[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06290496A - Magneto-optical recording medium, reproducing method and reproducing device - Google Patents

Magneto-optical recording medium, reproducing method and reproducing device

Info

Publication number
JPH06290496A
JPH06290496A JP7714193A JP7714193A JPH06290496A JP H06290496 A JPH06290496 A JP H06290496A JP 7714193 A JP7714193 A JP 7714193A JP 7714193 A JP7714193 A JP 7714193A JP H06290496 A JPH06290496 A JP H06290496A
Authority
JP
Japan
Prior art keywords
magnetic layer
temperature
magneto
magnetic
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7714193A
Other languages
Japanese (ja)
Other versions
JP3332458B2 (en
Inventor
Tsutomu Shiratori
力 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP07714193A priority Critical patent/JP3332458B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP94302309A priority patent/EP0618572B1/en
Priority to EP04075214A priority patent/EP1426944A3/en
Priority to EP00200724A priority patent/EP1020854A3/en
Priority to DE69430883T priority patent/DE69430883T2/en
Priority to EP01202807A priority patent/EP1158509A3/en
Publication of JPH06290496A publication Critical patent/JPH06290496A/en
Priority to US08/869,921 priority patent/US6027825A/en
Priority to US09/471,190 priority patent/US6403148B1/en
Priority to US09/689,718 priority patent/US6399174B1/en
Application granted granted Critical
Publication of JP3332458B2 publication Critical patent/JP3332458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To greatly improve a recording density and transfer speed and to miniaturize the reproducing device by enabling the reproduction of signals of periods below the diffraction threshold of light at a high speed without lowering the amplitude of the reproduced signals. CONSTITUTION:A first magnetic layer 11, a second magnetic layer 12 and a third magnetic layer 13 are successively laminated. This first magnetic layer 11 is relatively smaller in the coercive force of magnetic walls than the third magnetic layer and is larger in the mobility of the magnetic walls. The second magnetic layer 12 is lower in Curie temp. than the first magnetic layer and the third magnetic layer. Further, a fourth magnetic layer may be formed between the first magnetic layer and the second magnetic layer. The magnetic walls 15 are moved backward by heating TS.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学効果を利用し
てレーザー光により情報の記録再生を行う光磁気記録媒
体等に関し、更に詳しくは媒体の高密度記録化を可能と
する光磁気記録媒体、再生方法および再生装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording / reproducing information with a laser beam by utilizing the magneto-optical effect, and more particularly to a magneto-optical recording which enables high density recording of the medium. The present invention relates to a medium, a reproducing method, and a reproducing device.

【0002】[0002]

【従来の技術】書き換え可能な高密度記録方式として、
半導体レーザーの熱エネルギーを用いて、磁性薄膜に磁
区を書き込んで情報を記録し、磁気光学効果を用いて、
この情報を読み出す光磁気記録媒体が注目されている。
また、近年この光磁気記録媒体の記録密度を高めて更に
大容量の記録媒体とする要求が高まっている。
2. Description of the Related Art As a rewritable high density recording system,
Using the thermal energy of a semiconductor laser to write magnetic domains in a magnetic thin film to record information, using the magneto-optical effect,
Attention has been paid to a magneto-optical recording medium for reading this information.
Further, in recent years, there is an increasing demand for increasing the recording density of this magneto-optical recording medium to make it a recording medium having a larger capacity.

【0003】光磁気記録媒体等の光ディスクの線記録密
度は、再生光学系のレーザー波長および対物レンズの開
口数に大きく依存する。すなわち、再生光学系のレーザ
ー波長λと対物レンズの開口数NAが決まるとビームウ
ェストの径が決まるため、信号再生時の空間周波数は2
NA/λ程度が検出可能な限界となってしまう。
The linear recording density of an optical disk such as a magneto-optical recording medium greatly depends on the laser wavelength of the reproducing optical system and the numerical aperture of the objective lens. That is, since the diameter of the beam waist is determined when the laser wavelength λ of the reproduction optical system and the numerical aperture NA of the objective lens are determined, the spatial frequency during signal reproduction is 2
NA / λ is the limit of detection.

【0004】したがって、従来の光ディスクで高密度化
を実現するためには、再生光学系のレーザー波長を短く
し、対物レンズの開口数NAを大きくする必要がある。
しかしながら、レーザー波長や対物レンズの開口数の改
善にも限度がある。このため、記録媒体の構成や読み取
り方法を工夫し、記録密度を改善する技術が開発されて
いる。
Therefore, in order to realize high density in the conventional optical disk, it is necessary to shorten the laser wavelength of the reproducing optical system and increase the numerical aperture NA of the objective lens.
However, there is a limit to the improvement of the laser wavelength and the numerical aperture of the objective lens. Therefore, a technique for improving the recording density by devising the configuration of the recording medium and the reading method has been developed.

【0005】例えば、特開平3−93058号において
は、磁気的に結合される再生層と記録保持層とを有して
なる多層膜の、記録保持層に信号記録を行うとともに、
再生層の磁化の向きを揃えた後、レーザー光を照射して
加熱し、再生層の昇温領域に、記録保持層に記録された
信号を転写しながら読み取る信号再生方法が提案されて
いる。
For example, in Japanese Patent Laid-Open No. 3-93058, signal recording is performed on a recording holding layer of a multilayer film having a reproducing layer and a recording holding layer which are magnetically coupled,
A signal reproducing method has been proposed in which, after aligning the magnetization directions of the reproducing layer, laser light is irradiated to heat the reproducing layer, and the signal recorded in the recording holding layer is read while being transferred to a temperature rising region of the reproducing layer.

【0006】この方法によれば、再生用のレーザーのス
ポット径に対して、このレーザーによって加熱されて転
写温度に達し信号が検出される領域は、より小さな領域
に限定できるため、再生時の符号間干渉を減少させ、光
の回折限界以下の周期の信号が再生可能となる。
According to this method, the area where the laser is heated by the laser to reach the transfer temperature and the signal is detected can be limited to a smaller area with respect to the spot diameter of the reproducing laser. It is possible to reduce inter-interference and reproduce a signal having a period less than the diffraction limit of light.

【0007】[0007]

【発明が解決しようとしている課題】しかしながら、特
開平3−93058号記載の光磁気再生方法では、再生
用のレーザーのスポット径に対して、有効に使用される
信号検出領域が小さくなるため、再生信号振幅が大幅に
低下し、十分な再生出力が得られない欠点を有してい
る。
However, in the magneto-optical reproducing method described in Japanese Patent Laid-Open No. 3-93058, the signal detection area that is effectively used becomes smaller than the spot diameter of the reproducing laser. It has a drawback that the signal amplitude is greatly reduced and a sufficient reproduction output cannot be obtained.

【0008】また、再生層の磁化をレーザー光が照射す
る前に一方向に揃えなければならない。そのため、従来
の装置に再生層の初期化用磁石を追加することが必要と
なる。このため前記再生方法は、光磁気記録装置が複雑
化し、コストが高くなる、小型化が難しい等の問題点を
有している。
Further, the magnetization of the reproducing layer must be aligned in one direction before being irradiated with laser light. Therefore, it is necessary to add a reproducing layer initialization magnet to the conventional device. Therefore, the reproducing method has problems that the magneto-optical recording device is complicated, the cost is high, and it is difficult to reduce the size.

【0009】本発明は、この様な従来技術の課題を解決
すべくなされたものである。すなわち本発明の目的は、
再生信号振幅を低下させることなく光の回折限界以下の
周期の信号が高速で再生可能となり、記録密度並びに転
送速度を大幅に向上でき、再生装置の小型化も可能な光
磁気記録媒体、再生方法および再生装置を提供すること
にある。
The present invention has been made to solve the problems of the prior art. That is, the object of the present invention is to
A magneto-optical recording medium and a reproducing method capable of reproducing a signal having a period equal to or shorter than the light diffraction limit at high speed without lowering the reproduction signal amplitude, greatly improving the recording density and the transfer speed, and enabling downsizing of the reproducing apparatus. And to provide a playback device.

【0010】[0010]

【問題点を解決するための手段】上記目的は、以下の本
発明により達成される。
The above object can be achieved by the present invention described below.

【0011】本発明の第1の光磁気記録媒体は、少なく
とも、第1、第2、第3の磁性層が順次積層されている
光磁気記録媒体であって、該第1の磁性層は、周囲温度
近傍の温度において該第3の磁性層に比べて相対的に磁
壁抗磁力が小さく磁壁移動度大きな垂直磁化膜からな
り、該第2の磁性層は、該第1の磁性層および第3の磁
性層よりもキュリー温度の低い磁性層からなり、該第3
の磁性層は垂直磁化膜であることを特徴とする光磁気記
録媒体である。
The first magneto-optical recording medium of the present invention is a magneto-optical recording medium in which at least a first magnetic layer, a second magnetic layer and a third magnetic layer are sequentially laminated, and the first magnetic layer comprises: At a temperature near the ambient temperature, it is composed of a perpendicular magnetic film having a domain wall coercive force relatively smaller than that of the third magnetic layer and a large domain wall mobility, and the second magnetic layer comprises the first magnetic layer and the third magnetic layer. Magnetic layer having a lower Curie temperature than the magnetic layer of
The magnetic layer is a perpendicular magnetization film, which is a magneto-optical recording medium.

【0012】本発明の第2の光磁気記録媒体は、少なく
とも、第1、第4、第2、第3の磁性層が順次積層され
ている光磁気記録媒体であって、該第1の磁性層は、周
囲温度近傍の温度において該第3の磁性層に比べて相対
的に磁壁抗磁力が小さな垂直磁化膜からなり、該第2の
磁性層は、該第1の磁性層および第3の磁性層よりもキ
ュリー温度の低い磁性層からなり、該第3の磁性層は垂
直磁化膜であり、該第4の磁性層は、該第2の磁性層よ
りも高く、該第1の磁性層よりも低いキュリー温度を有
し、かつ少なくとも該第2の磁性層のキュリー温度以上
の温度において、該第3の磁性層に比べて相対的に磁壁
抗磁力が小さな垂直磁化膜からなることを特徴とする光
磁気記録媒体である。
The second magneto-optical recording medium of the present invention is a magneto-optical recording medium in which at least first, fourth, second and third magnetic layers are sequentially laminated, and the first magnetic layer The layer is composed of a perpendicularly magnetized film having a domain wall coercive force relatively smaller than that of the third magnetic layer at a temperature near the ambient temperature, and the second magnetic layer includes the first magnetic layer and the third magnetic layer. The magnetic layer has a Curie temperature lower than that of the magnetic layer, the third magnetic layer is a perpendicular magnetization film, the fourth magnetic layer is higher than the second magnetic layer, and the first magnetic layer is higher than the second magnetic layer. A perpendicular magnetic film having a lower Curie temperature and having a domain wall coercive force relatively smaller than that of the third magnetic layer at a temperature of at least the Curie temperature of the second magnetic layer. And a magneto-optical recording medium.

【0013】本発明の第1の再生方法は、本発明の第1
の光磁気記録媒体から記録情報を再生する方法であっ
て、光ビームを該媒体に対して相対的に移動させながら
前記第1の磁性層の側から照射し、該媒体上に該光ビー
ムのスポットの移動方向に対して勾配を有する温度分布
を形成し、該温度分布を少なくとも前記第2の磁性層の
キュリー温度よりも高い温度領域を有する温度分布とす
ることによって該第1の磁性層に形成されていた磁壁を
移動させ、該光ビームの反射光の偏光面の変化を検出し
て記録情報を再生することを特徴とする再生方法であ
る。
The first reproducing method of the present invention is the first reproducing method of the present invention.
A method of reproducing recorded information from a magneto-optical recording medium, the method comprising irradiating a light beam from the side of the first magnetic layer while moving the light beam relative to the medium, and applying the light beam onto the medium. By forming a temperature distribution having a gradient with respect to the moving direction of the spot and making the temperature distribution a temperature distribution having at least a temperature region higher than the Curie temperature of the second magnetic layer, the first magnetic layer is formed. The reproducing method is characterized in that the formed domain wall is moved and the change in the polarization plane of the reflected light of the light beam is detected to reproduce the recorded information.

【0014】本発明の第2の再生方法は、本発明の第2
の光磁気記録媒体から記録情報を再生する方法であっ
て、光ビームを該媒体に対して相対的に移動させながら
前記第1の磁性層の側から照射し、該媒体上に該光ビー
ムのスポットの移動方向に対して勾配を有する温度分布
を形成し、該温度分布を少なくとも前記第2の磁性層の
キュリー温度よりも高くし且つ前記第4の磁性層のキュ
リー温度近傍の温度領域を有する温度分布とすることに
よって、該第1及び第4の磁性層に形成されていた磁壁
を移動させ、該光ビームの反射光の偏光面の変化を検出
して記録情報を再生することを特徴とする再生方法であ
る。
The second reproducing method of the present invention is the second reproducing method of the present invention.
A method of reproducing recorded information from a magneto-optical recording medium, the method comprising irradiating a light beam from the side of the first magnetic layer while moving the light beam relative to the medium, and applying the light beam onto the medium. A temperature distribution having a gradient with respect to the moving direction of the spot is formed, and the temperature distribution is higher than at least the Curie temperature of the second magnetic layer and has a temperature region near the Curie temperature of the fourth magnetic layer. By setting the temperature distribution, the domain walls formed in the first and fourth magnetic layers are moved, the change of the polarization plane of the reflected light of the light beam is detected, and the recorded information is reproduced. This is the playback method.

【0015】本発明の再生装置は、本発明の光磁気記録
媒体から記録情報を再生する再生装置であって、光ビー
ムのスポットの移動方向に対して勾配を有する温度分布
を形成できる加熱手段を有することを特徴とする再生装
置である。
The reproducing apparatus of the present invention is a reproducing apparatus for reproducing recorded information from the magneto-optical recording medium of the present invention, and comprises a heating means capable of forming a temperature distribution having a gradient with respect to the moving direction of the spot of the light beam. It is a reproducing apparatus characterized by having.

【0016】[0016]

【作用】図1は、本発明の光磁気記録媒体およびその再
生方法における作用を説明するため模式図である。
1 is a schematic view for explaining the operation of the magneto-optical recording medium and the reproducing method thereof according to the present invention.

【0017】図1(a)は、本発明の光磁気記録媒体の
模式的断面図である。この媒体の磁性層は、第1の磁性
層11、第2の磁性層12、第3の磁性層13が順次積
層されてなる。各層中の矢印14は原子スピンの向きを
表している。スピンの向きが相互に逆向きの領域の境界
部には磁壁15が形成されている。また、この記録層の
記録信号も下側にグラフとして表わす。
FIG. 1A is a schematic sectional view of the magneto-optical recording medium of the present invention. The magnetic layer of this medium comprises a first magnetic layer 11, a second magnetic layer 12, and a third magnetic layer 13 which are sequentially stacked. The arrow 14 in each layer represents the direction of atomic spin. A domain wall 15 is formed at the boundary between regions where the spin directions are opposite to each other. The recording signal of this recording layer is also shown as a graph on the lower side.

【0018】図1(b)は、本発明の光磁気記録媒体に
形成される温度分布を示すグラフである。この温度分布
は、再生用に照射されている光ビーム自身によって媒体
上に誘起されるものでもよいが、望ましくは別の加熱手
段を併用して、再生用の光ビームのスポットの手前側か
ら温度を上昇させ、スポットの後方に温度のピークが来
るような温度分布を形成する。ここで位置xs において
は、媒体温度が第2の磁性層のキュリー温度近傍の温度
s になっている。
FIG. 1B is a graph showing the temperature distribution formed on the magneto-optical recording medium of the present invention. This temperature distribution may be induced on the medium by the light beam itself irradiating for reproduction, but it is desirable to use another heating means together, and the temperature from the front side of the spot of the reproduction light beam To form a temperature distribution such that a temperature peak appears behind the spot. Here, at the position x s , the medium temperature is a temperature T s near the Curie temperature of the second magnetic layer.

【0019】図1(c)は、図1(b)の温度分布に対
応する第1の磁性層の磁壁エネルギー密度σ1 の分布を
示すグラフである。この様にx方向に磁壁エネルギー密
度σ 1 の勾配があると、位置xに存在する各層の磁壁に
対して下記式から求められる力F1 が作用する。
FIG. 1C shows the temperature distribution of FIG.
Domain wall energy density σ of the corresponding first magnetic layer1 The distribution of
It is a graph shown. In this way, domain wall energy is dense in the x direction.
Degree σ 1 If there is a gradient of, the domain wall of each layer existing at the position x
On the other hand, the force F calculated from the following formula1 Works.

【0020】[0020]

【数1】 この力F1 は、磁壁エネルギーの低い方に磁壁を移動さ
せるように作用する。第1の磁性層は、磁壁抗磁力が小
さく磁壁移動度が大きいので、単独では、この力F1
よって容易に磁壁が移動する。しかし、位置xs より手
前(図では右側)の領域では、まだ媒体温度がTs より
低く、磁壁抗磁力の大きな第3の磁性層と交換結合して
いるために、第3の磁性層中の磁壁の位置に対応した位
置に第1の磁性層中の磁壁も固定されている。
[Equation 1] This force F 1 acts so as to move the magnetic domain wall to the lower domain wall energy. Since the first magnetic layer has a small domain wall coercive force and a large domain wall mobility, by itself, the domain wall is easily moved by this force F 1 . However, in the region before the position x s (on the right side in the figure), the medium temperature is still lower than T s, and the medium is exchange-coupled with the third magnetic layer having a large domain wall coercive force. The magnetic domain wall in the first magnetic layer is also fixed at a position corresponding to the magnetic domain wall position.

【0021】本発明においては、図1(a)に示す様
に、磁壁15が媒体の位置xs にあると、媒体温度が第
2の磁性層のキュリー温度近傍の温度Ts まで上昇し、
第1の磁性層と第3の磁性層との間の交換結合が切断さ
れる。この結果、第1の磁性層中の磁壁15は、破線矢
印17で示した様に、より温度が高く磁壁エネルギー密
度の小さな領域へと”瞬間的”に移動する。
In the present invention, as shown in FIG. 1A, when the domain wall 15 is at the position x s of the medium, the medium temperature rises to a temperature T s near the Curie temperature of the second magnetic layer,
The exchange coupling between the first magnetic layer and the third magnetic layer is broken. As a result, the domain wall 15 in the first magnetic layer moves "instantaneously" to a region having a higher temperature and a smaller domain wall energy density, as indicated by a dashed arrow 17.

【0022】再生用の光ビームのスポット16の下を磁
壁15が通過すると、スポット内の第1の磁性層の原子
スピンは全て一方向に揃う。そして、媒体の移動に伴っ
て磁壁15が位置xs に来る度に、スポットの下を磁壁
15が瞬間的に移動しスポット内の原子スピンの向きが
反転して全て一方向に揃う。この結果、図1(a)に示
す様に、再生信号振幅は記録されている磁壁の間隔(即
ち記録マーク長)によらず、常に一定かつ最大の振幅に
なり、光学的な回折限界に起因した波形干渉等の問題か
ら完全に解放されるのである。
When the domain wall 15 passes under the spot 16 of the reproducing light beam, the atomic spins of the first magnetic layer in the spot are all aligned in one direction. Then, every time the domain wall 15 comes to the position x s with the movement of the medium, the domain wall 15 momentarily moves under the spot, the direction of atomic spins in the spot is reversed, and all are aligned in one direction. As a result, as shown in FIG. 1A, the reproduction signal amplitude is always constant and the maximum amplitude regardless of the recorded domain wall spacing (that is, the recording mark length), which is caused by the optical diffraction limit. It is completely free from problems such as waveform interference.

【0023】但し、磁壁の移動速度は無限大ではないか
ら、スポットの下を磁壁が通過するのに要する時間τ
が、最短記録マーク長相当の距離を媒体が移動するのに
要する時間tmin よりも長くならないようにする必要が
ある(図2参照)。
However, since the moving speed of the domain wall is not infinite, the time τ required for the domain wall to pass under the spot is τ.
However, it is necessary to ensure that the distance corresponding to the shortest recording mark length does not become longer than the time t min required for the medium to move (see FIG. 2).

【0024】図3は、上述の原理作用による本発明と、
通常の従来法とを比較する模式図である。この図におい
て(a1)〜(a7)、および(b1)〜(b7)は、
記録マーク長の異なる磁区33が形成された情報トラッ
ク36上を、再生用スポット31が移動する状態を示
す。また(a8)および(b8)は、得られる再生信号
のグラフである。
FIG. 3 shows the present invention based on the above-described principle operation,
It is a schematic diagram which compares with a usual conventional method. In this figure, (a1) to (a7) and (b1) to (b7) are
The state where the reproducing spot 31 moves on the information track 36 in which the magnetic domains 33 having different recording mark lengths are formed is shown. Further, (a8) and (b8) are graphs of the reproduced signals obtained.

【0025】従来の再生方法においては、再生用スポッ
ト31自体が情報トラック36上のひとつの磁区内に完
全に入った状態(b2)でないと、再生信号の最大振幅
が得られない(b8)。一方、本発明においては、再生
用スポット31と温度プロファイルを同方向32に相対
移動させ、再生用スポット31の直前部分が第2の磁性
層の臨界温度Ts になる様にしてある。したがって、再
生用スポット31が磁壁34に差掛る直前において、磁
壁34の部分の温度が臨界温度Tsとなり、磁壁34が
逆方向35に移動し、再生用スポット31が記録マーク
内に完全に入った状態(a2)となり、瞬時に再生信号
の最大振幅が得られる(a8)。
In the conventional reproducing method, the maximum amplitude of the reproduced signal cannot be obtained (b8) unless the reproducing spot 31 itself is completely within one magnetic domain on the information track 36 (b2). On the other hand, in the present invention, the reproducing spot 31 and the temperature profile are relatively moved in the same direction 32 so that the portion immediately before the reproducing spot 31 becomes the critical temperature T s of the second magnetic layer. Therefore, immediately before the reproducing spot 31 contacts the domain wall 34, the temperature of the portion of the domain wall 34 becomes the critical temperature Ts, the domain wall 34 moves in the reverse direction 35, and the reproducing spot 31 completely enters the recording mark. The state becomes the state (a2), and the maximum amplitude of the reproduction signal is instantaneously obtained (a8).

【0026】また、従来の再生方法においては、磁区3
3がスポット径よりも狭い場合には、再生用スポット3
1全体が磁区内に納まらず(b3〜b7)、得られる再
生信号も不明瞭となる(b8)。一方、本発明において
は、再生用スポット31が記録マークの磁壁にほぼ差掛
った段階で、磁壁が逆方向後方に逐次移動するので(a
3〜a7)、極めて明瞭な再生信号が得られる(a
8)。
In the conventional reproducing method, the magnetic domain 3
If 3 is smaller than the spot diameter, the reproduction spot 3
The whole 1 does not fit in the magnetic domain (b3 to b7), and the obtained reproduction signal becomes unclear (b8). On the other hand, in the present invention, when the reproducing spot 31 is almost in contact with the domain wall of the recording mark, the domain wall sequentially moves backward in the reverse direction (a
3 to a7), an extremely clear reproduction signal can be obtained (a
8).

【0027】以上、第1の磁性層〜第3の磁性層を有す
る本発明の光磁気記録媒体について説明したが、本発明
においては、図4に示す様に、第4の磁性層44を第1
の磁性層41と第2の磁性層42との間に設けてもよ
い。この第4の磁性層44は、第2の磁性層よりも高
く、該第1の磁性層よりも低いキュリー温度を有し、か
つ少なくとも該第2の磁性層のキュリー温度以上の温度
において、該第3の磁性層に比べて相対的に磁壁抗磁力
が小さな垂直磁化膜からなるものである。この第4の磁
性層は、更に第1の磁性層中の磁壁を移動させるのに充
分な力を誘発するためのものである。
Although the magneto-optical recording medium of the present invention having the first to third magnetic layers has been described above, in the present invention, as shown in FIG. 1
It may be provided between the magnetic layer 41 and the second magnetic layer 42. The fourth magnetic layer 44 has a Curie temperature higher than that of the second magnetic layer and lower than that of the first magnetic layer, and at least at a temperature equal to or higher than the Curie temperature of the second magnetic layer. The perpendicular magnetic film has a domain wall coercive force relatively smaller than that of the third magnetic layer. The fourth magnetic layer is for further inducing a force sufficient to move the domain wall in the first magnetic layer.

【0028】図4(a)(b)に示す様に、この第4の
磁性層を有する光磁気記録媒体においても同様に、位置
s で第2の磁性層のキュリー温度近傍の温度Ts とす
ることによって、第4の磁性層と第3の磁性層との間の
交換結合を切断し、第1及び第4の磁性層中の磁壁を移
動できる。
[0028] As shown in FIG. 4 (a) (b), also in the fourth magneto-optical recording medium comprising a magnetic layer, the temperature T s near the Curie temperature of the second magnetic layer at the position x s By this, the exchange coupling between the fourth magnetic layer and the third magnetic layer can be broken, and the domain walls in the first and fourth magnetic layers can be moved.

【0029】図4(c)は、上述の温度分布に対応した
第1の磁性層の磁壁エネルギー密度σ1 および第4の磁
性層の磁壁エネルギー密度σ4 の分布を示すグラフであ
る。この様にx方向に磁壁エネルギー密度σ1 の勾配が
あると、先に説明したと同様に位置xに存在する各層の
磁壁に対して力Fi が作用し、この力Fi は、磁壁エネ
ルギーの低い方に磁壁を移動させるのである。
FIG. 4C is a graph showing the distribution of the domain wall energy density σ 1 of the first magnetic layer and the domain wall energy density σ 4 of the fourth magnetic layer corresponding to the above temperature distribution. When there is a gradient of the domain wall energy density σ 1 in the x direction in this way, the force F i acts on the domain wall of each layer existing at the position x as described above, and this force F i is the domain wall energy. The domain wall is moved to the lower side of.

【0030】一方、記録を高速で読み出すためには、磁
壁を高速で移動させる必要がある。そのために、磁壁に
大きな力を作用させる必要がある。一般に、磁壁エネル
ギー密度の温度依存性は、キュリー温度に近づく程大き
くなる。従って、キュリー温度近傍の温度範囲で温度勾
配を与えた方が、x方向の磁壁エネルギー密度の勾配を
大きくすることができ、磁壁に大きな力を作用させるこ
とができる。しかし、第1の磁性層からの反射光の偏光
面の変化を検出するためには、再生用の光ビームのスポ
ットの照射領域においては、第1の磁性層のキュリー温
度よりも充分に低い温度になっている必要がある。
On the other hand, in order to read the recording at high speed, it is necessary to move the domain wall at high speed. Therefore, it is necessary to apply a large force to the domain wall. In general, the temperature dependence of the domain wall energy density increases as it approaches the Curie temperature. Therefore, when the temperature gradient is given in the temperature range near the Curie temperature, the gradient of the domain wall energy density in the x direction can be increased and a large force can be applied to the domain wall. However, in order to detect the change in the plane of polarization of the reflected light from the first magnetic layer, the temperature in the irradiation region of the spot of the reproduction light beam is sufficiently lower than the Curie temperature of the first magnetic layer. Must be

【0031】ここで図4に示した様に、よりキュリー温
度の低い第4の磁性層44を、第1の磁性層の光ビーム
の入射側と反対側に隣接して設ければ、再生用の光ビー
ムのスポットの照射領域において、第1の磁性層のキュ
リー温度よりは充分低く、かつ第4の磁性層のキュリー
温度近傍の温度範囲で温度勾配を与えることができる。
この結果、第4の磁性層中の磁壁に大きな力が作用し、
第1の磁性層中の磁壁にも、第4の磁性層との交換相互
作用による力が付加されて、大きな力が作用するのであ
る。
Here, as shown in FIG. 4, if a fourth magnetic layer 44 having a lower Curie temperature is provided adjacent to the side opposite to the light beam incident side of the first magnetic layer, reproduction is performed. In the irradiation region of the spot of the light beam, the temperature gradient can be given in a temperature range sufficiently lower than the Curie temperature of the first magnetic layer and near the Curie temperature of the fourth magnetic layer.
As a result, a large force acts on the domain wall in the fourth magnetic layer,
The force due to the exchange interaction with the fourth magnetic layer is also applied to the domain wall in the first magnetic layer, and a large force acts.

【0032】また更に、第4の磁性層に、第2の磁性層
に近づく程キュリー温度が低くなるような膜厚方向のキ
ュリー温度の勾配をつければ、x方向の温度勾配に伴っ
て、x方向に順次キュリー温度直下の第4の磁性層の構
成部を形成できるので、磁壁を移動させる必要のあるx
方向の範囲全般に渡って、比較的大きな力を作用させる
ことが可能になる。
Further, if the fourth magnetic layer is provided with a gradient of the Curie temperature in the film thickness direction such that the Curie temperature becomes lower as it gets closer to the second magnetic layer, x is accompanied by the temperature gradient in the x direction. Since it is possible to sequentially form the constituent portion of the fourth magnetic layer immediately below the Curie temperature, it is necessary to move the domain wall x
A relatively large force can be applied over the entire range of directions.

【0033】[0033]

【実施例】以下、本発明を適用した実施例について図面
を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0034】図5は、本発明の光磁気記録媒体の層構成
の一実施態様を示す模式的断面図である。この態様にお
いては、透明基板56上に、誘電体層55、第1の磁性
層51、第2の磁性層52、第3の磁性層53、誘電体
層54が順次積層されている。
FIG. 5 is a schematic sectional view showing an embodiment of the layer structure of the magneto-optical recording medium of the present invention. In this aspect, the dielectric layer 55, the first magnetic layer 51, the second magnetic layer 52, the third magnetic layer 53, and the dielectric layer 54 are sequentially stacked on the transparent substrate 56.

【0035】透明基板56としては、例えば、ポリカー
ボネート、ガラス等を用いることができる。誘電体層5
5としては、例えば、Si34 、AlN、SiO2
SiO、ZnS、MgF2 などの透明誘電材料が使用で
きる。最後に保護膜として再び形成される誘電体層54
も同様のものを用いることができる。これら各層は、例
えばマグネトロンスパッタ装置による連続スパッタリン
グ、または連続蒸着等によって被着形成できる。特に各
磁性層は、真空を破ることなく連続成膜されることで、
互いに交換結合をしている。
As the transparent substrate 56, for example, polycarbonate, glass or the like can be used. Dielectric layer 5
5 includes, for example, Si 3 N 4 , AlN, SiO 2 ,
Transparent dielectric materials such as SiO, ZnS, MgF 2 can be used. Finally, the dielectric layer 54 is formed again as a protective film.
The same thing can be used for. Each of these layers can be deposited and formed by, for example, continuous sputtering using a magnetron sputtering device, continuous vapor deposition, or the like. In particular, each magnetic layer is formed continuously without breaking the vacuum,
They are exchange-coupled with each other.

【0036】また、この構成に、更にAl、AlTa、
AlTi、AlCr、Cuなどからなる金属層を付加し
て、熱的な特性を調整してもよい。また、高分子樹脂か
らなる保護コートを付与してもよい。あるいは、成膜後
の基板を貼り合わせてもよい。
In addition to this structure, Al, AlTa,
A metal layer made of AlTi, AlCr, Cu or the like may be added to adjust the thermal characteristics. Further, a protective coat made of a polymer resin may be applied. Alternatively, the substrates after the film formation may be attached.

【0037】上記媒体において、各磁性層51〜53
は、種々の磁性材料によって構成することが考えられる
が、例えば、Pr、Nd、Sm、Gd、Tb、Dy、H
oなどの希土類金属元素の一種類あるいは二種類以上が
10〜40at%と、Fe、Co、Niなどの鉄族元素
の一種類あるいは二種類以上が90〜60at%とで構
成される希土類−鉄族非晶質合金によって構成し得る。
また、耐食性向上などのために、これにCr、Mn、C
u、Ti、Al、Si、Pt、Inなどの元素を少量添
加してもよい。
In the above medium, each magnetic layer 51-53
May be composed of various magnetic materials. For example, Pr, Nd, Sm, Gd, Tb, Dy, H
Rare earth-iron composed of one or two or more rare earth metal elements such as o and 10 to 40 at% and one or two or more iron group elements such as Fe, Co and Ni from 90 to 60 at% It may be composed of a group amorphous alloy.
Further, in order to improve the corrosion resistance, etc., Cr, Mn, C
You may add a small amount of elements, such as u, Ti, Al, Si, Pt, In.

【0038】重希土類−鉄族非晶質合金の場合、飽和磁
化は、希土類元素と鉄族元素との組成比により制御する
ことが可能である。また、キュリー温度も、組成比によ
り制御することが可能であるが、飽和磁化と独立に制御
するためには、鉄族元素として、Feの一部をCoで置
き換えた材料を用い、置換量を制御する方法がより好ま
しく利用できる。即ち、Fe 1at%をCoで置換す
ることにより、6℃程度のキュリー温度上昇が見込める
ので、この関係を用いて所望のキュリー温度となるよう
にCoの添加量を調整する。また、Cr、Tiなどの非
磁性元素を微量添加することにより、逆にキュリー温度
を低下させることも可能である。あるいはまた、二種類
以上の希土類元素を用いてそれらの組成比を調整するこ
とでもキュリー温度を制御できる。
In the case of a heavy rare earth-iron group amorphous alloy, the saturation magnetization can be controlled by the composition ratio of the rare earth element and the iron group element. Also, the Curie temperature can be controlled by the composition ratio, but in order to control the Curie temperature independently of the saturation magnetization, a material in which a part of Fe is replaced with Co is used as the iron group element, and the replacement amount is set. A control method can be used more preferably. That is, by substituting 1 at% of Fe with Co, a Curie temperature rise of about 6 ° C. can be expected. Therefore, using this relationship, the addition amount of Co is adjusted so as to obtain a desired Curie temperature. It is also possible to lower the Curie temperature by adding a small amount of a non-magnetic element such as Cr or Ti. Alternatively, the Curie temperature can be controlled by using two or more kinds of rare earth elements and adjusting the composition ratio thereof.

【0039】この他に、ガーネット、白金族−鉄族周期
構造膜、もしくは白金族−鉄族合金などの材料も使用可
能である。
Besides, materials such as garnet, a platinum group-iron group periodic structure film, or a platinum group-iron group alloy can also be used.

【0040】第1の磁性層としては、例えば、GdC
o、GdFeCo、GdFe、NdGdFeCoなどの
垂直磁気異方性の小さな希土類−鉄族非晶質合金や、ガ
ーネット等のバブルメモリ用材料が望ましい。
The first magnetic layer is, for example, GdC.
A rare earth-iron group amorphous alloy having small perpendicular magnetic anisotropy such as o, GdFeCo, GdFe, and NdGdFeCo, or a material for bubble memory such as garnet is preferable.

【0041】第3の磁性層としては、例えば、TbFe
Co、DyFeCo、TbDyFeCoなどの希土類−
鉄族非晶質合金や、Pt/Co、Pd/Coなどの白金
族−鉄族周期構造膜など、垂直磁気異方性が大きく安定
に磁化状態が保持できるものが望ましい。
As the third magnetic layer, for example, TbFe
Rare earths such as Co, DyFeCo, TbDyFeCo-
An iron group amorphous alloy, a platinum group-iron group periodic structure film such as Pt / Co, Pd / Co, or the like, which has a large perpendicular magnetic anisotropy and can stably maintain a magnetized state is desirable.

【0042】本発明の光磁気記録媒体へのデータ信号の
記録は、媒体を移動させながら、第3の磁性層がキュリ
ー温度以上になるようなパワーのレーザー光を照射しな
がら外部磁界を変調して行うか、もしくは、一定方向の
磁界を印加しながらレーザーパワーを変調して行う。後
者の場合、光スポット内の所定領域のみが第3の磁性層
のキュリー温度近傍になる様にレーザー光の強度を調整
すれば、光スポットの径以下の記録磁区が形成でき、そ
の結果、光の回折限界以下の周期の信号を記録できる。
To record a data signal on the magneto-optical recording medium of the present invention, the external magnetic field is modulated while moving the medium while irradiating a laser beam having a power such that the third magnetic layer has a Curie temperature or higher. Or by modulating the laser power while applying a magnetic field in a fixed direction. In the latter case, if the intensity of the laser light is adjusted so that only a predetermined region within the light spot is near the Curie temperature of the third magnetic layer, a recording magnetic domain having a diameter smaller than the diameter of the light spot can be formed. It is possible to record signals with a period less than the diffraction limit of.

【0043】更に、第4の磁性層を設けた媒体の構成を
図6に示す。この態様においては、透明基板66上に、
誘電体層65、第1の磁性層61、第4の磁性層64、
第2の磁性層62、第3の磁性層63、誘電体層64が
順次積層されている。各層の材料、製造法等に関して
は、図5について述べたものと同様である。
Further, FIG. 6 shows the structure of the medium provided with the fourth magnetic layer. In this aspect, on the transparent substrate 66,
The dielectric layer 65, the first magnetic layer 61, the fourth magnetic layer 64,
The second magnetic layer 62, the third magnetic layer 63, and the dielectric layer 64 are sequentially stacked. The material and manufacturing method of each layer are the same as those described with reference to FIG.

【0044】以下に具体的な実施例をもって本発明を更
に詳細に説明するが、本発明はその要旨を越えない限り
以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0045】まず、図5に示した様な第1〜第3の磁性
層を有する光磁気記録媒体の実施例を以下に挙げる。
First, an example of a magneto-optical recording medium having first to third magnetic layers as shown in FIG. 5 will be described below.

【0046】<実施例1>直流マグネトロンスパッタリ
ング装置に、BドープしたSi、及びGd、Dy、T
b、Fe、Coの各ターゲットを取り付け、トラッキン
グ用の案内溝の形成されたポリカーボネイト基板を基板
ホルダーに固定した後、1×10-5Pa以下の高真空に
なるまでチャンバー内をクライオポンプで真空排気し
た。真空排気をしたままArガスを0.3Paとなるま
でチャンバー内に導入し、基板を回転させながら、干渉
層であるSiN層を800オングストローム成膜した。
引き続き、第1の磁性層としてGdCo層を300オン
グストローム、第2の磁性層としてDyFe層を100
オングストローム、第3の磁性層としてTbFeCo層
を400オングストローム順次成膜した。最後に、保護
層としてSiN層を800オングストローム成膜した。
SiN層成膜時にはArガスに加えてN2 ガスを導入
し、直流反応性スパッタにより成膜した。各磁性層は、
Gd、Dy、Tb、Fe、Coの各ターゲットに直流パ
ワーを印加して成膜した。
<Example 1> B-doped Si, and Gd, Dy, and T were added to a DC magnetron sputtering apparatus.
After attaching each target of b, Fe and Co and fixing the polycarbonate substrate with the guide groove for tracking to the substrate holder, vacuum the chamber with a cryopump until a high vacuum of 1 × 10 −5 Pa or less is achieved. Exhausted. While evacuating, Ar gas was introduced into the chamber until the pressure reached 0.3 Pa, and the SiN layer as the interference layer was formed to a thickness of 800 Å while rotating the substrate.
Subsequently, a GdCo layer as the first magnetic layer is 300 angstroms, and a DyFe layer as the second magnetic layer is 100 angstroms.
Angstroms, and a TbFeCo layer as a third magnetic layer were sequentially formed to 400 angstroms. Finally, a SiN layer having a thickness of 800 Å was formed as a protective layer.
At the time of forming the SiN layer, N 2 gas was introduced in addition to Ar gas, and the film was formed by DC reactive sputtering. Each magnetic layer is
A DC power was applied to each target of Gd, Dy, Tb, Fe, and Co to form a film.

【0047】各磁性層の組成は、全て補償組成近傍にな
るように調整し、キュリー温度は、第1の磁性層が30
0℃以上、第2の磁性層が70℃、第3の磁性層が20
0℃程度となるように設定した。
The composition of each magnetic layer was adjusted so that all were in the vicinity of the compensation composition, and the Curie temperature was 30 for the first magnetic layer.
0 ° C or higher, 70 ° C for the second magnetic layer, 20 ° C for the third magnetic layer
The temperature was set to about 0 ° C.

【0048】この媒体は、図7(a)に断面形状で示し
た様に、基板71上に、誘電体層72、磁性層73、誘
電体層74が積層され、基板71の案内溝を深さ100
0オングストロームの矩形に形成してある。このため、
ランド76上に積層された磁性層72は、案内溝75の
部分でほぼ分離されている。なお実際には、段差部にも
多少膜が堆積して磁性層が繋がってしまうが、他の部分
と比較して膜厚が非常に薄くなるので、段差部での結合
は無視できる。本発明において、各情報トラック間で互
いに磁気的に分離されるとは、この様な状態も含まれ
る。このランド76上に幅いっぱいに反転磁区を形成す
ると、図7(b)に示す様に、ランド76上の磁区の境
界部に、閉じていない磁壁77が形成される。このよう
な磁壁77は、トラック方向に移動させても、トラック
側部の磁壁77の生成・消滅を伴わないので、容易に移
動させることができる。
In this medium, a dielectric layer 72, a magnetic layer 73, and a dielectric layer 74 are laminated on a substrate 71 as shown in a sectional shape in FIG. 100
It is formed in a rectangular shape of 0 angstrom. For this reason,
The magnetic layer 72 laminated on the land 76 is substantially separated at the guide groove 75. Actually, although a film is deposited on the step portion and the magnetic layer is connected to the magnetic layer, the film thickness is very thin compared to other portions, and thus the coupling at the step portion can be ignored. In the present invention, magnetically separating each information track from each other also includes such a state. When the reversed magnetic domain is formed over the land 76 in the full width, an unclosed domain wall 77 is formed at the boundary of the magnetic domain on the land 76, as shown in FIG. 7B. Such a domain wall 77 can be easily moved even if it is moved in the track direction, since the domain wall 77 on the side of the track is not generated or disappears.

【0049】この様にして得た光磁気記録媒体につい
て、記録再生特性を測定した。
The recording / reproducing characteristics of the thus obtained magneto-optical recording medium were measured.

【0050】測定に用いた記録再生装置には、図8に示
すように、一般的な光磁気ディスク記録再生装置の光学
系に、加熱用のレーザーが付加されている。81は、記
録再生用のレーザー光源で、波長は780nmで、記録
媒体に対してP偏向が入射する様に配置されている。8
2は、加熱用のレーザー光源で、波長は1.3μmで、
同じく記録媒体に対してP偏向が入射する様に配置され
ている。83は、780nm光を100%透過し、1.
3μm光を100%反射するように設計されたダイクロ
イックミラーである。84は、偏向ビームスプリッタ
で、780nm光、1.3μm光、各々のP偏向は70
〜80%透過し、S偏向は100%反射するよう設計さ
れている。1.3μm光の光束径は、対物レンズ85の
開口径よりも小さくなるようにしてあり、全開口部を通
過して集光される780nm光に比べて、NAが小さく
なるようにしてある。また、87は、1.3μm光が、
信号検出系に漏れ込まないようにするために設けるもの
で、780nm光を100%透過し、1.3μm光を1
00%反射するように設計されたダイクロイックミラー
である。
In the recording / reproducing apparatus used for the measurement, as shown in FIG. 8, a heating laser is added to the optical system of a general magneto-optical disk recording / reproducing apparatus. Reference numeral 81 is a laser light source for recording and reproduction, which has a wavelength of 780 nm and is arranged so that P deflection is incident on the recording medium. 8
2 is a laser light source for heating, the wavelength is 1.3 μm,
Similarly, it is arranged so that P deflection is incident on the recording medium. No. 83 transmits 100% of 780 nm light, and
It is a dichroic mirror designed to reflect 100% of 3 μm light. Reference numeral 84 is a deflecting beam splitter, which has 780 nm light, 1.3 μm light, and P deflection of 70
It is designed to be -80% transparent and 100% S-polarized. The light flux diameter of the 1.3 μm light is made smaller than the aperture diameter of the objective lens 85, and the NA is made smaller than that of the 780 nm light which is condensed after passing through all the opening portions. Also, 87 is 1.3 μm light,
This is provided to prevent leakage into the signal detection system. It transmits 100% of 780 nm light and 1 μm of 1.3 μm light.
It is a dichroic mirror designed to reflect 100%.

【0051】この光学系により、記録媒体86の記録面
上に、図9(a)に示すように、案内溝94間のランド
95上にいおいて、記録再生用のスポット91と、加熱
用のスポット92とを結像させることができる。加熱用
のスポット92は、波長が長くNAが小さいので、記録
再生用のスポット91よりも径が大きくなる。これによ
り、移動している媒体の記録面上の記録再生用のスポッ
ト91の領域に、図9(b)に示してあるような所望の
温度勾配を容易に形成することができる。ここで温度T
s の等温線96も図示する。記録再生は媒体を線速5m
/secで駆動して行なった。
With this optical system, on the recording surface of the recording medium 86, as shown in FIG. 9A, on the land 95 between the guide grooves 94, the recording / reproducing spot 91 and the heating spot 91 are formed. Can be imaged with the spot 92. Since the heating spot 92 has a long wavelength and a small NA, it has a larger diameter than the recording / reproducing spot 91. As a result, a desired temperature gradient as shown in FIG. 9B can be easily formed in the area of the recording / reproducing spot 91 on the recording surface of the moving medium. Where temperature T
The isotherm 96 of s is also shown. For recording and reproduction, the medium speed is 5m
It was performed by driving at / sec.

【0052】まず、記録再生用レーザーを8mWでDC
照射しながら磁界を±150 Oeで変調することによ
り、第3の磁性層のキュリー温度以上に加熱した後の冷
却過程で、磁界の変調に対応した上向き磁化と下向き磁
化との繰り返しパターンを形成した。尚、この時、加熱
用のレーザーを合わせて照射して、記録再生用レーザー
の記録パワーを低減させることも可能である。
First, the recording / reproducing laser was set to DC at 8 mW.
By modulating the magnetic field at ± 150 Oe while irradiating, a repeating pattern of upward magnetization and downward magnetization corresponding to the modulation of the magnetic field was formed in the cooling process after heating the Curie temperature of the third magnetic layer or higher. . At this time, it is also possible to reduce the recording power of the recording / reproducing laser by irradiating the heating laser together.

【0053】記録磁界の変調周波数は1〜10MHzま
で変化させ、2.5〜0.25μmの範囲のマーク長の
パターンを記録した。
The modulation frequency of the recording magnetic field was changed from 1 to 10 MHz, and a pattern having a mark length in the range of 2.5 to 0.25 μm was recorded.

【0054】再生時の記録再生用のレーザーのパワーは
1mWとし、加熱用のレーザーを20mWのパワーで同
時に照射しながら、各マーク長のパターンについてC/
Nを測定した。この時の媒体面上の温度分布は図9
(b)に示すとおりである。
The power of the recording / reproducing laser at the time of reproduction is set to 1 mW, and the laser for heating is simultaneously irradiated with the power of 20 mW, and C /
N was measured. The temperature distribution on the medium surface at this time is shown in FIG.
It is as shown in (b).

【0055】この測定結果を図10のグラフ線aに示
す。また比較のため同図中の特開平3−93058号に
記載の従来の超解像再生方法による測定結果をグラフ線
bとして示し、超解像現象の起こらない通常の再生方法
による測定結果をグラフ線cとして示す。
The result of this measurement is shown by the graph line a in FIG. For comparison, the measurement result by the conventional super-resolution reproducing method described in Japanese Patent Laid-Open No. 3-93058 in the figure is shown as a graph line b, and the measurement result by the normal reproducing method in which the super-resolution phenomenon does not occur is shown in the graph. Shown as line c.

【0056】本発明の再生方法によると、マーク長が短
くなっても再生用のスポット内の全磁化の反転が検出さ
れるので、光の回折限界以下の周期の信号が再生可能と
なるのみならず、C/Nのマーク長依存性がほとんどな
くなる。
According to the reproducing method of the present invention, even if the mark length becomes short, the reversal of all the magnetization in the reproducing spot is detected, so that it is only possible to reproduce a signal having a period below the diffraction limit of light. As a result, the dependency of C / N on the mark length is almost eliminated.

【0057】尚、本実施例の媒体において、第1の磁性
層の磁壁が、温度勾配によって移動する様子は、以下に
述べるように、偏光顕微鏡による直接観察で確認され
た。
In the medium of this example, the manner in which the domain wall of the first magnetic layer moved due to the temperature gradient was confirmed by direct observation with a polarizing microscope, as described below.

【0058】まず、実施例1と同様の構成で、磁性層の
積層順を逆にしたサンプルを作製した。このサンプルに
実施例1と同様の記録方法により、磁区パターンを形成
した。これを膜面側、即ち第1の磁性層側から偏光顕微
鏡で観察した。
First, a sample having the same structure as in Example 1 but having the magnetic layers laminated in the opposite order was prepared. A magnetic domain pattern was formed on this sample by the same recording method as in Example 1. This was observed with a polarizing microscope from the film surface side, that is, the first magnetic layer side.

【0059】次に、このサンプルに加熱用の集光レーザ
ーを照射して、偏光顕微鏡の視野内で、実施例1とほぼ
同様の温度分布を形成した。
Next, this sample was irradiated with a condensing laser for heating to form a temperature distribution almost similar to that in Example 1 within the field of view of the polarization microscope.

【0060】この状態で、サンプルに500 Oe 程
度の磁界を印加した。この結果、温度分布に対応した円
形の領域のみが、外部磁界の方向に配向するのが観察さ
れた。これは、この領域において、第1の磁性層と第3
の磁性層との間の交換結合が切断されていることを意味
している。
In this state, a magnetic field of about 500 Oe was applied to the sample. As a result, it was observed that only the circular region corresponding to the temperature distribution was oriented in the direction of the external magnetic field. This is because the first magnetic layer and the third magnetic layer are formed in this region.
It means that the exchange coupling with the magnetic layer is broken.

【0061】次に、磁界の印加を停止して、トラック方
向にサンプルをゆっくりと移動させた。すると、トラッ
ク上に形成されている磁区の境界部が上述の円形の結合
切断領域に入る度に、移動してきた磁区が円形領域の中
心方向に向かって拡大するのが観察された。
Next, the application of the magnetic field was stopped and the sample was slowly moved in the track direction. Then, it was observed that each time the boundary of the magnetic domain formed on the track entered the above-mentioned circular bond cutting region, the moving magnetic domain expanded toward the center of the circular region.

【0062】加熱用のレーザーの照射を停止すると、第
3の磁性層に保存されていた磁区パターンが第1の磁性
層に転写されるのが観察された。
It was observed that when the irradiation of the heating laser was stopped, the magnetic domain pattern stored in the third magnetic layer was transferred to the first magnetic layer.

【0063】以上より、第3の磁性層との結合が切断さ
れた領域において、第1の磁性層の磁壁が、温度勾配に
よって高温側へ移動することが確認された。
From the above, it was confirmed that the domain wall of the first magnetic layer moved to the high temperature side due to the temperature gradient in the region where the bond with the third magnetic layer was broken.

【0064】<実施例2>実施例1と同様の成膜機、成
膜方法で、同様にポリカーボネイト基板上に薄膜を成膜
して光磁気記録媒体を作成した。但し、本実施例におい
ては、以下の三点を変更した。
Example 2 A magneto-optical recording medium was prepared by forming a thin film on a polycarbonate substrate in the same manner with the same film forming apparatus and film forming method as in Example 1. However, the following three points were changed in this example.

【0065】第一に、成膜前の基板表面にArイオンの
加速照射処理を加えたこと、第二に、干渉層であるSi
N層を成膜した後の膜表面にArイオンの加速照射処理
を加えたことである。これらの処理により、表面状態を
平滑化した。更に、第三に、第1の磁性層の膜厚を20
00オングストロームに変更したことである。これらの
変更点は、それぞれ独立に、第1の磁性層の磁壁移動度
の向上に寄与する。
First, the accelerated irradiation of Ar ions was applied to the substrate surface before film formation. Secondly, Si that was the interference layer was used.
That is, the accelerated irradiation treatment of Ar ions was applied to the film surface after forming the N layer. The surface condition was smoothed by these treatments. Thirdly, the film thickness of the first magnetic layer is set to 20
It was changed to 00 angstrom. These changes independently contribute to the improvement of the domain wall mobility of the first magnetic layer.

【0066】この媒体の記録再生特性を実施例1と同様
の方法で測定したところ、実施例1と同様の良好な結果
が得られた。更に、再生時の媒体の線速度を20m/s
ecまで高速化して再生しても、再生特性は低下しなか
った。
When the recording / reproducing characteristics of this medium were measured by the same method as in Example 1, the same good results as in Example 1 were obtained. Furthermore, the linear velocity of the medium during reproduction is 20 m / s.
Even when the reproduction speed was increased to ec, the reproduction characteristics did not deteriorate.

【0067】<実施例3>実施例1と同様の成膜機、成
膜方法で、同様にポリカーボネイト基板上に薄膜を成膜
して光磁気記録媒体を作製した。
Example 3 A magneto-optical recording medium was prepared by forming a thin film on a polycarbonate substrate in the same manner by using the film forming apparatus and the film forming method similar to those in Example 1.

【0068】但し、本実施例においては、基板として、
プレピットが形成されており、案内溝の断面形状がU型
になっているものを用いた。このため、積層した磁性層
は、案内溝の部分で形状的に分断されていない。
However, in this embodiment, as the substrate,
A prepit was formed and the guide groove had a U-shaped cross section. Therefore, the laminated magnetic layers are not geometrically divided at the guide groove portion.

【0069】この媒体の、案内溝の部分に高出力のレー
ザーを照射し、案内溝の部分の磁性層を全面にアニール
した。この結果、案内溝の部分の磁性層が変質して面内
膜になり、案内溝を介して、互いに隣接するトラックの
磁性層の間の結合が分断された。この媒体の記録再生特
性を実施例1と同様の方法で測定したところ、実施例1
と同様の良好な結果が得られた。
A high-power laser was irradiated onto the guide groove portion of this medium to anneal the entire magnetic layer of the guide groove portion. As a result, the magnetic layer in the portion of the guide groove was altered to become an in-plane film, and the coupling between the magnetic layers of the tracks adjacent to each other was separated via the guide groove. When the recording / reproducing characteristics of this medium were measured by the same method as in Example 1, Example 1
The same good result was obtained.

【0070】また、上述のアニール処理を施さずに、上
記の媒体の記録再生特性を実施例1と同様の方法で測定
したところ、実施例1の結果に比べてノイズが上昇した
が、光の回折限界以下の周期の信号の再生は、十分可能
であった。この媒体では、閉じた磁壁で囲まれた磁区が
存在するので、この磁区を拡大させる方向に磁壁を移動
させる時に動作が不安定になりノイズが上昇した。
Further, when the recording / reproducing characteristics of the above medium were measured by the same method as in Example 1 without performing the above-mentioned annealing treatment, the noise was increased as compared with the result of Example 1, but The reproduction of a signal with a period below the diffraction limit was sufficiently possible. In this medium, since there is a magnetic domain surrounded by a closed domain wall, the operation became unstable when moving the domain wall in the direction of expanding this domain, and noise increased.

【0071】なお、隣接するトラックの磁性層との間の
結合を分断する別の方法として、エッチング処理による
パターニングを行ってもよい。
As another method for breaking the coupling between the magnetic layers of adjacent tracks, patterning by etching may be performed.

【0072】<実施例4>実施例1の媒体を用いて、実
施例1とほぼ同様の記録再生装置で記録再生特性を評価
した。
<Example 4> Using the medium of Example 1, the recording / reproducing characteristics were evaluated by a recording / reproducing apparatus almost the same as in Example 1.

【0073】但し、記録再生用のスポットと、加熱用の
スポットとの位置関係を図11のように変更した。即
ち、加熱用レーザーによって誘起される温度分布の、媒
体の移動方向に対して前方の斜面に、記録再生用のスポ
ットが配置されるようにした。
However, the positional relationship between the recording / reproducing spot and the heating spot was changed as shown in FIG. That is, the recording / reproducing spot was arranged on the front slope of the temperature distribution induced by the heating laser with respect to the moving direction of the medium.

【0074】媒体が移動して、図中Sで示した位置を通
過すると、第1の磁性層と第3の磁性層とが再び結合し
て、第1の磁性層に第3の磁性層の磁化配向状態が転写
される。第3の磁性層の磁壁がSで示した位置を通過す
ると、第1の磁性層のSで示した位置に磁壁が残され、
この磁壁が瞬間的に後方に移動する。記録再生用のスポ
ットを、上述のように配置しておくと、この時の磁壁の
移動が検出される。
When the medium moves and passes through the position shown by S in the figure, the first magnetic layer and the third magnetic layer are recombined, and the first magnetic layer and the third magnetic layer are combined. The magnetization orientation state is transferred. When the domain wall of the third magnetic layer passes the position indicated by S, the domain wall remains at the position indicated by S of the first magnetic layer,
This domain wall instantaneously moves backward. When the recording / reproducing spots are arranged as described above, the movement of the domain wall at this time is detected.

【0075】この配置にすると、Sで示した臨界温度T
s の等温線の形状と、磁界変調方式で形成された磁区の
磁壁の形状とがほぼ整合するので、磁壁の移動がより安
定に行われるようになる。
With this arrangement, the critical temperature T indicated by S
Since the shape of the isotherm of s and the shape of the domain wall of the magnetic domain formed by the magnetic field modulation method substantially match, the domain wall can be moved more stably.

【0076】<比較例1>実施例1の媒体を用いて、加
熱用のレーザーが付加されていない通常の光磁気ディス
ク記録再生装置によって、記録再生特性を測定した。
Comparative Example 1 The recording / reproducing characteristics of the medium of Example 1 were measured by an ordinary magneto-optical disk recording / reproducing apparatus to which a heating laser was not added.

【0077】加熱用のレーザーが照射されていない他
は、実施例1と同様の方法で再生特性を調べたところ、
再生パワーを3mW程度まで増大させることにより、良
好なC/Nが得られた。但し、実施例1の結果と比較す
ると、各マーク長において、5dB程度C/Nが低かっ
た。これは、再生用スポットの前部においては媒体の温
度が上昇しないので、再生用スポットの途中から磁壁の
移動が起こり、実施例1のようには、スポット全域を有
効に使用できないためである。
When the reproducing characteristics were examined by the same method as in Example 1 except that the laser for heating was not irradiated,
Good C / N was obtained by increasing the reproducing power to about 3 mW. However, compared with the results of Example 1, the C / N was low by about 5 dB at each mark length. This is because the temperature of the medium does not rise in the front part of the reproducing spot, the domain wall moves from the middle of the reproducing spot, and the entire spot cannot be effectively used as in the first embodiment.

【0078】次に、図6に示した様な第1〜第4の磁性
層を有する光磁気記録媒体の実施例を以下に挙げる。
Next, examples of the magneto-optical recording medium having the first to fourth magnetic layers as shown in FIG. 6 will be given below.

【0079】<実施例5>直流マグネトロンスパッタリ
ング装置に、BドープしたSi、及びGd、Tb、F
e、Co、Crの各ターゲットを取り付け、トラッキン
グ用の案内溝の形成されたポリカーボネイト基板を基板
ホルダーに固定した後、1×10-5Pa以下の高真空に
なるまでチャンバー内をクライオポンプで真空排気し
た。
<Embodiment 5> B-doped Si, and Gd, Tb, and F were added to a DC magnetron sputtering apparatus.
After attaching each target of e, Co and Cr and fixing the polycarbonate substrate with the guide groove for tracking to the substrate holder, vacuum the chamber with a cryopump until a high vacuum of 1 × 10 −5 Pa or less is achieved. Exhausted.

【0080】真空排気をしたままArガスを0.3Pa
となるまでチャンバー内に導入し、基板を回転させなが
ら、干渉層であるSiN層を800オングストローム成
膜した。引き続き、第1の磁性層としてGdCoCr層
を300オングストローム、第4の磁性層としてGdF
eCr層を300オングストローム、第2の磁性層とし
てTbFeCr層を100オングストローム、第3の磁
性層としてTbFeCo層を400オングストローム順
次成膜した。最後に、保護層としてSiN層を800オ
ングストローム成膜した。SiN層成膜時にはArガス
に加えてN2 ガスを導入し、直流反応性スパッタにより
成膜した。各磁性層は、Gd、Tb、Fe、Co、Cr
の各ターゲットに直流パワーを印加して成膜した。
Ar gas was supplied at 0.3 Pa with the vacuum exhausted.
It was introduced into the chamber until it became, and the SiN layer as the interference layer was formed to a thickness of 800 Å while rotating the substrate. Subsequently, a GdCoCr layer as the first magnetic layer is 300 angstroms, and a GdFc layer as the fourth magnetic layer.
An eCr layer was formed in the order of 300 angstroms, a TbFeCr layer was formed in the order of 100 angstrom as the second magnetic layer, and a TbFeCo layer was formed in the order of 400 angstrom as the third magnetic layer. Finally, a SiN layer having a thickness of 800 Å was formed as a protective layer. At the time of forming the SiN layer, N 2 gas was introduced in addition to Ar gas, and the film was formed by DC reactive sputtering. Each magnetic layer is composed of Gd, Tb, Fe, Co, Cr
DC power was applied to each of the targets to form a film.

【0081】各磁性層の組成は、全て補償組成近傍にな
るように調整し、キュリー温度は、第1の磁性層が30
0℃以上、第4の磁性層が170℃、第2の磁性層が7
0℃、第3の磁性層が200℃程度となるように設定し
た。この媒体は、実施例1と同様に、図7に示した様な
断面形状を有する。
The composition of each magnetic layer is adjusted so that all are in the vicinity of the compensation composition, and the Curie temperature is 30 for the first magnetic layer.
0 ° C or above, 170 ° C for the fourth magnetic layer, 7 ° C for the second magnetic layer
The temperature was set to 0 ° C. and the temperature of the third magnetic layer was set to about 200 ° C. This medium has a cross-sectional shape as shown in FIG. 7, as in the first embodiment.

【0082】この様にして得た光磁気記録媒体につい
て、実施例1と同様にして記録再生特性を測定した。た
だし、記録時のDC照射レーザーパワーは10mWと
し、再生時の加熱用レーザーパワーは25mWとした。
この測定結果は、実施例1と同様に、図10のグラフ線
aの良好な結果が得られた。
The recording / reproducing characteristics of the magneto-optical recording medium thus obtained were measured in the same manner as in Example 1. However, the DC irradiation laser power during recording was 10 mW, and the heating laser power during reproduction was 25 mW.
As in the case of Example 1, the measurement result was a good result indicated by the graph line a in FIG. 10.

【0083】また更に、再生時の媒体の線速度を20m
/secまで高速化して再生しても再生特性は低下しな
かった。
Furthermore, the linear velocity of the medium during reproduction is set to 20 m.
The reproduction characteristics did not deteriorate even when the reproduction was performed at a speed up to / sec.

【0084】尚、第1の磁性層の磁壁が、温度勾配によ
って移動する様子は、実施例1と同様に偏光顕微鏡によ
る直接観察で確認された。
The movement of the domain wall of the first magnetic layer due to the temperature gradient was confirmed by direct observation with a polarization microscope as in Example 1.

【0085】<実施例6>実施例5と同様の成膜機、成
膜方法で、同様にポリカーボネイト基板上に薄膜を成膜
して光磁気記録媒体を作成した。
<Example 6> A magneto-optical recording medium was prepared by forming a thin film on a polycarbonate substrate in the same manner by using the same film forming apparatus and film forming method as in Example 5.

【0086】但し、本実施例においては、第4の磁性層
内を、第1の磁性層の側から順に、第1、第2、及び第
3の構成層で形成し、各構成層のキュリー温度を順に、
180℃、160℃、140℃とし、膜厚を順に、20
0オングストローム、400オングストローム、800
オングストロームとして、第4の磁性層中で、膜厚方向
に段階的なキュリー温度の勾配を持つようにした。材料
としては、GdFeCoCrを用いた。
However, in the present embodiment, the inside of the fourth magnetic layer is formed of the first, second and third constituent layers in order from the first magnetic layer side, and the Curie of each constituent layer is formed. Temperature in order,
180 ℃, 160 ℃, 140 ℃, the film thickness in order 20
0 Å, 400 Å, 800
As the angstrom, in the fourth magnetic layer, a stepwise Curie temperature gradient was provided in the film thickness direction. GdFeCoCr was used as the material.

【0087】また、第1の磁性層は、キュリー温度30
0℃のGdFeCoCr層を200オングストローム、
第2の磁性層は、キュリー温度120℃のTbFeCo
Cr層を200オングストローム、第3の磁性層は、キ
ュリー温度200℃のTbFeCoCr層を600オン
グストロームとした。
The first magnetic layer has a Curie temperature of 30.
200 angstrom GdFeCoCr layer at 0 ° C,
The second magnetic layer is TbFeCo with a Curie temperature of 120 ° C.
The Cr layer has a thickness of 200 Å, and the third magnetic layer has a Curie temperature of 200 ° C. and the TbFeCoCr layer has a thickness of 600 Å.

【0088】各磁性層の組成は、補償組成近傍になるよ
うに、希土類元素と鉄族元素の組成比を調整し、Co及
びCrの添加量を調整して、キュリー温度を上記のよう
に設定した。
The composition of each magnetic layer is adjusted so that the composition ratio of the rare earth element and the iron group element is adjusted so as to be in the vicinity of the compensation composition, the addition amounts of Co and Cr are adjusted, and the Curie temperature is set as described above. did.

【0089】この媒体の記録再生特性を実施例5と同様
の方法で測定したところ、実施例5と同様の良好な結果
が得られた。更に、再生時の媒体の線速度を30m/s
ecまで高速化して再生しても、再生特性は低下しなか
った。
The recording / reproducing characteristics of this medium were measured by the same method as in Example 5, and the same good result as in Example 5 was obtained. Furthermore, the linear velocity of the medium during reproduction is 30 m / s.
Even when the reproduction speed was increased to ec, the reproduction characteristics did not deteriorate.

【0090】本実施例においては、再生時に、媒体の記
録面上の記録再生用のスポットの領域に、120℃から
180℃程度のトラック方向の温度勾配を形成した。こ
の場合、120℃から140℃の領域では、第4の磁性
層の第3の構成層の磁壁に大きな力が作用し、140℃
から160℃の領域では、第4の磁性層の第2の構成層
の磁壁に大きな力が作用し、160℃から180℃の領
域では、第4の磁性層の第1の構成層の磁壁に大きな力
が作用する。このため、記録再生用のスポットの領域全
域に渡って、第1の磁性層から第4の磁性層にかけて存
在している磁壁を、比較的大きな力で移動させることが
でき、本発明の再生動作を、より安定に、また高速に行
なうことができるようになった。
In this example, a temperature gradient in the track direction of about 120 ° C. to 180 ° C. was formed in the area of the recording / reproducing spot on the recording surface of the medium during reproduction. In this case, in the range of 120 ° C. to 140 ° C., a large force acts on the domain wall of the third constituent layer of the fourth magnetic layer, and 140 ° C.
In the region of from 160 to 160 ° C., a large force acts on the domain wall of the second constituent layer of the fourth magnetic layer, and in the region of from 160 ° C. to 180 ° C., the domain wall of the first constituent layer of the fourth magnetic layer. A large force acts. Therefore, the domain wall existing from the first magnetic layer to the fourth magnetic layer can be moved with a relatively large force over the entire area of the recording / reproducing spot, and the reproducing operation of the present invention can be performed. Can be performed more stably and at high speed.

【0091】<実施例7>実施例5と同様の成膜機、成
膜方法で、同様にポリカーボネイト基板上に薄膜を成膜
して光磁気記録媒体を作成した。
<Embodiment 7> A magneto-optical recording medium was prepared by forming a thin film on a polycarbonate substrate in the same manner by using a film forming apparatus and a film forming method similar to those in Example 5.

【0092】但し、本実施例においては、基板として、
プレピットが形成されており、案内溝の断面形状がU型
になっているものを用いた。このため、積層した磁性層
は、案内溝の部分で形状的に分断されていない。
However, in this embodiment, as the substrate,
A prepit was formed and the guide groove had a U-shaped cross section. Therefore, the laminated magnetic layers are not geometrically divided at the guide groove portion.

【0093】磁性層その他の構成は、第4の磁性層の組
成比を次に述べるように変化させた他は、実施例5と同
様にした。
The magnetic layer and other components were the same as in Example 5 except that the composition ratio of the fourth magnetic layer was changed as described below.

【0094】第4の磁性層は、GdFeCrのGdの組
成比を調整して、室温において鉄族元素副格子磁化優勢
な組成にしたサンプル(1)と、室温において希土類元
素副格子磁化優勢で、キュリー温度以下の温度に補償温
度が存在する組成にしたサンプル(2)と、室温におい
て希土類元素副格子磁化優勢で、キュリー温度以下の温
度に補償温度が存在しない組成にしたサンプル(3)と
を作製した。各サンプルのキュリー温度は、Cr添加量
を調整して、全て170℃に合わせた。
The fourth magnetic layer is a sample (1) in which the composition ratio of Gd of GdFeCr is adjusted so that the iron group element sublattice magnetization is dominant at room temperature, and the rare earth element sublattice magnetization is dominant at room temperature. A sample (2) having a composition having a compensation temperature below the Curie temperature and a sample (3) having a composition having a rare earth element sublattice magnetization dominant at room temperature and having no compensation temperature below the Curie temperature were prepared. It was made. The Curie temperature of each sample was adjusted to 170 ° C. by adjusting the Cr addition amount.

【0095】これらのサンプルの、案内溝の部分に高出
力のレーザーを照射し、案内溝の部分の磁性層を全面ア
ニールした。この結果、案内溝の部分の磁性層が磁気的
に変質し、案内溝を介して互いに隣接するトラックの磁
性層の間の結合が分断された。
The guide groove portion of each of these samples was irradiated with a high-power laser to anneal the entire magnetic layer of the guide groove portion. As a result, the magnetic layer in the guide groove portion was magnetically deteriorated, and the coupling between the magnetic layers of the tracks adjacent to each other via the guide groove was broken.

【0096】次に、記録再生特性を実施例5と同様の方
法で測定したところ、線速5m/secにおいて、各サ
ンプルとも実施例5と同様の良好な結果が得られた。
Next, the recording / reproducing characteristics were measured by the same method as in Example 5, and at the linear velocity of 5 m / sec, good results similar to those in Example 5 were obtained for each sample.

【0097】しかし、線速を30m/secまで高速化
して再生すると、サンプル(1)では、C/Nが5dB
程度低下した。これに対し、サンプル(2)では、C/
Nの低下はほとんど見られず、また、サンプル(3)で
は、2dB程度しか低下しなかった。
However, when the linear velocity was increased to 30 m / sec for reproduction, the sample (1) had a C / N of 5 dB.
To some extent. On the other hand, in the sample (2), C /
Almost no decrease in N was observed, and in sample (3), there was only a decrease of about 2 dB.

【0098】これは、室温において、希土類元素副格子
磁化優勢な組成のもの、中でもキュリー温度以下に補償
温度を有する組成のものの方が、キュリー温度近傍にお
ける、磁壁エネルギーの温度依存性が大きく、温度勾配
によって、より大きな力を磁壁に作用させることができ
るためであると考えられる。
This is because the composition of the rare earth element sublattice magnetization dominant at room temperature, especially the composition having the compensation temperature below the Curie temperature has a larger temperature dependence of the domain wall energy near the Curie temperature, and It is considered that this is because a larger force can be applied to the domain wall by the gradient.

【0099】以上挙げた実施例に本発明は限定定される
ものでない。他の実施可能な例として、光ヘッドは従来
のままにして、媒体上の温度分布を別の手段でつい調整
する方法も考えられる。例えば、磁界変調記録に用いる
浮上ヘッドのコアを熱源として流用したり、その他適当
な発熱体を媒体の再生用レーザー照射領域の近くに配置
することが考えられる。但し、この場合、磁壁の移動開
始位置となる温度の位置と、再生用スポットとの位置関
係が再生信号の周波数に近い周波数で変動することがな
いように注意する必要がある。
The present invention is not limited to the embodiments described above. As another possible example, a method is conceivable in which the optical head is left as it is and the temperature distribution on the medium is adjusted by another means. For example, it is conceivable to use the core of the flying head used for magnetic field modulation recording as a heat source, or to dispose another suitable heating element near the reproducing laser irradiation area of the medium. However, in this case, it is necessary to take care so that the positional relationship between the temperature position that is the movement start position of the domain wall and the reproduction spot does not change at a frequency close to the frequency of the reproduction signal.

【0100】[0100]

【発明の効果】以上詳細に説明したように、本発明の光
磁気記録媒体、再生方法、および再生装置によれば、再
生信号振幅を低下させることなく光の回折限界以下の周
期の信号が高速で再生可能となり、記録密度並びに転送
速度を大幅に向上でき、再生装置の小型化も可能であ
る。
As described in detail above, according to the magneto-optical recording medium, the reproducing method, and the reproducing apparatus of the present invention, a signal having a period less than the diffraction limit of light can be transmitted at high speed without lowering the reproduction signal amplitude. With this, it is possible to greatly improve the recording density and the transfer speed, and it is possible to downsize the reproducing apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1〜第3の磁性層を有する光磁気記録媒体を
使用した場合の本発明の再生方法の概念を模式的に示し
た図である。(a)は、再生状態における媒体の断面を
示し、各磁性層のスピンの配向状態を模式的に示してあ
る。(b)は、(a)に示されている位置における媒体
上の温度分布を示している。(c)は、同様の位置にお
ける磁壁エネルギー密度の分布及びそれに伴って磁壁に
作用する力の分布を模式的に示している。
FIG. 1 is a diagram schematically showing the concept of a reproducing method of the present invention when using a magneto-optical recording medium having first to third magnetic layers. (A) shows the cross section of the medium in the reproducing state, and schematically shows the spin alignment state of each magnetic layer. (B) shows the temperature distribution on the medium at the position shown in (a). (C) schematically shows the distribution of the domain wall energy density at the same position and the distribution of the force acting on the domain wall accordingly.

【図2】スポットの下を磁壁が通過するのに要する時間
τと、最短記録マーク長相当の距離を媒体が移動するの
に要する時間tmin との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the time τ required for the domain wall to pass under the spot and the time t min required for the medium to move a distance corresponding to the shortest recording mark length.

【図3】本発明の方法と通常の従来法とを比較する模式
図である。
FIG. 3 is a schematic diagram comparing the method of the present invention with a conventional conventional method.

【図4】第1〜第4の磁性層を有する光磁気記録媒体を
使用した場合の本発明の再生方本発明の再生方法の概念
を模式的に示した図である。
FIG. 4 is a diagram schematically showing a concept of a reproducing method of the present invention when using a magneto-optical recording medium having first to fourth magnetic layers.

【図5】本発明の光磁気記録媒体の層構成の一実施態様
を示す模式的断面図である。
FIG. 5 is a schematic cross-sectional view showing one embodiment of the layer structure of the magneto-optical recording medium of the present invention.

【図6】本発明の光磁気記録媒体の層構成の一実施態様
を示す模式的断面図である。
FIG. 6 is a schematic cross-sectional view showing one embodiment of the layer structure of the magneto-optical recording medium of the present invention.

【図7】実施例における光磁気記録媒体の断面形状を示
す図である。
FIG. 7 is a diagram showing a cross-sectional shape of a magneto-optical recording medium in an example.

【図8】実施例において用いた記録再生装置を示す模式
図である。
FIG. 8 is a schematic diagram showing a recording / reproducing apparatus used in Examples.

【図9】実施例における再生状態を示す模式図である。FIG. 9 is a schematic diagram showing a reproduction state in an example.

【図10】実施例において得られたC/Nを示すグラフ
である。
FIG. 10 is a graph showing C / N obtained in the examples.

【図11】実施例における再生状態を示す模式図であ
る。
FIG. 11 is a schematic diagram showing a reproduction state in the example.

【符号の説明】[Explanation of symbols]

11 第1の磁性層 12 第2の磁性層 13 第3の磁性層 14 原子スピンの向き 15 磁壁 16 再生様の光ビームスポット 17 磁壁の移動方向 18 媒体の移動方向 11 First Magnetic Layer 12 Second Magnetic Layer 13 Third Magnetic Layer 14 Direction of Atomic Spin 15 Domain Wall 16 Optical Beam Spot for Reading 17 Domain Moving Direction 18 Medium Moving Direction

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、第1、第2、第3の磁性層
が順次積層されている光磁気記録媒体であって、該第1
の磁性層は、周囲温度近傍の温度において該第3の磁性
層に比べて相対的に磁壁抗磁力が小さく磁壁移動度大き
な垂直磁化膜からなり、該第2の磁性層は、該第1の磁
性層および第3の磁性層よりもキュリー温度の低い磁性
層からなり、該第3の磁性層は垂直磁化膜であることを
特徴とする光磁気記録媒体。
1. A magneto-optical recording medium in which at least first, second and third magnetic layers are sequentially laminated, said first magnetic layer comprising:
Is composed of a perpendicular magnetic film having a domain wall coercive force smaller and a domain wall mobility larger than that of the third magnetic layer at a temperature near the ambient temperature. A magneto-optical recording medium comprising a magnetic layer and a magnetic layer having a Curie temperature lower than that of the third magnetic layer, wherein the third magnetic layer is a perpendicular magnetization film.
【請求項2】 第1の磁性層が、各情報トラック間で互
いに磁気的に分離されている請求項1記載の光磁気記録
媒体。
2. The magneto-optical recording medium according to claim 1, wherein the first magnetic layer is magnetically separated from each other between the information tracks.
【請求項3】 少なくとも、第1、第4、第2、第3の
磁性層が順次積層されている光磁気記録媒体であって、
該第1の磁性層は、周囲温度近傍の温度において該第3
の磁性層に比べて相対的に磁壁抗磁力が小さな垂直磁化
膜からなり、該第2の磁性層は、該第1の磁性層および
第3の磁性層よりもキュリー温度の低い磁性層からな
り、該第3の磁性層は垂直磁化膜であり、該第4の磁性
層は、該第2の磁性層よりも高く、該第1の磁性層より
も低いキュリー温度を有し、かつ少なくとも該第2の磁
性層のキュリー温度以上の温度において、該第3の磁性
層に比べて相対的に磁壁抗磁力が小さな垂直磁化膜から
なることを特徴とする光磁気記録媒体。
3. A magneto-optical recording medium in which at least first, fourth, second and third magnetic layers are sequentially laminated,
The first magnetic layer has the third magnetic layer at a temperature near ambient temperature.
Of the perpendicular magnetic film having a domain wall coercive force relatively smaller than that of the first magnetic layer and the second magnetic layer of which the Curie temperature is lower than that of the first magnetic layer and the third magnetic layer. , The third magnetic layer is a perpendicular magnetization film, the fourth magnetic layer has a Curie temperature higher than that of the second magnetic layer and lower than that of the first magnetic layer, and at least the A magneto-optical recording medium comprising a perpendicular magnetic film having a domain wall coercive force relatively smaller than that of the third magnetic layer at a temperature equal to or higher than the Curie temperature of the second magnetic layer.
【請求項4】 第4の磁性層が、前記第2の磁性層に近
づく程キュリー温度が低くなるように膜厚方向にキュリ
ー温度の勾配を有する請求項3記載の光磁気記録媒体。
4. The magneto-optical recording medium according to claim 3, wherein the fourth magnetic layer has a Curie temperature gradient in the film thickness direction such that the Curie temperature becomes lower as it gets closer to the second magnetic layer.
【請求項5】 第4の磁性層が、希土類−鉄族元素非晶
質合金からなり、希土類元素副格子磁化優勢な組成であ
る請求項3または4記載の光磁気記録媒体。
5. The magneto-optical recording medium according to claim 3, wherein the fourth magnetic layer is made of a rare earth-iron group element amorphous alloy and has a composition in which the rare earth element sublattice magnetization is dominant.
【請求項6】 第4の磁性層が、キュリー温度以下の温
度に補償温度を有する請求項5記載の光磁気記録媒体。
6. The magneto-optical recording medium according to claim 5, wherein the fourth magnetic layer has a compensation temperature at a temperature equal to or lower than the Curie temperature.
【請求項7】 第1及び第4の磁性層が、各情報トラッ
ク間で互いに磁気的に分離されている請求項3〜6の何
れか一つの項に記載の光磁気記録媒体。
7. The magneto-optical recording medium according to claim 3, wherein the first and fourth magnetic layers are magnetically separated from each other between the information tracks.
【請求項8】 請求項1または2に記載の光磁気記録媒
体から記録情報を再生する方法であって、光ビームを該
媒体に対して相対的に移動させながら前記第1の磁性層
の側から照射し、該媒体上に該光ビームのスポットの移
動方向に対して勾配を有する温度分布を形成し、該温度
分布を少なくとも前記第2の磁性層のキュリー温度より
も高い温度領域を有する温度分布とすることによって該
第1の磁性層に形成されていた磁壁を移動させ、該光ビ
ームの反射光の偏光面の変化を検出して記録情報を再生
することを特徴とする再生方法。
8. A method for reproducing recorded information from the magneto-optical recording medium according to claim 1 or 2, wherein the first magnetic layer side is provided while moving a light beam relative to the medium. Temperature to form a temperature distribution having a gradient with respect to the moving direction of the spot of the light beam on the medium, and the temperature distribution has a temperature region having a temperature region higher than at least the Curie temperature of the second magnetic layer. A reproducing method characterized in that the domain wall formed in the first magnetic layer is moved by the distribution, and a change in the polarization plane of the reflected light of the light beam is detected to reproduce the recorded information.
【請求項9】 請求項3〜7の何れか一つの項に記載の
光磁気記録媒体から記録情報を再生する方法であって、
光ビームを該媒体に対して相対的に移動させながら前記
第1の磁性層の側から照射し、該媒体上に該光ビームの
スポットの移動方向に対して勾配を有する温度分布を形
成し、該温度分布は少なくとも前記第2の磁性層のキュ
リー温度よりも高く且つ前記第4の磁性層のキュリー温
度近傍の温度領域を有する温度分布とすることによっ
て、該第1及び第4の磁性層に形成されていた磁壁を移
動させ、該光ビームの反射光の偏光面の変化を検出して
記録情報を再生することを特徴とする再生方法。
9. A method of reproducing recorded information from the magneto-optical recording medium according to claim 3.
Irradiating the light beam from the side of the first magnetic layer while moving the light beam relative to the medium to form a temperature distribution having a gradient with respect to the moving direction of the spot of the light beam on the medium. The temperature distribution has a temperature region that is at least higher than the Curie temperature of the second magnetic layer and has a temperature region near the Curie temperature of the fourth magnetic layer, so that the first and fourth magnetic layers have the same temperature distribution. A reproducing method characterized in that the formed domain wall is moved, and a change in the polarization plane of the reflected light of the light beam is detected to reproduce the recorded information.
【請求項10】 請求項1〜7の何れか一つの項に記載
の光磁気記録媒体から記録情報を再生する再生装置であ
って、光ビームのスポットの移動方向に対して勾配を有
する温度分布を形成できる加熱手段を有することを特徴
とする再生装置。
10. A reproducing apparatus for reproducing recorded information from the magneto-optical recording medium according to claim 1, wherein the temperature distribution has a gradient with respect to a moving direction of a spot of a light beam. A reproducing apparatus having a heating means capable of forming a film.
JP07714193A 1993-04-02 1993-04-02 Magneto-optical recording medium Expired - Fee Related JP3332458B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP07714193A JP3332458B2 (en) 1993-04-02 1993-04-02 Magneto-optical recording medium
EP04075214A EP1426944A3 (en) 1993-04-02 1994-03-30 Method for manufacturing a magneto-optical recording medium
EP00200724A EP1020854A3 (en) 1993-04-02 1994-03-30 Magneto-optical reproducing apparatus
DE69430883T DE69430883T2 (en) 1993-04-02 1994-03-30 Magneto-optical recording medium on which it is possible to record high character density information and methods for reproducing the recorded information
EP94302309A EP0618572B1 (en) 1993-04-02 1994-03-30 Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information
EP01202807A EP1158509A3 (en) 1993-04-02 1994-03-30 Magneto-optical recording method
US08/869,921 US6027825A (en) 1993-04-02 1997-06-05 Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information
US09/471,190 US6403148B1 (en) 1993-04-02 1999-12-23 Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information
US09/689,718 US6399174B1 (en) 1993-04-02 2000-10-13 Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07714193A JP3332458B2 (en) 1993-04-02 1993-04-02 Magneto-optical recording medium

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000100799A Division JP3332905B2 (en) 1994-03-02 2000-04-03 Method and apparatus for reproducing magneto-optical recording medium
JP2001347591A Division JP3631194B2 (en) 2001-11-13 2001-11-13 Method for manufacturing magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH06290496A true JPH06290496A (en) 1994-10-18
JP3332458B2 JP3332458B2 (en) 2002-10-07

Family

ID=13625531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07714193A Expired - Fee Related JP3332458B2 (en) 1993-04-02 1993-04-02 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP3332458B2 (en)

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899726A2 (en) * 1997-08-29 1999-03-03 Canon Kabushiki Kaisha Information recording-reproducing method and magneto-optical medium
WO1999039342A1 (en) * 1998-01-30 1999-08-05 Sony Corporation Magneto-optic recording medium and signal reproducing method
US5953289A (en) * 1997-05-28 1999-09-14 Canon Kabushiki Kaisha Magneto-optical recording-reproducing method utilizing domain wall displacement, and apparatus therefor
US5956296A (en) * 1996-09-18 1999-09-21 Canon Kabushiki Kaisha Information reproducing apparatus for reproducing information by magnetic wall movement
US5956297A (en) * 1996-09-19 1999-09-21 Canon Kabushiki Kaisha Signal reproducing apparatus using movement of magnetic wall
US5962154A (en) * 1996-12-13 1999-10-05 Canon Kabushiki Kaisha Magneto-optical recording medium exclusively for reproduction, method of manufacturing the same and method of reproducing information from the medium
US5966348A (en) * 1996-09-19 1999-10-12 Canon Kabushiki Kaisha Information reproducing method and apparatus for reproducing information by moving magnetic wall
US5991242A (en) * 1997-09-03 1999-11-23 Canon Kabushiki Kaisha Magnetic head drive device, and magneto-optical recording apparatus using the same
US5995472A (en) * 1997-05-06 1999-11-30 Canon Kabushiki Kaisha Laser beam forming temperature distribution of two peaks on a magneto-optical recording medium
US6031810A (en) * 1996-09-18 2000-02-29 Canon Kabushiki Kaisha Using two laser sources on a magneto-optical recording medium for preventing light intensity shortage
US6041024A (en) * 1996-09-18 2000-03-21 Canon Kabushiki Kaisha Signal reproducing apparatus utilizing displacement of magnetic wall
US6058077A (en) * 1996-09-19 2000-05-02 Canon Kabushiki Kaisha Signal reproducing method and apparatus for reproducing information by moving magnetic wall
US6069852A (en) * 1997-07-08 2000-05-30 Canon Kabushiki Kaisha Magneto-optical recording-reproducing method for recording an asymmetrical magnetic domain on a magneto-optical recording medium
US6084830A (en) * 1996-09-19 2000-07-04 Canon Kabushiki Kaisha Signal reproducing apparatus for reproducing information by moving magnetic walls
US6104676A (en) * 1997-09-26 2000-08-15 Canon Kabushiki Kaisha Apparatus for reproducing magneto-optical information utilizing magnetic domain displacement, method therefor, and method for information recording
US6172959B1 (en) 1997-11-06 2001-01-09 Matsushita Electric Industrial Co., Ltd. Optical information processing apparatus
US6177175B1 (en) 1997-10-16 2001-01-23 Canon Kabushiki Kaisha Magneto-optical medium utilizing domain wall displacement
US6180208B1 (en) 1997-01-31 2001-01-30 Canon Kabushiki Kaisha Information recording medium and method for producing the same
US6197440B1 (en) 1998-10-16 2001-03-06 Canon Kabushiki Kaisha Magnetic recording medium
US6221219B1 (en) 1998-09-28 2001-04-24 Canon Kabushiki Kaisha Magneto-optical medium and process for production thereof
US6246641B1 (en) 1997-10-01 2001-06-12 Canon Kabushiki Kaisha Magneto-optical recording-reproducing method and apparatus utilizing domain wall displacement
US6249490B1 (en) 1998-06-10 2001-06-19 Canon Kabushiki Kaisha Magneto-optical recording/reproducing method and apparatus
US6254966B1 (en) 1998-08-04 2001-07-03 Victor Company Of Japan, Ltd. Information recording mediums, supporter used in the mediums, manufacture methods of the supporter, manufacturing apparatus of the supporter and stampers for producing the mediums
US6265062B1 (en) 1996-09-19 2001-07-24 Canon Kabushiki Kaisha Magnetic recording medium capable of reproducing information by displacing magnetic wall and recording-reproducing method therefor
US6298015B1 (en) 1998-06-03 2001-10-02 Canon Kabushiki Kaisha Magneto-optical reproducing method using a magnified magnetic domain
WO2001099103A1 (en) * 2000-06-22 2001-12-27 Matsushita Electric Industrial Co., Ltd. Optical disk recording medium, optical disk device, and master production method
US6338911B1 (en) 1998-10-29 2002-01-15 Sharp Kabushiki Kaisha Magneto-optical recording medium
US6343052B1 (en) 1999-04-15 2002-01-29 Canon Kabushiki Kaisha Magneto-optical medium having film with rounded upper corner and thickness decreasing to the side end on lands
US6345016B1 (en) 1997-09-01 2002-02-05 Canon Kabushiki Kaisha Signal-reproducing method and apparatus utilizing light beam generated temperature distribution and magnetic domain wall displacement
US6388956B1 (en) 1998-11-27 2002-05-14 Sharp Kabushiki Kaisha Magneto-optical storage media
US6418091B1 (en) 1998-12-15 2002-07-09 Sharp Kabushiki Kaisha Magneto-optical recording medium having oxidized side wall between land and groove
US6424602B1 (en) 1998-12-21 2002-07-23 Canon Kabushiki Kaisha Magneto-optical reproducing apparatus
WO2002077987A1 (en) * 2001-03-26 2002-10-03 Hitachi Maxell, Ltd. Magnetooptic recording medium and reprodcuing method therefor
WO2002086882A1 (en) * 2001-04-19 2002-10-31 Canon Kabushiki Kaisha Magneto-optic record medium
US6519212B2 (en) 2000-01-18 2003-02-11 Canon Kabushiki Kaisha Method for setting optimal reproduction power level in domain wall displacement magneto-optical recording device
US6552967B1 (en) 1999-05-19 2003-04-22 Sony Corporation Optical output adjusting apparatus based on shortest recording marks
US6551471B1 (en) 1999-11-30 2003-04-22 Canon Kabushiki Kaisha Ionization film-forming method and apparatus
US6577560B2 (en) 1999-06-28 2003-06-10 Fujitsu Limited Magneto-optic recording medium in which magnetic partition tracks are removed for high track density
US6608799B2 (en) 2000-04-25 2003-08-19 Canon Kabushiki Kaisha Magneto-optical reproduction apparatus with detecting of displacement of domain wall of recording domain
US6614731B2 (en) 2000-02-16 2003-09-02 Canon Kabushiki Kaisha Method and apparatus for recording magnetic domain having an arc shape convex in a forward scanning direction of a magneto-optical recording medium
US6646968B1 (en) 1999-07-02 2003-11-11 Canon Kabushiki Kaisha Magneto-optical recording apparatus and method including method for presetting optimum recording power of recording apparatus
US6665242B2 (en) 1999-12-02 2003-12-16 Canon Kabushiki Kaisha Optical information reproducing apparatus having circuit for adjusting reproducing power
WO2004001739A1 (en) * 2002-06-19 2003-12-31 Sony Corporation Disc-shaped recording medium, manufacturing method thereof, and disc drive device
US6690626B2 (en) 2001-04-19 2004-02-10 Matsushita Electric Industrial Co., Ltd. Optical disk with magnetic layer separated magnetically between tracks and method of magnetically separating tracks of the optical disk
US6707786B2 (en) 1999-05-19 2004-03-16 Fujitsu Limited Optical recording medium having groove wall at specific angle
US6707767B2 (en) 2000-11-15 2004-03-16 Canon Kabushiki Kaisha Domain wall displacement magneto-optical storage medium, and method for reproducing thereof
US6716489B2 (en) 2001-01-16 2004-04-06 Canon Kabushiki Kaisha Method for annealing domain wall displacement type magneto-optical recording medium
US6747919B2 (en) 2001-04-19 2004-06-08 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, and method and apparatus for producing the same
US6765847B2 (en) 2001-04-19 2004-07-20 Matsushita Electric Industrial Co., Ltd. Optical disk and method of magnetically separating tracks of the optical disk
US6767697B2 (en) 2000-10-31 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-optical disk and method for producing same by initializing with a laser having a predetermined wavelength
US6795379B2 (en) 2001-01-09 2004-09-21 Canon Kabushiki Kaisha Magneto-optical medium utilizing domain wall displacement and process of reproduction
US6805901B2 (en) 1999-10-21 2004-10-19 Canon Kabushiki Kaisha Magnetic domain wall displacement type magneto-optical medium and method for manufacturing the same
US6812164B2 (en) 2002-01-28 2004-11-02 Canon Kabushiki Kaisha Method and apparatus for ionization film formation
US6826131B2 (en) 2000-10-11 2004-11-30 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium having multiple magnetic layers
US6894954B2 (en) 2001-01-12 2005-05-17 Canon Kabushiki Kaisha Domain wall-displacement type magneto-optical medium and reproducing method for the same
WO2005083696A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, manufacturing method and manufacturing equipment therefor, method for reproducing record of magnetic recording medium and record reproducing equipment
WO2005106869A1 (en) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, and manufacturing method, manufacturing equipment, recording/reproducing method and record reproducing device thereof
US6965545B2 (en) 2000-08-18 2005-11-15 Matsushita Electric Industrial Co., Ltd. Optical recording medium with prepit regions and recording/reproducing method thereof
US6980490B2 (en) 2001-04-19 2005-12-27 Matsushita Electric Industrial Co., Ltd. Optical disk and manufacturing method for the same
US6980491B2 (en) 2002-04-26 2005-12-27 Canon Kabushiki Kaisha Domain wall displacement type magneto-optical recording medium and recording method
US6985409B2 (en) 2001-12-27 2006-01-10 Canon Kabushiki Kaisha Recording method and apparatus of domain wall displacement type magneto-optical recording medium
US6999398B2 (en) 2001-03-30 2006-02-14 Canon Kabushiki Kaisha Method and apparatus for recording information on information recording medium
US7101656B2 (en) 2001-03-30 2006-09-05 Canon Kabushiki Kaisha Optical disk master, optical disk substrate stamper, process for production thereof, and magneto-optical recording medium
US7126886B2 (en) 2001-04-19 2006-10-24 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium and method for producing the same
US7145847B2 (en) 2002-08-28 2006-12-05 Canon Kabushiki Kaisha Annealed optical information recording medium and optical information recording/reproducing apparatus for the same
US7167436B2 (en) 2002-05-20 2007-01-23 Canon Kabushiki Kaisha Optical recording medium having servo area and groove section
US7173885B2 (en) 2002-12-09 2007-02-06 Canon Kabushiki Kaisha Domain-wall-displacement-type magnetooptical recording medium
US7180831B2 (en) 2001-11-29 2007-02-20 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium having a recording layer of columnar structure
US7187635B2 (en) 2001-04-19 2007-03-06 Canon Kabushiki Kaisha Optical information reproducing method and apparatus for performing reproduction compensation
US7200072B2 (en) 2002-07-19 2007-04-03 Canon Kabushiki Kaisha Domain wall displacement magneto-optical recording and reproducing apparatus
US7210155B2 (en) 2003-07-30 2007-04-24 Canon Kabushiki Kaisha Magneto-optical recording medium having in-plane magnetizing layer
US7224650B2 (en) 2000-11-07 2007-05-29 Matsushita Electric Industrial Co., Ltd. Recording medium, its controller and controlling method
US7235313B2 (en) 2002-10-08 2007-06-26 Matsushita Electic Industrial Co., Ltd. Magneto-optical recording medium, method of manufacturing magneto-optical recording medium, method of recording on magneto-optical recording medium, and method of reproduction from magneto-optical recording medium
US7289408B2 (en) 2003-06-16 2007-10-30 Canon Kabushiki Kaisha Method and apparatus for reproducing recording mark below diffraction limit of light from optical recording medium
US7313055B2 (en) 2002-12-03 2007-12-25 Canon Kabushiki Kaisha Magnetic domain wall displacement type magneto-optical recording medium
EP1873756A1 (en) * 2005-03-30 2008-01-02 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, its recording/reproducing method, and recording/reproducing device
US7376055B2 (en) 2004-01-23 2008-05-20 Canon Kabushiki Kaisha Method of annealing optical recording medium
US7399539B2 (en) 2003-12-15 2008-07-15 Canon Kabushiki Kaisha DWDD-type magneto-optic recording medium including buffer regions between recording track regions and method of producing the same
US7423939B2 (en) 2003-02-17 2008-09-09 Sony Corporation Method for manufacturing magneto-optical recording medium
CN100428334C (en) * 2004-07-27 2008-10-22 松下电器产业株式会社 Magnetic recording medium and method for manufacturing same, and method for recording and reproducing with magnetic recording medium
US7522479B2 (en) 2004-02-02 2009-04-21 Canon Kabushiki Kaisha Domain wall displacement for magneto-optical recording medium having multiple magnetic layers
US7535803B2 (en) 2004-08-02 2009-05-19 Panasonic Corporation Method for recording to and reproducing from a magnetic recording medium, recording and reproduction device for the same, and magnetic recording medium
JP2011100517A (en) * 2009-11-06 2011-05-19 Nippon Hoso Kyokai <Nhk> Device and method for reproducing magneto-optic recording medium
JP2012053957A (en) * 2010-09-02 2012-03-15 Nippon Hoso Kyokai <Nhk> Magnetic recording media, magnetic regenerator, and magnetic reproduction method

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956296A (en) * 1996-09-18 1999-09-21 Canon Kabushiki Kaisha Information reproducing apparatus for reproducing information by magnetic wall movement
US6031810A (en) * 1996-09-18 2000-02-29 Canon Kabushiki Kaisha Using two laser sources on a magneto-optical recording medium for preventing light intensity shortage
US6041024A (en) * 1996-09-18 2000-03-21 Canon Kabushiki Kaisha Signal reproducing apparatus utilizing displacement of magnetic wall
US6084830A (en) * 1996-09-19 2000-07-04 Canon Kabushiki Kaisha Signal reproducing apparatus for reproducing information by moving magnetic walls
US6403205B1 (en) 1996-09-19 2002-06-11 Canon Kabushiki Kaisha Magnetic recording medium capable of reproducing information by displacing magnetic wall and recording-reproducing method therefor
US5956297A (en) * 1996-09-19 1999-09-21 Canon Kabushiki Kaisha Signal reproducing apparatus using movement of magnetic wall
US5966348A (en) * 1996-09-19 1999-10-12 Canon Kabushiki Kaisha Information reproducing method and apparatus for reproducing information by moving magnetic wall
US6265062B1 (en) 1996-09-19 2001-07-24 Canon Kabushiki Kaisha Magnetic recording medium capable of reproducing information by displacing magnetic wall and recording-reproducing method therefor
US6058077A (en) * 1996-09-19 2000-05-02 Canon Kabushiki Kaisha Signal reproducing method and apparatus for reproducing information by moving magnetic wall
US5962154A (en) * 1996-12-13 1999-10-05 Canon Kabushiki Kaisha Magneto-optical recording medium exclusively for reproduction, method of manufacturing the same and method of reproducing information from the medium
US6180208B1 (en) 1997-01-31 2001-01-30 Canon Kabushiki Kaisha Information recording medium and method for producing the same
US6454915B1 (en) 1997-01-31 2002-09-24 Canon Kabushiki Kaisha Information recording medium and method for producing the same
US5995472A (en) * 1997-05-06 1999-11-30 Canon Kabushiki Kaisha Laser beam forming temperature distribution of two peaks on a magneto-optical recording medium
US5953289A (en) * 1997-05-28 1999-09-14 Canon Kabushiki Kaisha Magneto-optical recording-reproducing method utilizing domain wall displacement, and apparatus therefor
US6069852A (en) * 1997-07-08 2000-05-30 Canon Kabushiki Kaisha Magneto-optical recording-reproducing method for recording an asymmetrical magnetic domain on a magneto-optical recording medium
US6249489B1 (en) 1997-08-29 2001-06-19 Canon Kabushiki Kaisha Information recording-reproducing method utilizing domain wall displacement, and magneto optical medium
EP0899726A2 (en) * 1997-08-29 1999-03-03 Canon Kabushiki Kaisha Information recording-reproducing method and magneto-optical medium
US6345016B1 (en) 1997-09-01 2002-02-05 Canon Kabushiki Kaisha Signal-reproducing method and apparatus utilizing light beam generated temperature distribution and magnetic domain wall displacement
US5991242A (en) * 1997-09-03 1999-11-23 Canon Kabushiki Kaisha Magnetic head drive device, and magneto-optical recording apparatus using the same
US6104676A (en) * 1997-09-26 2000-08-15 Canon Kabushiki Kaisha Apparatus for reproducing magneto-optical information utilizing magnetic domain displacement, method therefor, and method for information recording
US6246641B1 (en) 1997-10-01 2001-06-12 Canon Kabushiki Kaisha Magneto-optical recording-reproducing method and apparatus utilizing domain wall displacement
US6177175B1 (en) 1997-10-16 2001-01-23 Canon Kabushiki Kaisha Magneto-optical medium utilizing domain wall displacement
US6172959B1 (en) 1997-11-06 2001-01-09 Matsushita Electric Industrial Co., Ltd. Optical information processing apparatus
US6572957B1 (en) 1998-01-30 2003-06-03 Sony Corporation Magneto-optical recording medium with four layered recording layer having specific relative magnetic anisotropy values
WO1999039342A1 (en) * 1998-01-30 1999-08-05 Sony Corporation Magneto-optic recording medium and signal reproducing method
US6298015B1 (en) 1998-06-03 2001-10-02 Canon Kabushiki Kaisha Magneto-optical reproducing method using a magnified magnetic domain
US6249490B1 (en) 1998-06-10 2001-06-19 Canon Kabushiki Kaisha Magneto-optical recording/reproducing method and apparatus
US6254966B1 (en) 1998-08-04 2001-07-03 Victor Company Of Japan, Ltd. Information recording mediums, supporter used in the mediums, manufacture methods of the supporter, manufacturing apparatus of the supporter and stampers for producing the mediums
US6221219B1 (en) 1998-09-28 2001-04-24 Canon Kabushiki Kaisha Magneto-optical medium and process for production thereof
US6197440B1 (en) 1998-10-16 2001-03-06 Canon Kabushiki Kaisha Magnetic recording medium
US6338911B1 (en) 1998-10-29 2002-01-15 Sharp Kabushiki Kaisha Magneto-optical recording medium
US6388956B1 (en) 1998-11-27 2002-05-14 Sharp Kabushiki Kaisha Magneto-optical storage media
US6707766B2 (en) 1998-11-27 2004-03-16 Sharp Kabushiki Kaisha Magneto-optical storage media
US6418091B1 (en) 1998-12-15 2002-07-09 Sharp Kabushiki Kaisha Magneto-optical recording medium having oxidized side wall between land and groove
US6424602B1 (en) 1998-12-21 2002-07-23 Canon Kabushiki Kaisha Magneto-optical reproducing apparatus
US6343052B1 (en) 1999-04-15 2002-01-29 Canon Kabushiki Kaisha Magneto-optical medium having film with rounded upper corner and thickness decreasing to the side end on lands
US6707786B2 (en) 1999-05-19 2004-03-16 Fujitsu Limited Optical recording medium having groove wall at specific angle
US6552967B1 (en) 1999-05-19 2003-04-22 Sony Corporation Optical output adjusting apparatus based on shortest recording marks
CN1305056C (en) * 1999-05-19 2007-03-14 索尼株式会社 Optical output regulating apparatus and method
US6744700B2 (en) 1999-05-19 2004-06-01 Sony Corporation Optical output adjusting apparatus based on shortest recording marks
US6577560B2 (en) 1999-06-28 2003-06-10 Fujitsu Limited Magneto-optic recording medium in which magnetic partition tracks are removed for high track density
US6646968B1 (en) 1999-07-02 2003-11-11 Canon Kabushiki Kaisha Magneto-optical recording apparatus and method including method for presetting optimum recording power of recording apparatus
US6805901B2 (en) 1999-10-21 2004-10-19 Canon Kabushiki Kaisha Magnetic domain wall displacement type magneto-optical medium and method for manufacturing the same
US6551471B1 (en) 1999-11-30 2003-04-22 Canon Kabushiki Kaisha Ionization film-forming method and apparatus
US6665242B2 (en) 1999-12-02 2003-12-16 Canon Kabushiki Kaisha Optical information reproducing apparatus having circuit for adjusting reproducing power
US6519212B2 (en) 2000-01-18 2003-02-11 Canon Kabushiki Kaisha Method for setting optimal reproduction power level in domain wall displacement magneto-optical recording device
US6614731B2 (en) 2000-02-16 2003-09-02 Canon Kabushiki Kaisha Method and apparatus for recording magnetic domain having an arc shape convex in a forward scanning direction of a magneto-optical recording medium
US6608799B2 (en) 2000-04-25 2003-08-19 Canon Kabushiki Kaisha Magneto-optical reproduction apparatus with detecting of displacement of domain wall of recording domain
WO2001099103A1 (en) * 2000-06-22 2001-12-27 Matsushita Electric Industrial Co., Ltd. Optical disk recording medium, optical disk device, and master production method
US6965545B2 (en) 2000-08-18 2005-11-15 Matsushita Electric Industrial Co., Ltd. Optical recording medium with prepit regions and recording/reproducing method thereof
US6826131B2 (en) 2000-10-11 2004-11-30 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium having multiple magnetic layers
US6975564B2 (en) 2000-10-31 2005-12-13 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium for use in domain wall displacement detection system, and method for producing the same
US6767697B2 (en) 2000-10-31 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-optical disk and method for producing same by initializing with a laser having a predetermined wavelength
US7224650B2 (en) 2000-11-07 2007-05-29 Matsushita Electric Industrial Co., Ltd. Recording medium, its controller and controlling method
US6707767B2 (en) 2000-11-15 2004-03-16 Canon Kabushiki Kaisha Domain wall displacement magneto-optical storage medium, and method for reproducing thereof
US6795379B2 (en) 2001-01-09 2004-09-21 Canon Kabushiki Kaisha Magneto-optical medium utilizing domain wall displacement and process of reproduction
US6894954B2 (en) 2001-01-12 2005-05-17 Canon Kabushiki Kaisha Domain wall-displacement type magneto-optical medium and reproducing method for the same
US7165263B2 (en) 2001-01-16 2007-01-16 Canon Kabushiki Kaisha Method for annealing domain wall displacement type magneto-optical disc and magneto-optical disc
US6716489B2 (en) 2001-01-16 2004-04-06 Canon Kabushiki Kaisha Method for annealing domain wall displacement type magneto-optical recording medium
WO2002077987A1 (en) * 2001-03-26 2002-10-03 Hitachi Maxell, Ltd. Magnetooptic recording medium and reprodcuing method therefor
US6999398B2 (en) 2001-03-30 2006-02-14 Canon Kabushiki Kaisha Method and apparatus for recording information on information recording medium
US7101656B2 (en) 2001-03-30 2006-09-05 Canon Kabushiki Kaisha Optical disk master, optical disk substrate stamper, process for production thereof, and magneto-optical recording medium
US6690626B2 (en) 2001-04-19 2004-02-10 Matsushita Electric Industrial Co., Ltd. Optical disk with magnetic layer separated magnetically between tracks and method of magnetically separating tracks of the optical disk
WO2002086882A1 (en) * 2001-04-19 2002-10-31 Canon Kabushiki Kaisha Magneto-optic record medium
US7187635B2 (en) 2001-04-19 2007-03-06 Canon Kabushiki Kaisha Optical information reproducing method and apparatus for performing reproduction compensation
US6747919B2 (en) 2001-04-19 2004-06-08 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, and method and apparatus for producing the same
US6765847B2 (en) 2001-04-19 2004-07-20 Matsushita Electric Industrial Co., Ltd. Optical disk and method of magnetically separating tracks of the optical disk
US6980490B2 (en) 2001-04-19 2005-12-27 Matsushita Electric Industrial Co., Ltd. Optical disk and manufacturing method for the same
US7933180B2 (en) 2001-04-19 2011-04-26 Canon Kabushiki Kaisha Optical information reproducing method and apparatus for performing reproduction compensation
US7126886B2 (en) 2001-04-19 2006-10-24 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium and method for producing the same
US7180831B2 (en) 2001-11-29 2007-02-20 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium having a recording layer of columnar structure
US6985409B2 (en) 2001-12-27 2006-01-10 Canon Kabushiki Kaisha Recording method and apparatus of domain wall displacement type magneto-optical recording medium
US6812164B2 (en) 2002-01-28 2004-11-02 Canon Kabushiki Kaisha Method and apparatus for ionization film formation
US6980491B2 (en) 2002-04-26 2005-12-27 Canon Kabushiki Kaisha Domain wall displacement type magneto-optical recording medium and recording method
US7167436B2 (en) 2002-05-20 2007-01-23 Canon Kabushiki Kaisha Optical recording medium having servo area and groove section
WO2004001739A1 (en) * 2002-06-19 2003-12-31 Sony Corporation Disc-shaped recording medium, manufacturing method thereof, and disc drive device
US7233547B2 (en) 2002-06-19 2007-06-19 Sony Corporation Disc-shaped recording medium, manufacturing method thereof, and disc drive device
US7200072B2 (en) 2002-07-19 2007-04-03 Canon Kabushiki Kaisha Domain wall displacement magneto-optical recording and reproducing apparatus
US7145847B2 (en) 2002-08-28 2006-12-05 Canon Kabushiki Kaisha Annealed optical information recording medium and optical information recording/reproducing apparatus for the same
US7235313B2 (en) 2002-10-08 2007-06-26 Matsushita Electic Industrial Co., Ltd. Magneto-optical recording medium, method of manufacturing magneto-optical recording medium, method of recording on magneto-optical recording medium, and method of reproduction from magneto-optical recording medium
US7313055B2 (en) 2002-12-03 2007-12-25 Canon Kabushiki Kaisha Magnetic domain wall displacement type magneto-optical recording medium
US7173885B2 (en) 2002-12-09 2007-02-06 Canon Kabushiki Kaisha Domain-wall-displacement-type magnetooptical recording medium
US7423939B2 (en) 2003-02-17 2008-09-09 Sony Corporation Method for manufacturing magneto-optical recording medium
US7289408B2 (en) 2003-06-16 2007-10-30 Canon Kabushiki Kaisha Method and apparatus for reproducing recording mark below diffraction limit of light from optical recording medium
US7210155B2 (en) 2003-07-30 2007-04-24 Canon Kabushiki Kaisha Magneto-optical recording medium having in-plane magnetizing layer
US7399539B2 (en) 2003-12-15 2008-07-15 Canon Kabushiki Kaisha DWDD-type magneto-optic recording medium including buffer regions between recording track regions and method of producing the same
US7376055B2 (en) 2004-01-23 2008-05-20 Canon Kabushiki Kaisha Method of annealing optical recording medium
US7522479B2 (en) 2004-02-02 2009-04-21 Canon Kabushiki Kaisha Domain wall displacement for magneto-optical recording medium having multiple magnetic layers
WO2005083696A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, manufacturing method and manufacturing equipment therefor, method for reproducing record of magnetic recording medium and record reproducing equipment
WO2005106869A1 (en) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, and manufacturing method, manufacturing equipment, recording/reproducing method and record reproducing device thereof
US7773343B2 (en) 2004-04-28 2010-08-10 Panasonic Corporation Magnetic recording medium, and manufacturing method, manufacturing apparatus, recording and reproduction method, and recording and reproduction apparatus for the same
CN100428334C (en) * 2004-07-27 2008-10-22 松下电器产业株式会社 Magnetic recording medium and method for manufacturing same, and method for recording and reproducing with magnetic recording medium
US7535803B2 (en) 2004-08-02 2009-05-19 Panasonic Corporation Method for recording to and reproducing from a magnetic recording medium, recording and reproduction device for the same, and magnetic recording medium
EP1873756A4 (en) * 2005-03-30 2008-10-29 Matsushita Electric Ind Co Ltd Magnetic recording medium, its recording/reproducing method, and recording/reproducing device
EP1873756A1 (en) * 2005-03-30 2008-01-02 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, its recording/reproducing method, and recording/reproducing device
JP2011100517A (en) * 2009-11-06 2011-05-19 Nippon Hoso Kyokai <Nhk> Device and method for reproducing magneto-optic recording medium
JP2012053957A (en) * 2010-09-02 2012-03-15 Nippon Hoso Kyokai <Nhk> Magnetic recording media, magnetic regenerator, and magnetic reproduction method

Also Published As

Publication number Publication date
JP3332458B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3332458B2 (en) Magneto-optical recording medium
EP0618572B1 (en) Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information
JP3332750B2 (en) Magnetic recording medium, recording method, reproducing method, and method of manufacturing magnetic recording medium
JPH11134732A (en) Information recording/reproducing method
US5995472A (en) Laser beam forming temperature distribution of two peaks on a magneto-optical recording medium
JP3477384B2 (en) Magneto-optical recording medium
JPH10149592A (en) Magneto-optical recording medium and signal reproducing method for reproducing information by utilizing magnetic wall
JPH06124500A (en) Magneto-optical recording medium and playback method of this medium
KR20020061104A (en) Domain mall-displacement type magneto-optical medium and reproducing method for the same
JPH08147777A (en) Optical recording medium, recording and reproducing method and reproducing device
EP0668585B1 (en) Information recording method and system using a magneto-optical medium
US6795379B2 (en) Magneto-optical medium utilizing domain wall displacement and process of reproduction
JP3631194B2 (en) Method for manufacturing magneto-optical recording medium
JP3332905B2 (en) Method and apparatus for reproducing magneto-optical recording medium
JP2003263806A (en) Magneto-optical recording medium
JPH11328762A (en) Magneto-optical recording medium
US20030189878A1 (en) Magneto-optical recording medium having magnetic film formed by sputtering and method of producing same
JPH11296925A (en) Magneto-optical record medium, reproducing method and reproducer
JP2000207791A (en) Magnetic storage medium
JP3332913B2 (en) Magnetic recording medium
JPH10308043A (en) Information reproducing method and information reproducing device
JPH10275370A (en) Magneto-optical recording and reproducing method and magneto-optical recording medium
JP2005050400A (en) Magneto-optical recording medium
JPH07254176A (en) Magneto-optical recording medium and method for reproducing information with same medium
JPH08249737A (en) Optical recording medium and reproducing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080726

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080726

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100726

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees