ウムのプロピレンカーボネート溶液を用いて充放電試験
をしたところ、作動電圧3.5V以上で、電流密度0.
05mA/cm2で充放電が可能であった。
As in Example 1, the N of the polyaniline was
-Methyl-2-pyrrolidinone solution was applied onto a current collector, and a model battery constituted by using a positive electrode obtained by vacuum drying at 60 ° C for 2 hours, a lithium metal foil and a separator. A charge / discharge test was carried out using a propylene carbonate solution of lithium perchlorate prepared at a concentration of mol / l. At a working voltage of 3.5 V or higher, a current density of 0.
It was possible to charge and discharge at 05 mA / cm 2 .

【0013】[実施例2]還元脱ドープ型ポリアニリン
粉末(日東電工製)25mgをN−メチル−2−ピロリ
ジノン10gに溶解し、キャスティング溶液を作成し
た。この溶液5mgを0.28cm2のグラッシーカー
ボン電極面上にキャスティングし、60℃で2時間真空
乾燥してポリアニリン修飾電極を作成した。一方、1モ
ル/lの濃度で作成した過塩素酸リチウムのプロピレン
カーボネートとエチレンカーボネートの体積比1:1の
混合溶液に2,5−ジメルカプト−1,3,4−チアジ
アゾールを10ミリモル/lの濃度で溶解し、電解液を
作成した。ポリアニリン修飾電極をこの溶液中でAg/
Ag+参照電極に対し、−0.75〜+0.5Vの間で
電位を100mV/秒の速度で直線的に増減させて電解
したところ、図2の曲線Cで示される電流電位特性を得
た。
Example 2 25 mg of reductive dedoped polyaniline powder (manufactured by Nitto Denko) was dissolved in 10 g of N-methyl-2-pyrrolidinone to prepare a casting solution. 5 mg of this solution was cast on a 0.28 cm 2 glassy carbon electrode surface and vacuum dried at 60 ° C. for 2 hours to prepare a polyaniline-modified electrode. On the other hand, 2,5-dimercapto-1,3,4-thiadiazole of 10 mmol / l was added to a mixed solution of lithium propylene carbonate and ethylene carbonate having a volume ratio of 1: 1 prepared at a concentration of 1 mol / l. It was dissolved at a concentration to prepare an electrolytic solution. A polyaniline-modified electrode was added in this solution to Ag /
The potential was linearly increased / decreased at a rate of 100 mV / sec between −0.75 and +0.5 V with respect to the Ag + reference electrode, and electrolysis was performed. As a result, the current-potential characteristics shown by the curve C in FIG. .

【0014】さらに、上記ポリアニリンのN−メチル−
2−ピロリジノン溶液を集電体の上に塗布し、60℃で
2時間真空乾燥させて得られた正極と、リチウム金属箔
とセパレータを用いて構成したモデル電池で、電解液に
1モル/lの濃度で作成した過塩素酸リチウムのプロピ
レンカーボネートとエチレンカーボネートの体積比1:
1の混合溶液に2,5−ジメルカプト−1,3,4−チ
アジアゾールを10ミリモル/lの濃度で添加したもの
を用いて充放電試験をしたところ、作動電圧3.5V以
上で、電流密度2mA/cm2で安定な充放電が可能で
あった。
Further, N-methyl-of the above polyaniline
A model battery composed of a positive electrode obtained by applying a 2-pyrrolidinone solution on a current collector and vacuum drying at 60 ° C. for 2 hours, a lithium metal foil and a separator, and 1 mol / l of an electrolyte solution. Volume ratio of propylene carbonate and ethylene carbonate of lithium perchlorate prepared at the concentration of 1:
A charge-discharge test was conducted using a mixed solution of 1,2,5-dimercapto-1,3,4-thiadiazole added at a concentration of 10 mmol / l, and an operating voltage of 3.5 V or more and a current density of 2 mA. Stable charge / discharge was possible at / cm 2 .

【0015】[比較例2]還元脱ドープ型ポリアニリン
粉末(日東電工製)25mgをN−メチル−2−ピロリ
ジノン10gに溶解し、キャスティング溶液を作成し
た。この溶液5mgを0.28cm2のグラッシーカー
ボン電極面上にキャスティングし、60℃で2時間真空
乾燥してポリアニリン修飾電極を作成した。一方、1モ
ル/lの濃度で作成した過塩素酸リチウムのプロピレン
カーボネートとエチレンカーボネートの体積比1:1の
混合溶液を電解液とした。ポリアニリン修飾電極をこの
溶液中でAg/Ag+参照電極に対し、−0.75〜+
0.5Vの間で電位を100mV/秒の速度で直線的に
増減させて電解したところ、図2の曲線Dで示される電
流電位特性を得た。
Comparative Example 2 25 mg of reductive dedoped polyaniline powder (manufactured by Nitto Denko) was dissolved in 10 g of N-methyl-2-pyrrolidinone to prepare a casting solution. 5 mg of this solution was cast on a 0.28 cm 2 glassy carbon electrode surface and vacuum dried at 60 ° C. for 2 hours to prepare a polyaniline-modified electrode. On the other hand, a mixed solution of lithium perchlorate prepared at a concentration of 1 mol / l and having a volume ratio of 1: 1 of propylene carbonate and ethylene carbonate was used as an electrolytic solution. In this solution, the polyaniline-modified electrode was -0.75- + with respect to the Ag / Ag + reference electrode.
When electrolysis was performed by linearly increasing / decreasing the potential at a rate of 100 mV / sec between 0.5 V, the current-potential characteristics shown by the curve D in FIG. 2 were obtained.

【0016】さらに、上記ポリアニリンのN−メチル−
2−ピロリジノン溶液を集電体の上に塗布し、60℃で
2時間真空乾燥させて得られた正極と、リチウム金属箔
とセパレータを用いて構成したモデル電池で、電解液に
1モル/lの濃度で作成した過塩素酸リチウムのプロピ
レンカーボネートとエチレンカーボネートの体積比1:
1の混合溶液を用いて充放電試験をしたところ、作動電
圧3.5V以上で、電流密度0.05mA/cm2で充
放電が可能であった。
Further, N-methyl-of the above polyaniline
A model battery composed of a positive electrode obtained by applying a 2-pyrrolidinone solution on a current collector and vacuum drying at 60 ° C. for 2 hours, a lithium metal foil and a separator, and 1 mol / l of an electrolyte solution. Volume ratio of propylene carbonate and ethylene carbonate of lithium perchlorate prepared at the concentration of 1:
When a charge / discharge test was performed using the mixed solution of No. 1, it was possible to perform charge / discharge at an operating voltage of 3.5 V or more and a current density of 0.05 mA / cm 2 .

【0017】以上の実施例では、電解液に含まれる2,
5−ジメルカプト−1,3,4−チアジアゾールのチオ
ール基は、−SH形のままで用いているが、2,5−ジ
メルカプト−1,3,4−チアジアゾールのリチウム金
属塩(−S・Li)、ナトリウム金属塩(−S・N
a)、カリウム金属塩(−S・K)を用いることもでき
る。また、モデル電池を構成する際の負極として金属リ
チウムを用いているが、リチウムアルミニウム合金や、
リチウムイオンを可逆的に出し入れができる炭素材料な
どリチウムを活物質とする電極を用いることができる。
In the above embodiment, the amount of the electrolyte contained in the electrolyte solution is 2,
The thiol group of 5-dimercapto-1,3,4-thiadiazole is used in the -SH form as it is, but the lithium metal salt of 2,5-dimercapto-1,3,4-thiadiazole (-S.Li) is used. , Sodium metal salt (-S ・ N
It is also possible to use a) and a potassium metal salt (-S.K). In addition, although lithium metal is used as the negative electrode when constructing the model battery, a lithium aluminum alloy or
An electrode using lithium as an active material such as a carbon material capable of reversibly taking in and out lithium ions can be used.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
ポリアニリンを含む電極の室温での大電流充放電が可能
となる。
As described above, according to the present invention,
It becomes possible to charge and discharge a large current at room temperature of an electrode containing polyaniline.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1および比較例の電極の電流−
電位特性図である。
FIG. 1 is a graph showing the current of the electrodes of Example 1 and Comparative Example of the present invention.
It is a potential characteristic diagram.

【図2】本発明の実施例2および比較例の電極の電流−
電位特性図である。
FIG. 2 shows the currents of the electrodes of Example 2 and Comparative Example of the present invention.
It is a potential characteristic diagram.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリアニリンを含む可逆性電極および前
記電極に接触する電解質を備え、前記電解質が、少なく
とも過塩素酸リチウムと2,5−ジメルカプト−1,
3,4−チアジアゾールを含む有機溶媒であることを特
徴とする電気化学装置。
1. A reversible electrode containing polyaniline and an electrolyte in contact with the electrode, wherein the electrolyte is at least lithium perchlorate and 2,5-dimercapto-1,
An electrochemical device comprising an organic solvent containing 3,4-thiadiazole.
【請求項2】 ポリアニリンを含む正極、負極および前
記両電極に接触する電解質を備え、前記電解質が、少な
くとも過塩素酸リチウムと2,5−ジメルカプト−1,
3,4−チアジアゾールを含む有機溶媒であることを特
徴とする二次電池。
2. A positive electrode containing polyaniline, a negative electrode, and an electrolyte in contact with both electrodes, wherein the electrolyte is at least lithium perchlorate and 2,5-dimercapto-1,
A secondary battery, which is an organic solvent containing 3,4-thiadiazole.
JP05117792A 1993-04-20 1993-04-20 Electrochemical devices and secondary batteries Expired - Fee Related JP3115153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05117792A JP3115153B2 (en) 1993-04-20 1993-04-20 Electrochemical devices and secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05117792A JP3115153B2 (en) 1993-04-20 1993-04-20 Electrochemical devices and secondary batteries

Publications (2)

Publication Number Publication Date
JPH06310173A true JPH06310173A (en) 1994-11-04
JP3115153B2 JP3115153B2 (en) 2000-12-04

Family

ID=14720414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05117792A Expired - Fee Related JP3115153B2 (en) 1993-04-20 1993-04-20 Electrochemical devices and secondary batteries

Country Status (1)

Country Link
JP (1) JP3115153B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399053B1 (en) * 2000-12-14 2003-09-26 한국전자통신연구원 Organic-inorganic composite as positive electrode for rechargeable lithium battery and the preparation thereof
JP2006302756A (en) * 2005-04-22 2006-11-02 Sony Corp Battery
CN112701351A (en) * 2020-12-29 2021-04-23 中国科学院宁波材料技术与工程研究所 Non-aqueous electrolyte, preparation method thereof and lithium ion battery
CN112864459A (en) * 2019-11-28 2021-05-28 广东工业大学 Electrolyte, preparation method thereof and secondary lithium metal battery
CN114600281A (en) * 2020-03-26 2022-06-07 株式会社Lg新能源 Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
CN114730902A (en) * 2019-09-17 2022-07-08 路博润公司 Redox flow battery electrolytes with 2, 5-dimercapto-1, 3, 4-thiadiazole ("DMTD") and derivatives thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399053B1 (en) * 2000-12-14 2003-09-26 한국전자통신연구원 Organic-inorganic composite as positive electrode for rechargeable lithium battery and the preparation thereof
JP2006302756A (en) * 2005-04-22 2006-11-02 Sony Corp Battery
CN114730902A (en) * 2019-09-17 2022-07-08 路博润公司 Redox flow battery electrolytes with 2, 5-dimercapto-1, 3, 4-thiadiazole ("DMTD") and derivatives thereof
CN112864459A (en) * 2019-11-28 2021-05-28 广东工业大学 Electrolyte, preparation method thereof and secondary lithium metal battery
CN114600281A (en) * 2020-03-26 2022-06-07 株式会社Lg新能源 Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
CN112701351A (en) * 2020-12-29 2021-04-23 中国科学院宁波材料技术与工程研究所 Non-aqueous electrolyte, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP3115153B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
EP1381100B1 (en) Electricity storage device
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP2715778B2 (en) Reversible electrode material
EP0497308A2 (en) A reversible electrode material
US6090504A (en) High capacity composite electrode and secondary cell therefrom
JPH09259864A (en) Electrode containing organic disulfide compound, and manufacture thereof
JP5036214B2 (en) Charge / discharge control method for power storage device
US6057056A (en) Composite electrode and secondary battery therefrom
JP2000021390A (en) Lithium polymer secondary battery provided with positive electrode containing metal composite positive electrode material
JP2004342605A (en) Electrochemical element and electrode active material for electrochemical element
US6403255B1 (en) Polyvinyl mercaptan redox material for cathodes in non-aqueous batteries
JP3115153B2 (en) Electrochemical devices and secondary batteries
JP2008159275A (en) Electrode active material and power storage device using the same
JP2007265712A (en) Electrode and storage element using it
JP3038945B2 (en) Lithium secondary battery
JP2008288022A (en) Electrode active material for energy storage device, and energy storage device
JP3089707B2 (en) Solid electrode composition
JP6916337B1 (en) Lithium ion secondary battery
Oyama Development of polymer‐based lithium secondary battery
JP2008078040A (en) Secondary battery
JP2877784B2 (en) Copper-organic disulfide electrode and secondary battery using the same
JPH0359963A (en) Lithium secondary battery
JP3043048B2 (en) Solid electrolyte battery
JPH05135800A (en) Lithium secondary battery
JP3047492B2 (en) Solid electrode composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees