[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0629364A - Semiconductor device and testing method therefor - Google Patents

Semiconductor device and testing method therefor

Info

Publication number
JPH0629364A
JPH0629364A JP4066436A JP6643692A JPH0629364A JP H0629364 A JPH0629364 A JP H0629364A JP 4066436 A JP4066436 A JP 4066436A JP 6643692 A JP6643692 A JP 6643692A JP H0629364 A JPH0629364 A JP H0629364A
Authority
JP
Japan
Prior art keywords
potential
wiring layer
test
semiconductor device
bit lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4066436A
Other languages
Japanese (ja)
Other versions
JP2575990B2 (en
Inventor
Seiichi Mori
誠一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4066436A priority Critical patent/JP2575990B2/en
Priority to US08/029,236 priority patent/US5400344A/en
Publication of JPH0629364A publication Critical patent/JPH0629364A/en
Application granted granted Critical
Publication of JP2575990B2 publication Critical patent/JP2575990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/025Detection or location of defective auxiliary circuits, e.g. defective refresh counters in signal lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2853Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/30Accessing single arrays
    • G11C29/34Accessing multiple bits simultaneously
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5006Current

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a semiconductor device wherein defective insulation between wiring layers is detectable by a simple test and also provide a method for such a test. CONSTITUTION:This semiconductor device is provided with a group of at least n (n is multiple of 2, including 0) bit lines BL0-BL7) and a test circuit 32 for judging whether the group of the bit lines is normal or not. The test circuit 32 is provided with an impression circuit 34 for impressing 9V voltage to the nth bit lines (BL0, BL2, BL4, BL6) and an impression circuit 36 for impressing 0V to the (n+1)th bit lines. 9V and 0V are simultaneously impressed to the nth bit lines and the (n+1)th bit lines, respectively, and maintained for a specified time. In the device and test method above, potential difference is provided between the bit lines each, and further maintained for a specified time. This accelerated electrical stress, and makes it possible to detect dust stuck between the bit lines.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置とそのテ
スト方法に係わり、特にカラム不良等を簡単なテストに
て検出できる半導体装置と、その簡単なテスト方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a test method thereof, and more particularly to a semiconductor device capable of detecting a column defect and the like by a simple test and a simple test method thereof.

【0002】[0002]

【従来の技術】デバイスの微細化に伴って金属配線層間
のスペ−スがますます狭くなってきている。すると、従
来はあまり問題とならなかったような金属配線層間の絶
縁性が問題となってくる。例えば金属配線層間にシリコ
ンクズ等のゴミが製造工程中、あるいは製造後に付着し
た場合に上記の絶縁性が低下する恐れがある。特に問題
となるのは、この絶縁性の低下が経時的に、つまり実使
用中に起こってくる場合である。特にEPROM、EE
PROM、一括消去型EEPROM等の不揮発性メモリ
では、金属配線層間にセルのプログラム時、6〜10V
といった比較的高い電圧が印加される。通常のテストで
は、出荷前にセルのプログラムテストを行うが、高々数
回の場合が多い。従って、その範囲ではテストをパスす
るが、100回を越える書き込みを繰り返すことのある
実使用中に、例えばTDDB(経時破壊:Time Depende
nt Dielectric Breakdown )等のメカニズムで絶縁性が
低下してしまう危険がある。
2. Description of the Related Art With the miniaturization of devices, the space between metal wiring layers is becoming narrower. Then, the insulating property between the metal wiring layers, which has not been a problem in the past, becomes a problem. For example, if dust such as silicon debris adheres between the metal wiring layers during or after the manufacturing process, there is a possibility that the above-mentioned insulating property may be deteriorated. A particular problem is that this deterioration in insulation occurs over time, that is, during actual use. Especially EPROM, EE
In non-volatile memories such as PROMs and batch erasable EEPROMs, when programming cells between metal wiring layers, 6-10V
A relatively high voltage is applied. In a normal test, a cell program test is performed before shipment, but it is often performed at most several times. Therefore, during the actual use in which the test passes in that range but the writing may be repeated more than 100 times, for example, TDDB (Time Dependent: Time Depende
There is a risk that the insulation will deteriorate due to the mechanism such as nt Dielectric Breakdown).

【0003】また、EEPROMでは、かなり多数回の
プログラムテストを行う場合もあるが、プログラムする
パタ−ンの種類によって、全ての配線層間に有効にスト
レスが印加されるとは限らない。さらにEEPROMで
多数回行うといっても全チップにわたり保証回数のプロ
グラムテストを行う方法は時間がかかって通常行われな
い。
In the case of the EEPROM, the program test may be performed a large number of times, but the stress may not be effectively applied between all the wiring layers depending on the type of the pattern to be programmed. Further, even if the EEPROM is performed many times, the method of performing the program test of the guaranteed number of times over all the chips is time-consuming and is not normally performed.

【0004】尚、ビット線等の金属配線層より下層の配
線層、例えばワ−ド線等にゴミ等が付着している場合
は、セルが機能しなくなったりすることにより、容易に
不良箇所を特定でき、不良チップをスクリ−ニングする
ことができる。しかし、特にチップの最上層にある配線
層にゴミ等が付着しても、通常のテストではパスする場
合があるのである。
If dust or the like adheres to a wiring layer lower than a metal wiring layer such as a bit line, for example, a word line or the like, the cell may not function and a defective portion may be easily detected. It is possible to identify and screen defective chips. However, even if dust or the like adheres to the wiring layer that is the uppermost layer of the chip, it may pass in a normal test.

【0005】[0005]

【発明が解決しようとする課題】上記のような、金属配
線層間へのゴミ等付着に起因した経時的な絶縁性低下
は、例えば出荷前にセルのプログラムテストを繰り返せ
ば、ある程度まで改善することが可能である。しかし、
書き込みテストを繰り返すことは、テスト時間が膨大と
なり非現実的である上、必ずしも最悪条件とは限らな
い。
The above-described deterioration of the insulation property due to the adhesion of dust or the like between the metal wiring layers can be improved to some extent by repeating the cell program test before shipment. Is possible. But,
Repeating the write test is unrealistic because the test time becomes huge and is not always the worst condition.

【0006】この発明は、上記のような点に鑑み為され
たもので、その目的は、簡単なテストにて配線層間の絶
縁不良を検出できる半導体装置と、その簡単なテスト方
法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a semiconductor device capable of detecting insulation failure between wiring layers by a simple test, and a simple test method therefor. It is in.

【0007】[0007]

【課題を解決するための手段】この発明に係わる半導体
装置は、互いに並行する配線層群と、前記配線層群が正
常か否かをテストするテスト手段とを具備する。そし
て、前記テスト手段は、前記配線層群のうちn番目(n
は0を含む2の倍数)の配線層に第1の電位を印加する
第1の電位印加手段と、前記配線層群のうちn+1番目
の配線層に少なくとも前記第1の電位と異なる第2の電
位を印加する第2の電位印加手段とを有し、前記n番目
の配線層に前記第1の電位およびn+1番目の配線層に
前記第2の電位を同時に印加し、かつこの状態を所定時
間保持するように構成されていることを特徴としてい
る。
A semiconductor device according to the present invention comprises a wiring layer group parallel to each other and a test means for testing whether or not the wiring layer group is normal. Then, the test means is an n-th (n
Is a multiple of 2 including 0) and a first potential applying means for applying a first potential to a wiring layer, and a second potential different from at least the first potential in the (n + 1) th wiring layer of the wiring layer group. A second potential applying means for applying a potential, wherein the first potential is applied to the n-th wiring layer and the second potential is simultaneously applied to the (n + 1) -th wiring layer, and this state is kept for a predetermined time. It is characterized in that it is configured to hold.

【0008】また、そのテスト方法にあっては、前記配
線層群のうちn番目の配線層には第1の電位を、また前
記配線層群のうちn+1番目の配線層には前記第1の電
位と異なる第2の電位をそれぞれ同時に印加し、かつこ
の状態を所定時間保持することを特徴としている。
Further, in the test method, the first potential is applied to the n-th wiring layer of the wiring layer group, and the first potential is applied to the (n + 1) th wiring layer of the wiring layer group. A second electric potential different from the electric potential is applied simultaneously, and this state is maintained for a predetermined time.

【0009】[0009]

【作用】上記のような半導体装置にあっては、前記配線
層群のうちn番目の配線層に第1の電位を印加し、前記
配線層群のうちn+1番目の配線層に少なくとも前記第
1の電位と異なる第2の電位を印加する第2の電位印加
手段とを有し、そして、前記n番目の配線層に前記第1
の電位およびn+1番目の配線層に前記第2の電位を同
時に印加し、かつこの状態を所定時間保持するように構
成されたテスト回路を具備している。このため、テスト
時において、前記n本の配線層間全てに電位差、すなわ
ち、電気的なストレスを与えることができる。しかも、
この状態を所定時間保持するように構成されているた
め、電気的なストレスが加速されて配線層間に与えられ
るようになる。このようなテストによって電気的な破壊
が起こる箇所は、特にシリコンクズ等のゴミが配線層間
に跨がって付着している箇所である。従って、この発明
に係わる半導体装置は、配線層間に跨がって付着したシ
リコンクズ等のゴミに起因した不良モ−ドを検知するこ
とができる。このような不良モ−ドを検知することがで
きれば、上記ゴミ付着等の不良原因を潜在させているよ
うな半導体装置をスクリ−ニングできるようになり、高
い信頼性を有する半導体装置を提供できるようになる。
In the semiconductor device as described above, the first potential is applied to the nth wiring layer of the wiring layer group, and at least the first potential is applied to the (n + 1) th wiring layer of the wiring layer group. Second potential applying means for applying a second potential different from the first potential, and the first potential is applied to the n-th wiring layer.
The test circuit is configured to simultaneously apply the second potential to the first potential and the (n + 1) th wiring layer and maintain this state for a predetermined time. Therefore, at the time of the test, a potential difference, that is, an electrical stress can be applied to all of the n wiring layers. Moreover,
Since this state is maintained for a predetermined time, electrical stress is accelerated and applied between wiring layers. The place where electrical damage is caused by such a test is a place where dust such as silicon dust is attached across wiring layers. Therefore, the semiconductor device according to the present invention can detect a defective mode caused by dust such as silicon debris attached across wiring layers. If such a defective mode can be detected, it becomes possible to screen a semiconductor device that causes latent defects such as the above dust adhesion and the like, and a semiconductor device having high reliability can be provided. become.

【0010】また、そのテスト方法にあっては、前記配
線層群のうちn番目の配線層には第1の電位を、また前
記配線層群のうちn+1番目の配線層には前記第1の電
位と異なる第2の電位をそれぞれ同時に印加し、かつこ
の状態を所定時間保持すれば良いだけであり、簡単であ
る。
Further, in the test method, the first potential is applied to the nth wiring layer of the wiring layer group, and the first potential is applied to the (n + 1) th wiring layer of the wiring layer group. It is simple since it is sufficient to simultaneously apply the second electric potentials different from the electric potentials and hold this state for a predetermined time.

【0011】[0011]

【実施例】以下、図面を参照してこの発明を一実施例に
より説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.

【0012】この発明の一実施例に係わる大容量EPR
OMについて説明する。図1はこの発明の一実施例に係
わる半導体装置のブロック図、図2は図1中の2−2線
に沿う断面図である。
Large-capacity EPR according to one embodiment of the present invention
The OM will be described. 1 is a block diagram of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line 2-2 in FIG.

【0013】図1および図2に示すように、P型シリコ
ン基板10内にはN型ソ−ス領域121 〜122 および
N型ドレイン領域14がそれぞれ形成されている。N型
ソ−ス領域121 〜122 とN型ドレイン領域14との
間の基板10上には、シリコン酸化膜等でなるゲ−ト絶
縁膜16を介して、ポリシリコン等でなる浮遊ゲ−ト1
0 〜183 が形成されている。浮遊ゲ−ト180 〜1
3 上には、シリコン酸化膜等でなる絶縁膜20を介し
て、ポリシリコン、またはポリシリコンとシリサイドと
の積層膜層等でなる制御ゲ−ト(ワ−ド線とも呼ばれ
る)WL0 〜WL3 が形成されている。基板10上に
は、制御ゲ−トWL0 〜WL3 等を覆うように、シリコ
ン酸化膜等でなる層間絶縁膜22が形成されている。層
間絶縁膜22には、ドレイン領域14に達するコンタク
ト孔240 〜247 が形成されている。層間絶縁膜22
上には、コンタクト孔240 〜247 のいずれか一つを
介して、ドレイン領域14に電気的に接続されるビット
線BL0 〜BL7 が形成されている。ビット線BL0
BL7 は、通常アルミニウム合金でなり金属配線層とも
呼ばれる。また、ビット線BL0 〜BL7 は、ワ−ド線
WL0 〜WL3 と平面的に直交する方向に形成される。
As shown in FIGS. 1 and 2, N-type source regions 12 1 to 12 2 and N-type drain region 14 are formed in a P-type silicon substrate 10, respectively. A floating gate made of polysilicon or the like is provided on the substrate 10 between the N-type source regions 12 1 to 12 2 and the N-type drain region 14 via a gate insulating film 16 made of a silicon oxide film or the like. -To 1
8 0 to 18 3 are formed. Floating gate 18 0 ~ 1
8 on 3 via the insulating film 20 made of a silicon oxide film, polysilicon or polysilicon and silicide and the control gate made of a laminated film layer, etc., - bets (word - also called word lines) WL 0 ~ WL 3 is formed. An interlayer insulating film 22 made of a silicon oxide film or the like is formed on the substrate 10 so as to cover the control gates WL 0 to WL 3 and the like. Contact holes 24 0 to 24 7 reaching the drain region 14 are formed in the interlayer insulating film 22. Interlayer insulating film 22
The upper, through one of the contact holes 24 0 - 24 7, the bit lines BL 0 to BL 7 which is electrically connected to the drain region 14 are formed. Bit line BL 0 ~
BL 7 is usually made of an aluminum alloy and is also called a metal wiring layer. The bit lines BL 0 to BL 7 are formed in a direction orthogonal to the word lines WL 0 to WL 3 in a plane.

【0014】上記構造のEPROMにデ−タのプログラ
ムを行う場合には、例えば制御ゲ−トに12.5V、ド
レイン領域に9Vといった高い電圧を加える。これによ
り、チャネルホットエレクトロンを発生させる。このチ
ャネルホットエレクトロンが浮遊ゲ−トに注入されるこ
とにより、デ−タがプログラムされる。
When data is programmed in the EPROM having the above structure, for example, a high voltage of 12.5 V is applied to the control gate and a high voltage of 9 V is applied to the drain region. As a result, channel hot electrons are generated. The data is programmed by injecting the channel hot electrons into the floating gate.

【0015】このようなデ−タのプログラムの際、例え
ば選択されて9Vが印加されているビットと隣接するビ
ット線はともに0Vである。このため、選択されたビッ
ト線と隣接するビット線との間には9Vの電圧が生ず
る。ここで、図5に示すように、選択されて9Vが印加
されているビット線BL0 と非選択で0Vが印加されて
いるビット線BL1 との間に導電性の例えばシリコンク
ズのようなゴミ26が付着したとする。すると、電気的
なストレスにより、絶縁膜28を介してリ−ク電流30
が発生する。これは、一回のデ−タのプログラムで発生
することもあれば、TDDB等のメカニズムで経時的に
発生することもある。特に後者が大多数を占める。図4
では、ゴミ26が、単に絶縁膜28上に付着している場
合を示しているが、ゴミ26が絶縁膜28にくい込んで
いる場合や、あるいは絶縁膜28の堆積前にビット線B
0 とビット線BL1 との間にゴミ26が付着すれば、
上記リ−ク電流30の発生を容易とさせ、電気的な破壊
を一層起こりやすくする。この発明では、上記のような
不良モ−ドを起こす恐れのあるチップをスクリ−ニング
するために、図1に示すようなテスト回路32を内蔵し
ている。
In programming such data, for example, the bit line adjacent to the selected bit to which 9V is applied is 0V. Therefore, a voltage of 9V is generated between the selected bit line and the adjacent bit line. Here, as shown in FIG. 5, a conductive material such as silicon scrap is provided between the selected bit line BL 0 to which 9V is applied and the unselected bit line BL 1 to which 0V is applied. It is assumed that dust 26 is attached. Then, due to electrical stress, a leak current 30 is generated through the insulating film 28.
Occurs. This may occur in one data program, or may occur over time by a mechanism such as TDDB. In particular, the latter is the majority. Figure 4
Shows the case where the dust 26 is simply attached to the insulating film 28. However, when the dust 26 is embedded in the insulating film 28, or before the deposition of the insulating film 28, the bit line B
If dust 26 adheres between L 0 and the bit line BL 1 ,
It facilitates the generation of the leak current 30 and further facilitates electrical breakdown. In the present invention, a test circuit 32 as shown in FIG. 1 is built in in order to screen a chip which may cause the above defective mode.

【0016】テスト回路32は、n番目のビット線に対
して所定電位を供給するn番目ビット線電位印加回路3
4と、n+1番目のビット線に対して所定電位を供給す
るn;1番目ビット線電位印加回路36と、で構成され
ている。尚、上記nは、0を含む2の倍数で表される整
数を示している。また、上記nは、この発明を説明する
ために便宜的に付される添字を示しており、アドレス信
号等、メモリ回路内の信号とは特に関係はない。
The test circuit 32 includes an nth bit line potential applying circuit 3 for supplying a predetermined potential to the nth bit line.
4 and an n first bit line potential applying circuit 36 for supplying a predetermined potential to the (n + 1) th bit line. The above n represents an integer represented by a multiple of 2, including 0. Further, the above n indicates a subscript added for convenience of explanation of the present invention, and has no particular relation to a signal in the memory circuit such as an address signal.

【0017】n番目ビット線電位印加回路34はビット
線BL0 、BL2 、BL4 およびBL6 に電気的に接続
され、これらビット線BL0 、BL2 、BL4 およびB
6に所定の電位、例えば0Vから9Vに切り換えて印
加する。また、n+1番目ビット線電位印加回路36は
ビット線BL1 、BL3 、BL5 およびBL7 に電気的
に接続され、これらビット線BL1 、BL3 、BL5
よびBL7 に所定の電位、例えば0Vから9Vに切り換
えて印加する。尚、この実施例では、ビット線が8本の
ある場合を示しているが、ビット線が1本おきに別々の
電位を切り変えて印加できる回路34、36に接続され
ていれば、実際には何本あってもかまわない。次に、上
記テスト回路の動作について説明する。
The nth bit line potential application circuit 34 is electrically connected to the bit lines BL 0 , BL 2 , BL 4 and BL 6 , and these bit lines BL 0 , BL 2 , BL 4 and B are provided.
A predetermined potential, for example, 0 V to 9 V is switched to and applied to L 6 . Further, n + 1-th bit line potential applying circuit 36 is electrically connected to the bit line BL 1, BL 3, BL 5 and BL 7, the bit lines BL 1, BL 3, BL 5 and a predetermined potential to BL 7, For example, the voltage is switched from 0V to 9V and applied. In this embodiment, the case where there are eight bit lines is shown, but if the bit lines are connected to the circuits 34 and 36 which can switch and apply different potentials every other bit line, the bit lines are actually connected. It doesn't matter how many Next, the operation of the test circuit will be described.

【0018】まず、n番目ビット線電位印加回路34を
オンさせ、ビット線BL0 、BL2、BL4 およびBL
6 に9Vの電位を印加する。この時、n+1番目ビット
線電位印加回路36はオフ、もしくは0Vの電位を印加
する状態とし、ビット線相互間に各々9Vの電位差を生
じさせ、各ビット線間に9Vの電気的なストレスを与え
る。この状態を図3に示す。上述した図4は図3中に示
されるゴミ26近傍を拡大して示した断面図である。図
3に示す各ビット線に9Vの電気的なストレスが加わる
状態を所定の時間保持する。すると、今まで、電気的な
ストレスの蓄積によって破壊が起こることでしか見出だ
せなかった、ゴミ26等の付着に起因する不良モ−ドを
短時間で検知することができる。図3に示す状態を保持
する時間は、例えばデ−タのプログラム中、ビット線に
電気的なストレスがかかりゴミ26等を介して経時的な
破壊が起こるであろう時間を、例えばTDDB等のメカ
ニズムに基き計算して求め、この計算により得られた時
間、あるいはそれに近い時間に設定する。また、これら
の動作は、例えば図示せぬ制御部からの命令により実行
される。
First, the n-th bit line potential applying circuit 34 is turned on to set the bit lines BL 0 , BL 2 , BL 4 and BL.
A potential of 9V is applied to 6 . At this time, the (n + 1) th bit line potential application circuit 36 is turned off or applied with a potential of 0V to generate a potential difference of 9V between the bit lines and apply an electrical stress of 9V between the bit lines. . This state is shown in FIG. FIG. 4 described above is a sectional view showing the vicinity of the dust 26 shown in FIG. 3 in an enlarged manner. The state where an electrical stress of 9V is applied to each bit line shown in FIG. 3 is maintained for a predetermined time. Then, it is possible to detect, in a short time, a defective mode due to the adhesion of dust 26 or the like, which has been found only by destruction due to the accumulation of electrical stress. The time for holding the state shown in FIG. 3 is, for example, the time during which the bit line is electrically stressed during data programming and destruction over time via the dust 26 or the like, for example, TDDB or the like. Calculate based on the mechanism and set to the time obtained by this calculation or a time close to it. Further, these operations are executed by a command from a control unit (not shown), for example.

【0019】図3および図4に示すように、メモリセル
アレイ上に、シリコンクズのようなゴミ26が付着して
いた場合には、所定の時間経過後、電気的なストレスに
よって、例えば絶縁膜28の絶縁性が破壊され、ゴミ2
6を介してビット線BL0 とビット線BL1 が短絡し、
リ−ク電流30が流れる。このリ−ク電流30を検出す
ることにより、不良であるカラムを検知することができ
る。
As shown in FIGS. 3 and 4, when dust 26 such as silicon dust is attached on the memory cell array, an insulating film 28, for example, is formed by electrical stress after a lapse of a predetermined time. The insulation of the trash is destroyed and the garbage 2
The bit line BL 0 and the bit line BL 1 are short-circuited via 6,
A leak current 30 flows. A defective column can be detected by detecting this leak current 30.

【0020】このような方法であれば、各ビット線毎に
電位を印加する書き込みテストを何回も繰り返し、電気
的なストレスを蓄積させていく方法よりも短時間で、ゴ
ミ26等の付着に起因する不良モ−ドを見出だすことが
できる。
With such a method, the dust 26 and the like can be attached in a shorter time than the method of repeating the write test in which a potential is applied to each bit line many times to accumulate electrical stress. It is possible to find a defective mode caused by the failure.

【0021】また、EPROMをセルを代表とする不揮
発性メモリでは、浮遊ゲ−トからドレインに電子が抜け
てしまう不良モ−ドがあり、これをテストする回路、所
謂ドレインストレステスト回路が内蔵されている場合が
多い。このドレインストレステスト回路は、大半のセル
にデ−タをプログラムした後、全てのビット線に例えば
9Vの電圧を一斉に加え、この状態で、浮遊ゲ−トから
電子が抜けないかを調べるものである。そこで、このド
レインストレステスト回路にトランジスタの接続を変更
する等の修正を加え、図1に示したような、ビット線1
本おきに別々の電位を切り変えて印加できるような回路
34、36を形成する。このようにすれば、まず、例え
ばn番目ビット線回路電位印加回路34をオン、n+1
番目ビット線回路電位印加回路36オフさせ、各ビット
線に所定時間、電気的なストレスを与え、上述のような
テストを行う(以後ビット線ストレステストと称す)。
この後、n番目ビット線回路電位印加回路34、および
n+1番目ビット線回路電位印加回路36ともにオンさ
せ、全てのビット線に例えば9Vの電位を印加して、ド
レインストレステストを行う。
Further, in a non-volatile memory represented by an EPROM as a cell, there is a defective mode in which electrons escape from the floating gate to the drain, and a circuit for testing this, a so-called drain stress test circuit, is built in. There are many cases. In this drain stress test circuit, after programming the data in most of the cells, a voltage of, for example, 9 V is applied to all the bit lines all at once, and in this state it is checked whether electrons escape from the floating gate. Is. Therefore, a modification such as changing the connection of the transistor is added to the drain stress test circuit, and the bit line 1 as shown in FIG.
Circuits 34 and 36 are formed so that different potentials can be switched and applied for each book. In this way, first, for example, the nth bit line circuit potential applying circuit 34 is turned on, and n + 1
The third bit line circuit potential application circuit 36 is turned off, each bit line is electrically stressed for a predetermined time, and the above-described test is performed (hereinafter referred to as a bit line stress test).
After that, the n-th bit line circuit potential application circuit 34 and the (n + 1) th bit line circuit potential application circuit 36 are both turned on, and a potential of 9 V, for example, is applied to all the bit lines to perform a drain stress test.

【0022】このように、この発明に係わるテスト回路
32にドレインストレステスト機能を持たせれば、ビッ
ト線ストレステストのみならず、ドレインストレステス
トをも同時にテストできるという利点を得ることができ
る。
Thus, if the test circuit 32 according to the present invention is provided with the drain stress test function, it is possible to obtain the advantage that not only the bit line stress test but also the drain stress test can be tested at the same time.

【0023】さらに、大容量のメモリでは、ビット線に
不良がある場合、その列(カラム)を置き換えられる冗
長回路(カラムリダンダンシ−回路)が搭載されてい
る。従って、事前に不良部分を顕在化しておけば、この
不良部分をテスト中に救済できる可能性がある。そこ
で、通常のテスト、例えばドレインストレステストの開
始前に、一度ビット線ストレステストを行うことが望ま
しい。
Further, in a large capacity memory, if a bit line has a defect, a redundant circuit (column redundancy circuit) that can replace the column is mounted. Therefore, if the defective portion is revealed in advance, there is a possibility that the defective portion can be relieved during the test. Therefore, it is desirable to perform a bit line stress test once before starting a normal test, for example, a drain stress test.

【0024】このようにすれば、ビット線どうしの短絡
不良を起こした箇所(カラム)を、リダンンダンシ−工
程にて救済することができる。もちろんながら、ドレイ
ンストレステストで不良となった部分についても、この
リダンンダンシ−工程にて救済される。このリダンンダ
ンシ−工程の後、さらにもう一度リダンダンシ−カラム
が正常か否か調べるために、ドレインストレステストお
よびビット線ストレステストを行う。
In this way, the place (column) where the short circuit between the bit lines has occurred can be repaired in the redundancy process. As a matter of course, even a portion which has become defective in the drain stress test is relieved in this redundancy process. After the redundancy process, a drain stress test and a bit line stress test are performed again to check whether the redundancy column is normal.

【0025】さらに、この発明に係わるテスト方法によ
れば、例えば1か所不良部分がありここで電気的な破壊
が起こると、ビット線どうしが短絡し、ストレス電圧が
低下する。例えば何か所が不良部分があると仮定すれ
ば、最も弱い部分が破壊した後、その他の不良箇所は特
定できない、ということも考えられる。そこで、メモリ
セルアレイを所定のブロック毎に区切り、ブロック毎に
ビット線ストレステストを行う、というようにするよう
にしても良い。ブロックの区切り方は、所定数のカラム
毎、または1本のカラムを複数に分割する、すなわち、
所定数のワ−ド線毎、または所定数のカラム毎と所定数
のワ−ド線毎とを組み合わせる、という方法で良い。
Further, according to the test method of the present invention, if there is a defective portion at one place and electrical breakdown occurs, the bit lines are short-circuited and the stress voltage is lowered. For example, if it is assumed that there is a defective part at some place, it is possible that after the weakest part is destroyed, other defective parts cannot be identified. Therefore, the memory cell array may be divided into predetermined blocks, and the bit line stress test may be performed for each block. Blocks can be divided into a predetermined number of columns, or one column can be divided into a plurality of columns, that is,
A method of combining a predetermined number of word lines or a predetermined number of columns and a predetermined number of word lines may be used.

【0026】さらに、上記一実施例では、2種類の電位
をビット線1本おきにそれぞれ印加し、各ビット線に電
気的なストレスが与えられる状態を得たが、この状態が
維持されるならば、電位の種類を3種類、4種類、…、
というように多数に分割しても良い。
Further, in the above-described embodiment, two kinds of potentials are applied to every other bit line to obtain a state in which each bit line is electrically stressed. However, if this state is maintained. For example, there are 3 types of potentials, 4 types ...
It may be divided into a large number.

【0027】また、パッケ−ジ封入後、最終段階で不良
が発生していないかをチェックすることも好ましい。こ
のように最終段階においてチェックすることによれば、
アセンブリ工程、およびパッケ−ジ封入工程で付着した
ゴミによる不良チップを排除することができる。
It is also preferable to check whether a defect has occurred in the final stage after enclosing the package. According to the check at the final stage,
Defective chips due to dust attached in the assembly process and the package encapsulation process can be eliminated.

【0028】尚、この発明は、上記一実施例に限られる
ものではなく、その要旨を逸脱しない範囲で種々変形が
可能である。例えば上記一実施例では、EPROMを例
にとりこの発明を説明したが、EEPROM、一括消去
型EEPROM等、他の不揮発性メモリ、並びにビット
線のような高密度の配線を有するダイナミック型メモ
リ、スタティック型メモリ等、他のメモリにおいても適
用できることはいうまでもない。さらに、上記一実施例
では、アルミニウム合金でなるビット線における短絡不
良モ−ドについて説明したが、アルミニウム合金でなく
ともシリサイドのような導電性物質でなる配線層におい
ても上記不良のモ−ドは発生する。従って、シリサイド
のような導電性物質でなる配線層が高密度で存在してい
るような半導体装置においても、この発明を適用するこ
とができる。また、配線層が多層構造となっていても良
い。
The present invention is not limited to the above-described embodiment, but various modifications can be made without departing from the scope of the invention. For example, although the present invention has been described by taking the EPROM as an example in the above-mentioned one embodiment, other nonvolatile memories such as the EEPROM and the batch erasing type EEPROM as well as the dynamic type memory having the high density wiring such as the bit line and the static type. It goes without saying that it can be applied to other memories such as a memory. Further, in the above-mentioned one embodiment, the short circuit failure mode in the bit line made of aluminum alloy has been described. Occur. Therefore, the present invention can be applied to a semiconductor device in which a wiring layer made of a conductive material such as silicide exists at a high density. Further, the wiring layer may have a multi-layer structure.

【0029】[0029]

【発明の効果】以上説明したように、この発明によれ
ば、簡単なテストにて配線層間の絶縁不良を検出できる
半導体記憶装置と、その簡単なテスト方法をを提供でき
る。
As described above, according to the present invention, it is possible to provide a semiconductor memory device capable of detecting insulation failure between wiring layers by a simple test, and a simple test method therefor.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明の一実施例に係わる半導体装置
のブロック図。
FIG. 1 is a block diagram of a semiconductor device according to an embodiment of the present invention.

【図2】図2は図1中の2−2線に沿う断面図。FIG. 2 is a sectional view taken along line 2-2 in FIG.

【図3】図3はこの発明の一実施例に係わる半導体装置
のストレス印加の状態を示す図。
FIG. 3 is a diagram showing a stress application state of a semiconductor device according to an embodiment of the present invention.

【図4】図4は図3中の主要部を拡大して示した断面
図。
FIG. 4 is a cross-sectional view showing an enlarged main part in FIG.

【符号の説明】[Explanation of symbols]

10…P型シリコン基板、121 、122 …N型ソ−ス
領域、14…N型ドレイン領域、16…ゲ−ト絶縁膜、
180 〜183 …浮遊ゲ−ト、20…絶縁膜、22…層
間絶縁膜、240 〜247 …コンタクト孔、26…ゴ
ミ、28…絶縁膜、30…リ−ク電流、BL0 〜BL7
…ビット線、WL0 〜WL7 …ワ−ド線。
10 ... P-type silicon substrate, 12 1, 12 2 ... N-type source - source region, 14 ... N-type drain region, 16 ... gate - gate insulating film,
18 0-18 3 ... floating gate - DOO, 20 ... insulating film, 22 ... interlayer insulation film, 24 0 - 24 7 ... contact hole 26 ... dust, 28 ... insulating film, 30 ... Li - leakage current, BL 0 ~ BL 7
... bit lines, WL 0 ~WL 7 ... word - word line.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 互いに並行する配線層群と、 前記配線層群が正常か否かをテストするテスト手段とを
具備し、 前記テスト手段は、前記配線層群のうちn番目(nは0
を含む2の倍数)の配線層に第1の電位を印加する第1
の電位印加手段と、前記配線層群のうちn+1番目の配
線層に少なくとも前記第1の電位と異なる第2の電位を
印加する第2の電位印加手段とを有し、前記n番目の配
線層に前記第1の電位および前記n+1番目の配線層に
前記第2の電位を同時に印加し、かつこの状態を所定時
間保持するように構成されていることを特徴とする半導
体装置。
1. A wiring layer group parallel to each other, and a test means for testing whether or not the wiring layer group is normal, wherein the test means is the n-th wiring layer group (n is 0).
A multiple of 2) including a first potential applied to a first wiring layer
Potential applying means and second potential applying means for applying at least a second potential different from the first potential to the (n + 1) th wiring layer of the wiring layer group, the nth wiring layer The semiconductor device is configured to simultaneously apply the first potential and the second potential to the (n + 1) th wiring layer and maintain this state for a predetermined time.
【請求項2】 前記第2の電位印加手段は、前記第2の
電位を印加するのに加えて、前記第1の電位を前記配線
層群のうちn+1番目の配線層に印加する機能をさらに
有し、 前記テスト手段は、前記n番目の配線層に前記第1の電
位およびn+1番目の配線層に前記第2の電位を同時に
印加し、かつこの状態を所定時間保持する第1のモ−ド
と、前記配線層群に前記第1の電位の電位を一斉に印加
し、かつこの状態を所定時間保持する第2のモ−ドとを
得られるように構成されていることを特徴とする請求項
1に記載の半導体装置。
2. The second potential applying means, in addition to applying the second potential, further has a function of applying the first potential to an (n + 1) th wiring layer of the wiring layer group. The test means applies the first potential to the n-th wiring layer and the second potential to the (n + 1) -th wiring layer at the same time, and holds this state for a predetermined time. And a second mode for simultaneously applying the potential of the first potential to the wiring layer group and maintaining this state for a predetermined time. The semiconductor device according to claim 1.
【請求項3】 前記少なくともn本の配線層群はビット
線群であることを特徴とする請求項1もしくは請求項2
いずれかに記載の半導体装置。
3. The bit line group according to claim 1, wherein the at least n wiring layer group is a bit line group.
The semiconductor device according to any one of claims.
【請求項4】 互いに並行する配線層群を具備する半導
体装置のテスト方法において、 前記配線層群のうちn番目(nは0を含む2の倍数)の
配線層に第1の電位および前記配線層群のうちn+1番
目の配線層に前記第1の電位と異なる第2の電位をそれ
ぞれ同時に印加し、かつこの状態を所定時間保持するこ
とを特徴とする半導体装置のテスト方法。
4. A method of testing a semiconductor device having wiring layer groups parallel to each other, wherein a first potential and the wiring are applied to an n-th wiring layer (n is a multiple of 2 including 0) of the wiring layer groups. A method for testing a semiconductor device, comprising: simultaneously applying a second potential different from the first potential to the (n + 1) th wiring layer of the layer group and maintaining this state for a predetermined time.
【請求項5】 互いに並行する配線層群を具備する半導
体装置のテスト方法において、 前記配線層群のうちn番目(nは0を含む2の倍数)の
配線層に第1の電位および前記配線層群のうちn+1番
目の配線層に前記第1の電位と異なる第2の電位をそれ
ぞれ同時に印加し、かつこの状態を所定時間保持する第
1のモ−ドと、 前記配線層群に一斉に前記第1の電位を印加し、かつこ
の状態を所定時間保持する第2のモ−ドとを含むことを
特徴とする半導体装置のテスト方法。
5. A method of testing a semiconductor device comprising wiring layer groups parallel to each other, wherein a first potential and the wiring are applied to an n-th (n is a multiple of 2 including 0) wiring layer of the wiring layer group. A first mode for simultaneously applying a second potential different from the first potential to the (n + 1) th wiring layer of the layer group and maintaining this state for a predetermined time, and the wiring layer group simultaneously. And a second mode for applying the first potential and maintaining this state for a predetermined time.
【請求項6】 前記テスト方法は、パッケ−ジ封入後に
行うことを特徴とする請求項4もしくは5いずれかに記
載の半導体装置のテスト方法。
6. The test method for a semiconductor device according to claim 4, wherein the test method is performed after enclosing the package.
JP4066436A 1992-03-24 1992-03-24 Semiconductor device and test method thereof Expired - Lifetime JP2575990B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4066436A JP2575990B2 (en) 1992-03-24 1992-03-24 Semiconductor device and test method thereof
US08/029,236 US5400344A (en) 1992-03-24 1993-03-10 Semiconductor device with function of testing insulation defect between bit lines and testing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4066436A JP2575990B2 (en) 1992-03-24 1992-03-24 Semiconductor device and test method thereof

Publications (2)

Publication Number Publication Date
JPH0629364A true JPH0629364A (en) 1994-02-04
JP2575990B2 JP2575990B2 (en) 1997-01-29

Family

ID=13315731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4066436A Expired - Lifetime JP2575990B2 (en) 1992-03-24 1992-03-24 Semiconductor device and test method thereof

Country Status (2)

Country Link
US (1) US5400344A (en)
JP (1) JP2575990B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385103B1 (en) 2000-09-01 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having a circuit for testing memories
US7233152B2 (en) 2004-06-03 2007-06-19 Nec Electronics Corporation Short detection circuit and short detection method
KR20240031058A (en) 2022-08-30 2024-03-07 에이블릭 가부시키가이샤 Semiconductor storage apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889410A (en) * 1996-05-22 1999-03-30 International Business Machines Corporation Floating gate interlevel defect monitor and method
US5748545A (en) * 1997-04-03 1998-05-05 Aplus Integrated Circuits, Inc. Memory device with on-chip manufacturing and memory cell defect detection capability
TW403839B (en) * 1997-09-17 2000-09-01 Nanya Plastics Corp A quick-check measurement for floating unit confirmation using bit-line coupling pattern
US7783299B2 (en) * 1999-01-08 2010-08-24 Trueposition, Inc. Advanced triggers for location-based service applications in a wireless location system
JP3589938B2 (en) * 2000-04-26 2004-11-17 Necエレクトロニクス株式会社 Inspection apparatus and inspection method for semiconductor device
US6304504B1 (en) * 2000-08-30 2001-10-16 Micron Technology, Inc. Methods and systems for alternate bitline stress testing
US6262928B1 (en) * 2000-09-13 2001-07-17 Silicon Access Networks, Inc. Parallel test circuit and method for wide input/output DRAM
US6407953B1 (en) 2001-02-02 2002-06-18 Matrix Semiconductor, Inc. Memory array organization and related test method particularly well suited for integrated circuits having write-once memory arrays
US6768685B1 (en) 2001-11-16 2004-07-27 Mtrix Semiconductor, Inc. Integrated circuit memory array with fast test mode utilizing multiple word line selection and method therefor
US8213957B2 (en) 2009-04-22 2012-07-03 Trueposition, Inc. Network autonomous wireless location system
KR102424450B1 (en) * 2016-02-22 2022-07-25 에스케이하이닉스 주식회사 Input output circuit and integrated circuit using the same
CN116564397B (en) * 2023-07-07 2023-11-14 长鑫存储技术有限公司 Memory aging test method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936400A (en) * 1982-07-19 1984-02-28 モトロ−ラ・インコ−ポレ−テツド Method of inspecting semiconductor memory array
JPS6159744A (en) * 1984-08-30 1986-03-27 Nec Corp Semiconductor device
JPH0251245A (en) * 1988-08-12 1990-02-21 Oki Electric Ind Co Ltd Method of detecting defect of semiconductor integrated circuit
JPH0317899A (en) * 1989-06-15 1991-01-25 Toshiba Corp Semiconductor memory
JPH0455771A (en) * 1990-06-25 1992-02-24 Kawasaki Steel Corp Semiconductor element and aging insulation breakdown testing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960002006B1 (en) * 1991-03-12 1996-02-09 가부시끼가이샤 도시바 Eeprom with write/verify controller using two reference levels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936400A (en) * 1982-07-19 1984-02-28 モトロ−ラ・インコ−ポレ−テツド Method of inspecting semiconductor memory array
JPS6159744A (en) * 1984-08-30 1986-03-27 Nec Corp Semiconductor device
JPH0251245A (en) * 1988-08-12 1990-02-21 Oki Electric Ind Co Ltd Method of detecting defect of semiconductor integrated circuit
JPH0317899A (en) * 1989-06-15 1991-01-25 Toshiba Corp Semiconductor memory
JPH0455771A (en) * 1990-06-25 1992-02-24 Kawasaki Steel Corp Semiconductor element and aging insulation breakdown testing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385103B1 (en) 2000-09-01 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having a circuit for testing memories
US7233152B2 (en) 2004-06-03 2007-06-19 Nec Electronics Corporation Short detection circuit and short detection method
KR20240031058A (en) 2022-08-30 2024-03-07 에이블릭 가부시키가이샤 Semiconductor storage apparatus

Also Published As

Publication number Publication date
JP2575990B2 (en) 1997-01-29
US5400344A (en) 1995-03-21

Similar Documents

Publication Publication Date Title
JP4191355B2 (en) Semiconductor integrated circuit device
JP5442932B2 (en) NOR flash memory and erasing method thereof
EP0058049B1 (en) Defect-remediable semiconductor integrated circuit memory with spare substitution
JP3705601B2 (en) Operation method (management method) of latent defects in EEPROM
JP5325913B2 (en) Nonvolatile flash memory
JPH0629364A (en) Semiconductor device and testing method therefor
EP0503100B1 (en) Semiconductor memory
KR900000586B1 (en) Read only memory
KR100457367B1 (en) Nonvolatile semiconductor memory device and method of retrieving a faulty therein
CN101174474A (en) Fault detection method for grids flash memory separation
US20090080255A1 (en) Nonvolatile semiconductor memory device
JP3267301B2 (en) Circuit device having inspection circuit
JP2005283432A (en) Semiconductor wafer and manufacturing method of semiconductor device using semiconductor wafer
CN109390028B (en) Method and device for automatically repairing NOR type memory array bit line fault
CN109390029B (en) Method and device for automatically repairing word line fault of NOR type memory array
US20100140686A1 (en) Flash memory and method of manufacturing a flash memory
KR20110001071A (en) Method for detecting fail of semiconductor device
KR100335779B1 (en) Method of erasing flash memory device
US6903995B2 (en) Test structure for the measurement of contact to gate distance in non-volatile memory devices and corresponding test method
KR100583130B1 (en) Ferroelectric wafer burn-in test method of FeRAM
JP4152422B2 (en) Semiconductor integrated circuit device
US20140119123A1 (en) Fault tolerant control line configuration
KR100332105B1 (en) Flash memory device and method of programing the same
CN115527599A (en) Failure test structure and method for memory device
JP2008085209A (en) Semiconductor device and method for testing it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 16