JPH06272082A - Colored film formed on surface of aluminum material and electrolytic coloring method - Google Patents
Colored film formed on surface of aluminum material and electrolytic coloring methodInfo
- Publication number
- JPH06272082A JPH06272082A JP5848693A JP5848693A JPH06272082A JP H06272082 A JPH06272082 A JP H06272082A JP 5848693 A JP5848693 A JP 5848693A JP 5848693 A JP5848693 A JP 5848693A JP H06272082 A JPH06272082 A JP H06272082A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic
- aluminum material
- micropores
- film
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光の干渉による自然発
色を利用してアルミニウム又はアルミニウム合金(以
下、アルミニウム材料で総称する)の表面に形成した着
色皮膜及び電解着色法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a colored film formed on the surface of aluminum or an aluminum alloy (generally referred to as an aluminum material hereinafter) by utilizing spontaneous coloring due to light interference, and an electrolytic coloring method.
【0002】[0002]
【従来の技術】アルミニウム材料を電解着色する方法と
して、アルミニウム材料に陽極酸化皮膜を形成した後、
金属塩含有溶液中で陽極酸化皮膜の微細孔に金属又は金
属化合物を電解析出させ、発色させる二次電解着色法が
実用化されている。この方法で得られる色調は、褐色系
の淡色から黒色に限られている。多色が得られる方式と
して、特公昭54−13860号公報では、陽極酸化皮
膜を形成した後、リン酸を含む電解浴中で微細孔を拡大
する中間処理を行い、次いで金属塩を含む溶液中で交流
電解する三次電解着色法が提案されている。この方法で
形成された着色皮膜に入射した光は、陽極酸化皮膜とア
ルミニウム材料との界面及び電解着色析出物面上で反射
する。これら反射光の間に干渉が生じた干渉作用によっ
て発色する。しかし、出現する色相の範囲が狭く、淡色
のものしか得られていない。また、着色均一性にも劣
る。2. Description of the Related Art As a method for electrolytically coloring an aluminum material, after forming an anodic oxide film on the aluminum material,
A secondary electrolytic coloring method in which a metal or a metal compound is electrolytically deposited in fine pores of an anodized film in a metal salt-containing solution to develop a color has been put into practical use. The color tones obtained by this method are limited to light brownish colors to black. As a method for obtaining multiple colors, Japanese Patent Publication No. 54-13860 discloses that after forming an anodic oxide film, an intermediate treatment for expanding fine pores is performed in an electrolytic bath containing phosphoric acid, and then in a solution containing a metal salt. Has proposed a third electrolytic coloring method in which alternating current electrolysis is performed. Light incident on the colored film formed by this method is reflected on the interface between the anodized film and the aluminum material and on the surface of the electrolytically colored deposit. Color is produced by the interference effect of interference between these reflected lights. However, the range of hues that appear is narrow, and only light colors are obtained. Also, the coloring uniformity is poor.
【0003】[0003]
【発明が解決しようとする課題】二次電解着色では、淡
色から黒色まで明度を変化させることができる。この場
合、アルミニウム材料1の表面に形成された陽極酸化皮
膜2の微細孔3に、電解析出物4が充填されている。電
解析出物4の高さは、アルミニウム材料1の不純物やバ
リヤー層5の電気抵抗のバラツキ等による影響を受け、
不揃いになっている。そのため、ここでの光の散乱及び
吸収が著しく、得られる色相が褐色系に限られる。三次
電解法では、図2(a)に示すように微細孔3の底部に
拡大部6が形成されており、拡大部6に電解析出物4が
充填されている。この場合の発色原理は、電解析出物4
の上面での反射光7と陽極酸化皮膜2とアルミニウム材
料1の界面での反射光8との間の干渉である。出現する
干渉色は、反射光7と反射光8との光路差に対応する。
電解析出物4は、微細孔3の拡大部6に析出するため、
二次電解着色の場合と比較して、個々の高さのバラツキ
が小さく、電解析出物4の上面は一つの平面を形成す
る。In the secondary electrolytic coloring, the lightness can be changed from a light color to a black color. In this case, the electrolytic deposits 4 are filled in the fine pores 3 of the anodized film 2 formed on the surface of the aluminum material 1. The height of the electrolytic deposit 4 is affected by impurities in the aluminum material 1 and variations in the electric resistance of the barrier layer 5,
It is out of alignment. Therefore, the scattering and absorption of light is remarkable here, and the obtained hue is limited to brown. In the third electrolysis method, as shown in FIG. 2A, the enlarged portion 6 is formed at the bottom of the fine hole 3, and the enlarged portion 6 is filled with the electrolytic deposit 4. In this case, the coloring principle is that electrolytic deposit 4
The interference is between the reflected light 7 on the upper surface and the reflected light 8 on the interface between the anodic oxide film 2 and the aluminum material 1. The interference color that appears corresponds to the optical path difference between the reflected light 7 and the reflected light 8.
Since the electrolytic deposit 4 is deposited on the enlarged portion 6 of the fine hole 3,
Compared to the case of secondary electrolytic coloring, the variation in height is small, and the upper surface of the electrolytic deposit 4 forms one flat surface.
【0004】しかし、中間処理によって微細孔3の底部
に形成される拡大部6が低いため、電解析出物4が拡大
部6によって高さ規制される。そのため、反射光7と反
射光8との光路差が限定されたものになり、干渉する色
相の範囲が狭くなる。また、電解析出物4の高さが小さ
く且つ光が下方に透過し易いことから、反射光7の光強
度が小さく、反射光8の光強度が大きくなる。その結
果、干渉の程度が低く、淡色の濁った色調しか得られな
い。広い範囲の色調を得ようとすると、図2(b)に示
すように電解析出物4を高く析出することが要求され
る。この場合、電解析出物4は、拡大部6を超えて小径
の微細孔3までを充填することになる。その結果、電解
析出物4それぞれの高さが不均一になり、光の干渉が生
じることなく褐色系の色調に変化する。特に、複雑な形
状をもつアルミニウム材料を電解着色する場合には、電
解槽の電位分布の影響を受け、電解析出物4の高さが均
一にならず、同一材料中に異なった色に発色する色ムラ
を生じる。However, since the enlarged portion 6 formed at the bottom of the fine holes 3 by the intermediate treatment is low, the height of the electrolytic deposit 4 is restricted by the enlarged portion 6. Therefore, the optical path difference between the reflected light 7 and the reflected light 8 is limited, and the range of hues that interfere with each other is narrowed. Further, since the height of the electrolytic deposit 4 is small and the light is easily transmitted downward, the light intensity of the reflected light 7 is small and the light intensity of the reflected light 8 is large. As a result, the degree of interference is low, and only a pale and muddy color tone can be obtained. In order to obtain a wide range of color tones, it is required to highly deposit the electrolytic deposit 4 as shown in FIG. 2 (b). In this case, the electrolytic deposit 4 fills up to the small diameter micropores 3 beyond the enlarged portion 6. As a result, the heights of the electrolytic deposits 4 become non-uniform, and the color changes to a brownish color without causing light interference. In particular, when electrolytically coloring an aluminum material having a complicated shape, the height of the electrolytic deposit 4 is not uniform due to the influence of the potential distribution in the electrolytic cell, and different colors are formed in the same material. Unevenness occurs.
【0005】このように、従来の電解着色で広範囲の色
相をもち、濃い色及び均一な着色性を得ることは困難で
あった。また、特開平54−112347号公報におい
ても、同様に光の干渉によって発色させたアルミニウム
材料が紹介されているが、得られる干渉色は、明度が高
く不自然な色調を呈するものになりがちである。また、
特開平3−33802号公報においても、光の干渉作用
によって発色させたアルミニウム材料が紹介されている
が、電解析出物の高さが小さいため、淡色のものしか得
られない。本発明は、このような問題を解消すべく案出
されたものであり、陽極酸化皮膜に形成されている微細
孔の形状及び電解析出物の高さを制御することにより、
青,緑,黄,赤等の広範囲の色相を呈し、明度が低く濃
色の皮膜をアルミニウム材料表面に形成することを目的
とする。As described above, it has been difficult to obtain a deep color and a uniform coloring property with a wide range of hues by the conventional electrolytic coloring. Further, Japanese Patent Laid-Open No. 54-112347 also introduces an aluminum material that is similarly colored by light interference, but the interference color obtained tends to have a high brightness and an unnatural color tone. is there. Also,
JP-A-3-33802 also introduces an aluminum material that is colored by the interference of light, but since the height of electrolytic deposits is small, only light-colored materials can be obtained. The present invention has been devised to solve such a problem, by controlling the shape of the fine pores formed in the anodic oxide film and the height of electrolytic deposits,
The purpose is to form a deep-colored film having a wide range of hues such as blue, green, yellow, and red with low brightness and aluminum material.
【0006】[0006]
【課題を解決するための手段】本発明に従った電解着色
法は、次の工程を経る。 第1工程:アルミニウム材料表面に陽極酸化皮膜を形成
する陽極酸化工程 第2工程:陽極酸化皮膜の微細孔底部を拡大する中間処
理工程 第3工程:形成された拡大部から更に垂直下方に延びる
下部微細孔を形成する再陽極酸化工程 第4工程:金属塩及びバリヤー型皮膜形成剤を含む溶液
中で、バリヤー層の厚さを調整するバリヤー層調整工程 第5工程:引き続き同一溶液中で電解析出物の上面が微
細孔拡大部の範囲に維持されるように、微細孔拡大部及
び下部微細孔に電解析出物を析出させる電解着色工程 以下、各工程を詳細に説明する。なお、各工程で使用さ
れる各種溶液は、建浴時にはアルミニウム及びその合金
元素を溶解していないが、操業の推移に従ってアルミニ
ウム及び合金元素が溶解した液になる。そこで、溶液中
のアルミニウム及び合金元素の溶解量をコントロールし
ながら処理することが好ましい。The electrolytic coloring method according to the present invention includes the following steps. First step: Anodizing step of forming an anodized film on the surface of the aluminum material Second step: Intermediate treatment step of enlarging the bottom of the micropores of the anodized film Third step: Lower part extending vertically downward from the formed enlarging part Re-anodizing step for forming fine pores Fourth step: Barrier layer adjusting step for adjusting the thickness of the barrier layer in a solution containing a metal salt and a barrier-type film forming agent Fifth step: subsequent electric analysis in the same solution Electrolytic Coloring Step of Precipitating Electrolytic Precipitates on the Micropore Expansion Portions and Lower Micropores so that the Top Surface of the Output is maintained within the Micropore Expansion Areas. Each step will be described in detail below. The various solutions used in each step do not dissolve aluminum and its alloying elements during the construction bath, but become a solution in which aluminum and alloying elements are dissolved according to the transition of operation. Therefore, it is preferable to perform the treatment while controlling the amounts of aluminum and alloy elements dissolved in the solution.
【0007】第1工程:(陽極酸化処理) 脱脂,エッチング等によって表面が清浄化されたアルミ
ニウム材料に、常法どおり陽極酸化皮膜を形成する。こ
のときの電解液としては、硫酸,リン酸,クロム酸等の
無機酸、蓚酸,酒石酸等の有機酸、或いはこれらの混合
液が使用される。また、水酸化ナトリウム,炭酸ナトリ
ウム等のアルカリ性水溶液も使用可能である。陽極酸化
は、電解液中でアルミニウム材料に正の直流,正のパル
ス電圧或いは交直重畳電圧を印加することによって行わ
れる。陽極酸化によってアルミニウム材料1の表面に形
成された陽極酸化皮膜2は、図3(a)に示すように、
バリヤー層5を介して径10nm程度の微細孔3が多数
分布した構造をもっている。陽極酸化皮膜2の厚みは、
用途に応じて任意に調整される。たとえば、建材用とし
ては、耐食性も考慮して約10〜25μmの厚みがあれ
ば良い。First Step: (Anodic Oxidation Treatment) An anodized film is formed on an aluminum material whose surface has been cleaned by degreasing, etching, etc., in the usual manner. As the electrolytic solution at this time, an inorganic acid such as sulfuric acid, phosphoric acid or chromic acid, an organic acid such as oxalic acid or tartaric acid, or a mixed solution thereof is used. Further, an alkaline aqueous solution such as sodium hydroxide or sodium carbonate can also be used. Anodization is performed by applying a positive direct current, a positive pulse voltage, or an AC / DC superimposed voltage to the aluminum material in the electrolytic solution. The anodic oxide coating 2 formed on the surface of the aluminum material 1 by anodic oxidation is, as shown in FIG.
It has a structure in which a large number of fine pores 3 having a diameter of about 10 nm are distributed through the barrier layer 5. The thickness of the anodized film 2 is
It is arbitrarily adjusted according to the application. For example, for building materials, a thickness of about 10 to 25 μm may be used in consideration of corrosion resistance.
【0008】第2工程:(中間処理) 陽極酸処理されたアルミニウム材料1をリン酸を主成分
とする溶液に浸漬し、交流,正の直流又は正のパルス電
圧を印加するとき、図3(b)に示すように、微細孔3
の底部に拡大部6が形成される。拡大部6の深さは、発
色させようとする色調を考慮して50〜100nmの範
囲で決められる。拡大部6は、蓚酸,酒石酸等の有機酸
単独溶液又は有機酸を主体とし硫酸等の無機酸を添加し
た溶液にアルミニウム材料1を浸漬し、交流,正の直流
又は正のパルス電圧を印加しピーク電圧30V以上で1
〜19分間電解することによっても形成される。拡大部
6の径は、電解電圧に比例して大きくなる。たとえば、
2%蓚酸溶液中における電解では、電解電圧10Vで径
が約10nm,電解電圧50Vで径が約50nmとな
る。Second step: (intermediate treatment) When the anodized aluminum material 1 is dipped in a solution containing phosphoric acid as a main component and an alternating current, a positive direct current or a positive pulse voltage is applied, As shown in b),
The enlarged portion 6 is formed at the bottom of the. The depth of the enlarged portion 6 is determined in the range of 50 to 100 nm in consideration of the color tone to be developed. The expanding portion 6 is a method for immersing the aluminum material 1 in a solution of an organic acid such as oxalic acid or tartaric acid or a solution containing an organic acid as a main component and an inorganic acid such as sulfuric acid, and applying an alternating current, a positive direct current or a positive pulse voltage. 1 at peak voltage of 30V or more
It is also formed by electrolyzing for -19 minutes. The diameter of the enlarged portion 6 increases in proportion to the electrolysis voltage. For example,
In electrolysis in a 2% oxalic acid solution, the diameter is about 10 nm at an electrolysis voltage of 10 V, and the diameter is about 50 nm at an electrolysis voltage of 50 V.
【0009】第3工程:(再陽極酸化処理) 第3工程は、図3(c)に示すように微細孔3の底部に
第2工程で形成した拡大部6の下に、拡大部6よりも小
径の下部微細孔11を更に形成する。結果として、拡大
部6が微細孔3〜11の中間に位置した多孔質構造の陽
極酸化皮膜2となる。電解液としては、硫酸等の無機
酸,蓚酸等の有機酸,或いはこれらの混合溶液が使用さ
れ、好ましくは10〜30℃の温度に保持される。交
流,正の直流,正のパルス電圧,交直重畳等の正の電圧
部分を含むものである限り、どのような波形をもった電
解電流でもよい。第3工程で最も重要な条件は、図3
(c)に示す再陽極酸化皮膜10の厚さである。下部微
細孔11及び拡大部6は、後続する電解着色工程で析出
する電解析出物4の容器として機能する。Third step: (re-anodizing treatment) In the third step, as shown in FIG. 3 (c), the enlarged portion 6 is formed below the enlarged portion 6 formed in the second step at the bottom of the fine hole 3. Further, the lower minute hole 11 having a small diameter is further formed. As a result, the enlarged portion 6 becomes the porous anodic oxide film 2 located in the middle of the fine pores 3 to 11. As the electrolytic solution, an inorganic acid such as sulfuric acid, an organic acid such as oxalic acid, or a mixed solution thereof is used, and preferably maintained at a temperature of 10 to 30 ° C. Any electrolytic current having any waveform may be used as long as it includes a positive voltage portion such as AC, positive DC, positive pulse voltage, and AC / DC superposition. The most important condition in the third step is shown in FIG.
It is the thickness of the reanodized film 10 shown in (c). The lower micropores 11 and the enlarged portion 6 function as a container for electrolytic deposits 4 deposited in the subsequent electrolytic coloring step.
【0010】再陽極酸化処理によって形成される下部微
細孔10の孔径は、電解電圧に比例し、電解電圧を高く
するほど大きくなる。しかし、孔径の増大に伴って陽極
酸化皮膜2全体の強度が低下し、皮膜剥離や割れ等の問
題が発生する。そのため、電解電圧は、第1工程(陽極
酸化処理)で印加した電圧或いはこれ以下の電圧、具体
的には10〜17Vの範囲で設定することが好ましい。
電解時間は、再陽極酸化皮膜10が目標厚みをもつよう
に電気量計で管理し、所定の電気量に達した時点で再陽
極酸化処理を停止する。電解時間は、通常約10秒〜1
0分である。これによって、孔径約10nmの下部微細
孔10が形成される。The pore size of the lower micropores 10 formed by the re-anodizing treatment is proportional to the electrolysis voltage and becomes larger as the electrolysis voltage is increased. However, as the pore size increases, the strength of the anodic oxide coating 2 as a whole decreases, causing problems such as coating peeling and cracking. Therefore, it is preferable that the electrolysis voltage is set to a voltage applied in the first step (anodizing treatment) or a voltage lower than this, specifically, in the range of 10 to 17V.
The electrolysis time is controlled by a coulometer so that the reanodized film 10 has a target thickness, and the reanodization process is stopped when a predetermined amount of electricity is reached. The electrolysis time is usually about 10 seconds to 1
0 minutes. As a result, the lower micropores 10 having a pore diameter of about 10 nm are formed.
【0011】得られる色調に不透明感を付与するために
は、図3(d)に示すように下部微細孔11の下端に凹
凸12を形成する。凹凸12は、再陽極酸化処理終了直
前に電流密度を1/100〜1/10に低下させて電解
を行うことによって形成される。凹凸12の形成と共
に、アルミニウム材料1と陽極酸化皮膜2との界面にも
凹凸13が形成される。たとえば、電流密度0.2〜2
A/dm2 で再陽極酸化処理を行うとき、再陽極酸化処
理に終了直前に電流密度を1/100〜1/10に低下
させ、この条件下で電圧0.1〜5Vを印加し約10秒
〜5分間電解を継続させる。これにより、高さ約10〜
100nmで複雑な凹凸12が下部微細孔11の下端部
に形成される。In order to impart opacity to the obtained color tone, unevenness 12 is formed at the lower end of the lower fine hole 11 as shown in FIG. 3 (d). The unevenness 12 is formed by reducing the current density to 1/100 to 1/10 immediately before the end of the re-anodizing treatment and performing electrolysis. When the unevenness 12 is formed, the unevenness 13 is also formed at the interface between the aluminum material 1 and the anodized film 2. For example, current density 0.2 to 2
When the re-anodizing treatment is performed at A / dm 2 , the current density is reduced to 1/100 to 1/10 immediately before the re-anodizing treatment is completed, and under this condition, a voltage of 0.1 to 5 V is applied for about 10 minutes. Continue electrolysis for seconds to 5 minutes. As a result, the height is about 10
A complex unevenness 12 of 100 nm is formed on the lower end of the lower micropore 11.
【0012】第4工程:(バリヤー層調整) この工程は、次の第5工程(電解着色)と密接な関係を
持っており、電解着色時に電解析出物の高さを均一化さ
せ、均一な着色を得る上で重要な工程である。第3工程
(再陽極酸化処理)で形成されるバリヤー層5は、電解
液の液抵抗が小さいことから、対極に近い部分A及び遠
い部分Bの両者共に、図4(a)に示すようにほぼ同一
の厚さになっている。この状態で電解着色すると、着色
液の液抵抗が大きいため、図4(b)に示すように対極
に近い部分Aの微細孔3に多量の電解析出物4が析出
し、対極に遠い部分Bの微細孔3に析出する電解析出物
4が少量になる。そこで、着色に先立ってバリヤー層の
調整を行うと、図4(c)に示すように対極に近い部分
Aのバリヤー層5が厚くなる。続く電解着色工程では、
液抵抗とバリヤー層抵抗を合計した抵抗がA及びBで等
しくなるため、電気量が同一となり、電解析出物4も図
4(d)に示すように揃った高さになる。Fourth Step: (Barrier Layer Adjustment) This step has a close relationship with the next fifth step (electrolytic coloring), and the height of electrolytic deposits is made uniform during electrolytic coloring to make it uniform. This is an important step in obtaining a good color. Since the barrier layer 5 formed in the third step (re-anodizing treatment) has a small liquid resistance of the electrolytic solution, both the portion A near the counter electrode and the portion B far from the counter electrode are as shown in FIG. It has almost the same thickness. If electrolytic coloring is performed in this state, the liquid resistance of the coloring liquid is large, and as shown in FIG. 4B, a large amount of electrolytic deposits 4 are deposited in the micropores 3 of the portion A close to the counter electrode and the portion far from the counter electrode. A small amount of electrolytic deposits 4 are deposited on the B micropores 3. Therefore, if the barrier layer is adjusted prior to coloring, the barrier layer 5 in the portion A near the counter electrode becomes thick as shown in FIG. 4 (c). In the subsequent electrolytic coloring step,
Since the total resistance of the liquid resistance and the barrier layer resistance is the same for A and B, the amount of electricity is the same, and the electrolytic deposits 4 have a uniform height as shown in FIG. 4 (d).
【0013】使用する電解液は、Ni,Sn,Co,F
e,Cu,Se,Pb,V,Mo,Ti,Mn等の金属
塩の1種又は2種以上、ほう酸,ほう酸アンモニウム,
酒石酸,酒石酸アンモニウム,クエン酸等の1種又は2
種以上のバリヤー型皮膜形成剤を含んでいる。電解液に
アルミニウム材料を浸漬し、正の直流又は正のパルス電
圧を印加することによってバリヤー層5の厚みが調整さ
れる。具体的な電解条件としては、調整後のバリヤー層
5の厚みが約20〜150nmとなるように、20〜1
50Vの電解電圧,10秒〜10分の電解時間及び電流
密度0.1〜1A/dm2 が採用される。電解電圧が2
0V未満になると、着色が不均一になる。逆に、150
Vを超える電解電圧は、第5工程の電解着色時に火花放
電が発生し易くなるので好ましくない。The electrolyte used is Ni, Sn, Co, F
e, Cu, Se, Pb, V, Mo, Ti, Mn, etc., one or more metal salts, boric acid, ammonium borate,
1 or 2 of tartaric acid, ammonium tartrate, citric acid, etc.
It contains one or more barrier film-forming agents. The thickness of the barrier layer 5 is adjusted by immersing the aluminum material in the electrolytic solution and applying a positive direct current or a positive pulse voltage. Specific electrolysis conditions are 20 to 1 so that the thickness of the barrier layer 5 after adjustment is about 20 to 150 nm.
An electrolysis voltage of 50 V, an electrolysis time of 10 seconds to 10 minutes and a current density of 0.1 to 1 A / dm 2 are adopted. Electrolytic voltage is 2
If it is less than 0 V, the coloring becomes uneven. Conversely, 150
An electrolysis voltage exceeding V is not preferable because spark discharge is likely to occur during electrolytic coloring in the fifth step.
【0014】第5工程:(電解着色) バリヤー層5の厚みが調整された陽極酸化皮膜2の微細
孔3に電解析出物4を沈着させる処理であり、第4工程
と同じ金属塩含有溶液又は同じ組成の溶液中で電解され
る。電解は、金属含有溶液に浸漬したアルミニウム材料
1に交流,矩形波交流,負の直流又は負のパルス電圧を
印加して行われる。電解電圧は、20〜50Vの範囲で
調整される。電解時間は、15〜90秒の範囲で、図3
(e)又は(f)に示すように析出物4の上面が微細孔
3の拡大部6を超えない時間に設定することが好まし
い。このとき、電解析出物4の高さが拡大部6を超えて
微細孔3にまで到達すると、図2(b)で説明したよう
に個々の微細孔3において電解析出物4の量にバラツキ
があるため、より径の小さな微細孔3までに充填された
場合、量のバラツキは電解析出物4の高さの差として現
れる。その結果、電解析出物4の上面が平面にならず、
光の干渉がない褐色系の色調となる。Fifth Step: (Electrolytic Coloring) This is a treatment for depositing electrolytic deposits 4 in the fine pores 3 of the anodic oxide film 2 in which the thickness of the barrier layer 5 is adjusted, and the same metal salt-containing solution as in the fourth step. Alternatively, it is electrolyzed in a solution of the same composition. The electrolysis is performed by applying alternating current, rectangular wave alternating current, negative direct current, or negative pulse voltage to the aluminum material 1 immersed in the metal-containing solution. The electrolysis voltage is adjusted in the range of 20 to 50V. The electrolysis time is in the range of 15 to 90 seconds and is shown in FIG.
As shown in (e) or (f), it is preferable to set the time such that the upper surface of the precipitate 4 does not exceed the enlarged portion 6 of the fine hole 3. At this time, when the height of the electrolytic deposit 4 reaches the fine pores 3 beyond the enlarged portion 6, the amount of the electrolytic deposits 4 in the individual fine pores 3 is reduced as described in FIG. 2B. Because of the variation, when the fine pores 3 having a smaller diameter are filled, the variation in the amount appears as a difference in height of the electrolytic deposit 4. As a result, the upper surface of the electrolytic deposit 4 does not become a flat surface,
It has a brownish color tone without light interference.
【0015】本発明においては、電流密度,時間等の電
解条件を調整することにより、電解析出物4の高さが微
細孔3の拡大部6を超えないように、具体的には電解析
出物4の上面が拡大部6内にあるようにしている。電解
析出物4の高さが図3(g)に示すように微細孔3の拡
大部6を超えるて微細孔3の小径部に到達するとき、各
微細孔3における電解析出物4の高さが不揃になり、光
の干渉が生じ難く、褐色に近い色調の皮膜しか得られな
い。このようにして処理された皮膜の色相は、着色終了
時の状態である図3(e)及び(f)に示した皮膜の断
面構造において、陽極酸化皮膜2とアルミニウム材料1
との界面から拡大部6の中にある電解析出物4の上面ま
での干渉面間距離Tにより決定される。干渉面間距離T
の大部分は、図3(c)に示した再陽極酸化皮膜10が
占めている。したがって、再陽極酸化皮膜10の厚さを
任意に制御することにより、従来の電解着色では困難で
あった広範囲の色相をもつ干渉色を得ることが可能にな
る。In the present invention, by adjusting the electrolysis conditions such as current density and time, the height of the electrolytic deposits 4 does not exceed the enlarged portions 6 of the fine pores 3, specifically, electric analysis. The upper surface of the item 4 is located inside the enlarged portion 6. When the height of the electrolytic deposit 4 exceeds the enlarged portion 6 of the fine hole 3 and reaches the small diameter portion of the fine hole 3 as shown in FIG. The heights are uneven, interference of light hardly occurs, and only a film with a color tone close to brown can be obtained. The hue of the film thus treated has the anodized film 2 and the aluminum material 1 in the cross-sectional structure of the film shown in FIGS.
It is determined by the inter-interference surface distance T from the interface with and from the upper surface of the electrolytic deposit 4 in the enlarged portion 6. Interfering surface distance T
Most of the above is occupied by the reanodized film 10 shown in FIG. Therefore, by controlling the thickness of the reanodized film 10 arbitrarily, it is possible to obtain interference colors having a wide range of hues, which was difficult with conventional electrolytic coloring.
【0016】色相は、表1に示すように干渉面間距離T
で決定されるが、距離Tの中にはバリヤー層5の厚さも
含まれている。そのため、第5工程(電解着色)で充填
される電解析出物4の高さt4 は、(干渉面間距離T)
− (バリヤー層5の厚さt3)分になる。このことは、バ
リヤー層5の厚さt3 を変化させることによって、同一
色相、すなわち同一干渉面間距離Tであっても電解析出
物4の高さt4 を変動できることを意味する。As shown in Table 1, the hue is the distance T between the interference surfaces.
However, the thickness of the barrier layer 5 is also included in the distance T. Therefore, the height t 4 of the electrolytic deposit 4 filled in the fifth step (electrolytic coloring) is (interference surface distance T).
-(Thickness t 3 of barrier layer 5). This means that by changing the thickness t 3 of the barrier layer 5, the height t 4 of the electrolytic deposit 4 can be changed even with the same hue, that is, the same inter-interference surface distance T.
【表1】 [Table 1]
【0017】第1〜5工程を経たアルミニウム材料1に
は、図5に示す断面構造をもつ皮膜が形成されている。
このような断面構造にするには、第1工程から順次全工
程を実施することが不可欠である。この断面構造によっ
て出現する干渉色は、広範囲の色相をもち、且つ着色均
一性に優れたアルミニウム材料が提供される。第2工程
(中間処理)で形成された拡大部6の高さをt1 ,第3
工程で(再陽極酸化処理)形成された再陽極酸化皮膜1
0の高さをt2 ,バリヤー層5の高さをt3 ,電解析出
物4の高さをt4 及び干渉面間距離をTとするとき、こ
れらの間に次の関係が成立している。 T=t3 +t4 (t3 +t4 )<(t1 +t2 )On the aluminum material 1 which has undergone the first to fifth steps, a coating having a cross-sectional structure shown in FIG. 5 is formed.
In order to obtain such a cross-sectional structure, it is indispensable to sequentially perform all steps from the first step. The interference color that appears due to this cross-sectional structure provides an aluminum material having a wide range of hues and excellent in coloring uniformity. The height of the enlarged portion 6 formed in the second step (intermediate treatment) is t 1 ,
Reanodized film 1 formed in the process (reanodizing treatment)
When the height of 0 is t 2 , the height of the barrier layer 5 is t 3 , the height of the electrolytic deposit 4 is t 4, and the interfacial distance is T, the following relations are established between them. ing. T = t 3 + t 4 (t 3 + t 4 ) <(t 1 + t 2 ).
【0018】陽極酸化皮膜2とアルミニウム材料1の界
面で反射する光は、入射時に電解析出物4を通過する。
そのため、電解析出物4の高さt4 を変えることにより
反射光の強度が制御され、干渉色の明度,濃度等を調節
することが可能となる。また、色調は、電解析出物4の
高さt4 が小さいほど、バリヤー層5が厚いほど鮮やか
になる。再陽極酸化皮膜10の厚さは、明度が低く濃い
色調の発色を行わせる上で60〜600nmの範囲にあ
ることが好ましい。再陽極酸化皮膜10の厚さが60n
m未満では、淡い発色になる。逆に、600nmを超え
ると、発色することが可能であるものの、光の干渉が複
数段階で行われ、また下部微細孔11及び拡大部6に析
出する電解析出物4が多量になるため、濁った色調にな
る。電解着色されたアルミニウム材料は、煮沸,高圧水
蒸気接触,吹付け塗装,電着塗装等によって封孔処理さ
れる。The light reflected at the interface between the anodic oxide coating 2 and the aluminum material 1 passes through the electrolytic deposit 4 upon incidence.
Therefore, the intensity of the reflected light is controlled by changing the height t 4 of the electrolytic deposit 4, the brightness of the interference color, it is possible to adjust the concentration, and the like. Further, the color tone becomes brighter as the height t 4 of the electrolytic deposit 4 is smaller and the barrier layer 5 is thicker. The thickness of the reanodized film 10 is preferably in the range of 60 to 600 nm in order to develop a color having a low brightness and a dark color tone. The thickness of the reanodized film 10 is 60n.
When it is less than m, the color is pale. On the contrary, when the thickness exceeds 600 nm, although color development is possible, light interference is performed in a plurality of stages, and a large amount of electrolytic deposits 4 are deposited on the lower fine holes 11 and the enlarged portions 6, It becomes cloudy. The electrolytically colored aluminum material is sealed by boiling, high-pressure steam contact, spray coating, electrodeposition coating, or the like.
【0019】[0019]
実施例1〜5:板厚2mmのA1100P−H14板材か
ら切り出された縦100mm及び横200mmの試験片
を使用した。試験片20を、図6に示すように、横L=
350mm,縦W=120mm及び深さD=120mm
の電解槽21に挿入し、黒鉛製の対極22と直交する位
置関係で配置した。そして、電源23を介して試験片2
0と対極22とを結線し、次の条件で試験片20を電解
着色した。 第1工程:温度20℃に保持された150g/lの硫酸
電解浴中で、電流密度1.5A/dm2 の正の直流を4
5分間供給し、厚さ20μmの陽極酸化皮膜を試験片2
0の表面に形成した。このときの最終電圧は、17Vで
あった。 第2工程:25℃に保持された100g/lのリン酸浴
中で、陽極酸化された試験片20に正の直流電圧20V
を10分間印加した。 第3工程:Examples 1 to 5: Test pieces of 100 mm in length and 200 mm in width that were cut out from an A1100P-H 14 plate having a plate thickness of 2 mm were used. As shown in FIG. 6, the test piece 20 has a lateral L =
350mm, length W = 120mm and depth D = 120mm
It was inserted into the electrolytic cell 21 of No. 1 and was arranged in a positional relationship orthogonal to the counter electrode 22 made of graphite. Then, the test piece 2 is supplied via the power supply 23.
0 and the counter electrode 22 were connected, and the test piece 20 was electrolytically colored under the following conditions. First step: A positive direct current having a current density of 1.5 A / dm 2 was applied in a 150 g / l sulfuric acid electrolytic bath maintained at a temperature of 20 ° C.
After supplying for 5 minutes, anodized film with a thickness of 20 μm is applied to the test piece
Formed on the surface of 0. The final voltage at this time was 17V. Second step: A positive DC voltage of 20 V was applied to the anodized test piece 20 in a 100 g / l phosphoric acid bath maintained at 25 ° C.
Was applied for 10 minutes. Third step:
【0020】温度20℃に保持された150g/lの硫
酸電解浴中で試験片20に正の直流電圧15Vを印加
し、表2に示す条件下で各電気量を供給することにより
再陽極酸化皮膜を成長させた。 第4工程:次の金属塩及びバリヤー型皮膜形成剤を含む
溶液中で、試験片20に正の直流電流0.5A/dm2
を10秒間供給し、バリヤー層を調整した。 電解液組成:硫酸ニッケル NiSO4・6H2 O 50g/l 硫酸マグネシウム MgSO4・7H2 O 50g/l ほう酸 H3 BO3 30g/l 水 残部Re-anodization was performed by applying a positive DC voltage of 15 V to the test piece 20 in a 150 g / l sulfuric acid electrolytic bath maintained at a temperature of 20 ° C. and supplying each amount of electricity under the conditions shown in Table 2. The film was grown. Fourth step: A positive direct current of 0.5 A / dm 2 was applied to the test piece 20 in a solution containing the following metal salt and barrier-type film forming agent.
Was supplied for 10 seconds to adjust the barrier layer. Electrolyte composition: nickel sulfate NiSO 4 · 6H 2 O 50g / l Magnesium MgSO 4 · 7H 2 sulfate O 50 g / l boric acid H 3 BO 3 30g / l water balance
【0021】第5工程:第4工程と同じ組成の電解浴中
で、次の矩形波交流を試験片20に供給し、電解着色し
た。 周波数 10Hz アノード/カソード時間比 1/10 アノード電流密度 0.4A/dm2 カソード電流密度 0.4A/dm2 電解時間 表2に示す時間 第3工程での電気量及び第5工程での電解時間を変動さ
せることによって、表2に示すように種々の色相をもつ
発色が得られた。このときの断面構造寸法は、(t3
+t4 )<(t1 +t2 )の関係にあり、電解析出物の
高さは微細孔底部の拡大部を超えることはなかった。着
色された試験片は、表面全域にわたり均一な色調を呈し
た。Fifth step: In the electrolytic bath having the same composition as in the fourth step, the following rectangular wave alternating current was supplied to the test piece 20 for electrolytic coloring. Frequency 10 Hz Anode / cathode time ratio 1/10 Anode current density 0.4 A / dm 2 Cathode current density 0.4 A / dm 2 Electrolysis time Time shown in Table 2 Electric quantity in the third step and electrolysis time in the fifth step As shown in Table 2, color development with various hues was obtained by varying The cross-sectional structural dimension at this time is (t 3
There is a relationship of + t 4 ) <(t 1 + t 2 ), and the height of the electrolytic deposit did not exceed the enlarged portion of the bottom of the micropores. The colored test piece exhibited a uniform color tone over the entire surface.
【0022】比較例1:実施例1〜5と同じ電解槽21
及び試験片20を使用し、次の処理を施した。 第1〜4工程:実施例1〜5と同じ条件 第5工程: 通電時間が120秒である他は、実施例1
〜5と同じ 得られた皮膜の断面構造は、(t3 +t4 )>(t1 +
t2 )の寸法関係にあり、電解析出物は微細孔底部の拡
大部を超えて析出しており、その高さも300〜600
nmと不揃であった。その結果、出現した色調は、不均
一な褐色系であった。Comparative Example 1: The same electrolytic cell 21 as in Examples 1-5
And the following processing was performed using the test piece 20. First to fourth steps: Same conditions as in Examples 1 to 5 Fifth step: Example 1 except that the energization time is 120 seconds
The same cross-sectional structure of the obtained coating is (t 3 + t 4 )> (t 1 +
There is a dimensional relationship of t 2 ), and the electrolytic deposits are deposited beyond the enlarged portion of the bottom of the micropores, and the height thereof is 300 to 600.
It was inconsistent with nm. As a result, the color tone that appeared was an uneven brownish color.
【表2】 [Table 2]
【0023】実施例6〜7:実施例1〜5と同じ電解槽
21及び試験片20を使用し、次の処理を施した。 第1工程:実施例1〜5と同じ条件 第2工程:温度20℃に保持した50g/lの酒石酸溶
液中で、実施例6では正の直流電圧60Vで5分間電解
し、実施例7では正の直流電圧80Vで5分間電解し
た。 第3〜5工程:実施例1〜5と同じ条件 実施例6及び7で得られた色調は、表3に示すように均
一な青色であった。Examples 6 to 7: Using the same electrolytic bath 21 and test piece 20 as in Examples 1 to 5, the following treatments were performed. First step: the same conditions as in Examples 1 to 5 Second step: In a tartaric acid solution of 50 g / l kept at a temperature of 20 ° C., in Example 6, electrolysis was performed at a positive DC voltage of 60 V for 5 minutes, and in Example 7, Electrolysis was performed at a positive DC voltage of 80 V for 5 minutes. Steps 3-5: Same conditions as in Examples 1-5 The color tones obtained in Examples 6 and 7 were uniform blue as shown in Table 3.
【0024】比較例2:実施例1〜5と同じ電解槽21
及び試験片20を使用し、次の処理を施した。 第1工程:実施例1〜5と同じ条件 第2工程:実施例6及び7と同じ酒石酸溶液を使用し、
正の直流電圧20Vで5分間電解した。 第3〜5工程:実施例1〜5と同じ条件 得られた皮膜の断面構造をみると、微細孔の底部が拡大
されておらず、(t3+t4 )の厚さも100〜400
nmと不揃いであり、出現した色調は不均一な褐色系で
あった。Comparative Example 2: The same electrolytic cell 21 as in Examples 1-5
And the following processing was performed using the test piece 20. First step: the same conditions as in Examples 1-5 Second step: Using the same tartaric acid solution as in Examples 6 and 7,
Electrolysis was performed at a positive DC voltage of 20 V for 5 minutes. Steps 3 to 5: the same conditions as in Examples 1 to 5, the sectional structure of the obtained coating shows that the bottoms of the micropores are not enlarged and the thickness of (t 3 + t 4 ) is 100 to 400.
The color tone was uneven, and the color tone that appeared was uneven brownish.
【表3】 [Table 3]
【0025】実施例8:実施例1〜5と同じ電解槽21
及び試験片20を使用し、次の処理を施した。 第1工程:実施例1〜5と同じ条件で陽極酸化処理し、
最終電解電圧を17Vにした。 第2工程:実施例1〜5と同じ条件 第3工程:温度20℃に保持した150g/lの硫酸電
解浴中で、第1工程の最終電圧と同じ正の直流電圧17
Vを印加し、55クーロン/dm2 を供給した。なお、
このときの直流電圧が第1工程の最終電圧よりも低い場
合は、実施例1〜5に相当する。 第4〜5工程:実施例1〜5と同じ条件 得られた皮膜は、青色を呈し、試験片の表面全域が均一
に着色されていた。また、皮膜の剥離も検出されなかっ
た。Example 8: The same electrolytic cell 21 as in Examples 1-5
And the following processing was performed using the test piece 20. First step: anodizing under the same conditions as in Examples 1 to 5,
The final electrolysis voltage was 17V. Second step: the same conditions as in Examples 1 to 5 Third step: In a 150 g / l sulfuric acid electrolytic bath maintained at a temperature of 20 ° C., the same positive DC voltage as the final voltage of the first step 17
V was applied and 55 coulomb / dm 2 was supplied. In addition,
When the DC voltage at this time is lower than the final voltage of the first step, it corresponds to Examples 1 to 5. Steps 4 to 5: the same conditions as in Examples 1 to 5 The obtained coating was blue and the entire surface of the test piece was uniformly colored. Moreover, peeling of the film was not detected.
【0026】比較例3: 第1〜2工程:実施例1〜5と同じ条件 第3工程:実施例8と同じ硫酸電解浴中で、第1工程の
最終電圧17Vよりも高い正の直流電圧20Vを印加
し、55クーロン/dm2 の電気量を供給した。 第4〜5工程:実施例1〜5と同じ条件 得られた皮膜は、実施例8と同じ青色の色相をもってい
たが、皮膜強度が弱く、試験片を直角に折り曲げたとき
に下地のアルミニウムから剥離した。このときの処理条
件及び皮膜の性状を、表4に示す。Comparative Example 3: First and second steps: Same conditions as in Examples 1 to 5 Third step: In the same sulfuric acid electrolytic bath as in Example 8, a positive DC voltage higher than the final voltage of 17 V in the first step. 20 V was applied to supply an electric quantity of 55 coulomb / dm 2 . Steps 4 to 5: Same conditions as in Examples 1 to 5 The obtained coating had the same blue hue as that in Example 8, but the coating strength was weak, and when the test piece was bent at a right angle, the aluminum was used as the base material. Peeled off. Table 4 shows the treatment conditions and the properties of the film at this time.
【表4】 [Table 4]
【0027】実施例9:実施例1〜5と同じ電解槽21
及び試験片20を使用し、次の処理を施した。 第1〜2工程:実施例1〜5と同じ条件 第3工程:温度20℃に保持した10g/lの硫酸電解
浴中で、正の直流電圧15Vを4分間印加した後、正の
直流電圧60Vを1分間印加し、合計で95クーロン/
dm2 の電気量を供給した。 第4工程:実施例1〜5と同じ条件Example 9: The same electrolytic cell 21 as in Examples 1-5
And the following processing was performed using the test piece 20. Steps 1-2: Same conditions as in Examples 1-5 Step 3: Positive DC voltage of 15 V was applied for 4 minutes in a sulfuric acid electrolytic bath of 10 g / l maintained at a temperature of 20 ° C., and then positive DC voltage was applied. Apply 60V for 1 minute, total 95 coulomb /
A quantity of electricity of dm 2 was supplied. Fourth step: same conditions as in Examples 1 to 5
【0028】第5工程:第4工程と同じ組成の電解浴中
で、次の矩形波電流を試験片に供給し、電解着色した。 周波数 10Hz アノード/カソード時間比 1/10 アノード電流密度 0.4A/dm2 カソード電流密度 0.4A/dm2 電解時間 97秒間 形成された皮膜は、鮮やかな濃い青色の色調を呈した。
皮膜の断面構造は、バリヤー層の高さt3 が60nm,
電解析出物の高さt4 が340nmであり、干渉面間距
離Tが400nmであった。Fifth step: In the electrolytic bath having the same composition as in the fourth step, the following rectangular wave current was supplied to the test piece for electrolytic coloring. Frequency 10 Hz Anode / cathode time ratio 1/10 Anode current density 0.4 A / dm 2 Cathode current density 0.4 A / dm 2 Electrolysis time 97 seconds The formed film had a bright deep blue color tone.
The cross-sectional structure of the coating has a barrier layer height t 3 of 60 nm,
The height t 4 of the electrolytic deposit was 340 nm, and the inter-interference surface distance T was 400 nm.
【0029】比較例4〜5:実施例9と同じ電解槽21
及び試験片20を使用し、次の処理を施した。 第1〜2工程:実施例1〜5と同じ条件 第3工程:実施例9と同一の硫酸電解浴中で電解した。
比較例4では、正の直流電圧15Vを4分間印加した
後、正の直流電圧20Vを3分間印加し、合計で95ク
ーロン/dm2 の電気量を供給した。比較例5では、正
の直流電圧15Vを4分間印加した後、正の直流電圧2
00Vを20秒間印加し、合計で95クーロン/dm2
の電気量を供給した。Comparative Examples 4 to 5: The same electrolytic cell 21 as in Example 9
And the following processing was performed using the test piece 20. 1st and 2nd steps: same conditions as in Examples 1 to 5 3rd step: Electrolysis was performed in the same sulfuric acid electrolytic bath as in Example 9.
In Comparative Example 4, a positive DC voltage of 15 V was applied for 4 minutes and then a positive DC voltage of 20 V was applied for 3 minutes to supply a total of 95 coulomb / dm 2 of electricity. In Comparative Example 5, after applying a positive DC voltage of 15 V for 4 minutes, a positive DC voltage of 2 V was applied.
Applying 00V for 20 seconds, total 95 coulomb / dm 2
Of electricity.
【0030】第4工程:実施例1〜5と同じ条件 第5工程:比較例4で着色時間を109秒とする他は、
実施例9とほぼ同じ条件で電解着色した。比較例5で
は、皮膜破壊が生じたため、電解着色を中止した。比較
例4で形成された皮膜は、濃い青色に着色されていた
が、鮮やかさにおいて実施例9よりも著しく劣ってい
た。皮膜の断面構造は、バリヤー層の高さt3が20n
m,電解析出物の高さt4 が380nmであり、干渉面
間距離Tが400nmであった。すなわち、干渉面間距
離Tは実施例9と同一であるものの、バリヤー層が薄く
なっていた。なお、比較例5では、第4工程の電解中に
皮膜破壊が生じたため、着色はみられなかった。実施例
9及び比較例4〜5を、表5に対比して示す。Fourth step: Same conditions as in Examples 1 to 5 Fifth step: Comparative Example 4 except that the coloring time is 109 seconds,
Electrolytic coloring was performed under substantially the same conditions as in Example 9. In Comparative Example 5, film destruction occurred, so electrolytic coloring was stopped. The film formed in Comparative Example 4 was colored deep blue, but was significantly inferior to Example 9 in vividness. The cross-sectional structure of the film has a barrier layer height t 3 of 20 n.
m, the height t 4 of the electrolytic deposit was 380 nm, and the inter-interference surface distance T was 400 nm. That is, the distance T between the interference surfaces was the same as that in Example 9, but the barrier layer was thin. In Comparative Example 5, the film was broken during the electrolysis in the fourth step, so that no coloring was observed. Example 9 and Comparative Examples 4 to 5 are shown in comparison with Table 5.
【表5】 [Table 5]
【0031】実施例10:実施例1〜5と同じ電解槽2
1及び試験片20を使用し、次の処理を施した。 第1〜2工程:実施例1〜5と同じ条件 第3工程:温度20℃に保持した30g/lの蓚酸電解
浴中で、定電流密度1A/dm2で正の直流電流を52
秒間供給した後、直ちに電流を下げ、電流密度0.05
A/dm2 で60秒間電解を続行した。このときの電流
密度の降下割合は、1/20であった。 第4工程:実施例1〜5と同じ条件Example 10: The same electrolytic cell 2 as in Examples 1-5
1 and the test piece 20 were used, and the following treatments were performed. Steps 1-2: Same conditions as in Examples 1-5 Step 3: Positive dc current at a constant current density of 1 A / dm 2 in a 30 g / l oxalic acid electrolytic bath maintained at a temperature of 20 ° C.
After supplying for 2 seconds, the current is immediately reduced to 0.05
Electrolysis was continued for 60 seconds at A / dm 2 . The rate of decrease in current density at this time was 1/20. Fourth step: same conditions as in Examples 1 to 5
【0032】第5工程:第4工程と同じ組成の電解浴中
で、次の矩形波電流を試験片に供給し、電解着色した。 周波数 10Hz アノード/カソード時間比 1/10 アノード電流密度 0.4A/dm2 カソード電流密度 0.4A/dm2 電解時間 63秒間 形成された皮膜は、不透明な青色を呈した。Fifth step: In the electrolytic bath having the same composition as the fourth step, the following rectangular wave current was supplied to the test piece for electrolytic coloring. Frequency 10 Hz Anode / cathode time ratio 1/10 Anode current density 0.4 A / dm 2 Cathode current density 0.4 A / dm 2 Electrolysis time 63 seconds The formed film exhibited an opaque blue color.
【0033】比較例6〜7:実施例9と同じ電解槽21
及び試験片20を使用し、次の処理を施した。 第1〜2工程:実施例1〜5と同じ条件 第3工程:実施例10と同一の硫酸電解浴中で電解し
た。比較例6では、電流密度1A/dm2 で正の直流を
52秒間供給した後、直ちに電流密度を1/2に当る
0.5A/dm2 に下げ、6秒間電解を継続した。比較
例7では、電流密度1A/dm2 で正の直流を52秒間
供給した後、直ちに電流密度を1/200に当る0.0
05A/dm2 に下げ、600秒間電解を継続した。 第4〜5工程:実施例1〜5と同じ条件 形成された皮膜は、比較例6及び7共に透明感のある青
色に着色されていたが、実施例10のような不透明調の
青色は得られなかった。実施例10及び比較例6〜7
を、表6に対比して示す。Comparative Examples 6 to 7: The same electrolytic cell 21 as in Example 9
And the following processing was performed using the test piece 20. First and second steps: Same conditions as in Examples 1 to 5 Third step: Electrolysis was performed in the same sulfuric acid electrolytic bath as in Example 10. In Comparative Example 6, a positive direct current was supplied for 52 seconds at a current density of 1 A / dm 2 , and then the current density was immediately reduced to 0.5 A / dm 2 , which is 1/2, and electrolysis was continued for 6 seconds. In Comparative Example 7, a positive direct current was supplied at a current density of 1 A / dm 2 for 52 seconds, and then the current density was immediately reduced to 1/200 at 0.0.
It was lowered to 05 A / dm 2 and electrolysis was continued for 600 seconds. Steps 4 to 5: Same conditions as in Examples 1 to 5 The films formed were colored blue with transparency in both Comparative Examples 6 and 7, but an opaque blue color as in Example 10 was obtained. I couldn't do it. Example 10 and Comparative Examples 6-7
Are shown in comparison with Table 6.
【表6】 [Table 6]
【0034】[0034]
【発明の効果】以上に説明したように、本発明において
は、陽極酸化皮膜中を垂直方向に延びる微細孔の底部を
拡大した後、拡大部から垂直下方に延びる下部微細孔を
形成し、途中に拡大部がある状態の微細孔に電解析出物
を析出させている。電解析出物の下方に延びる陽極酸化
皮膜の厚みは再陽極酸化処理によって自在に調節するこ
とができ、陽極酸化皮膜の厚みに応じて必要とする広範
囲の色調をもつ干渉色が得られる。また、アルミニウム
材料表面の全域にわたって均一な発色が得られ、内装
材,外装材,表層材等として広範な分野で使用される着
色材料が提供される。As described above, in the present invention, after expanding the bottom of the micropores extending vertically in the anodic oxide film, lower micropores extending vertically downward from the enlarged portion are formed, Electrolytic deposits are deposited in the micropores in the state where there is an enlarged portion. The thickness of the anodized film extending below the electrolytic deposit can be freely adjusted by re-anodizing treatment, and an interference color having a wide range of color tones required depending on the thickness of the anodized film can be obtained. In addition, a coloring material that can obtain a uniform color over the entire surface of the aluminum material and is used in a wide range of fields such as an interior material, an exterior material, and a surface layer material is provided.
【図1】 二次電解着色法で生成した皮膜の断面構造FIG. 1 Cross-sectional structure of film formed by secondary electrolytic coloring method
【図2】 干渉色が発現する皮膜(a)と干渉色が発現
しない皮膜(b)FIG. 2 is a film (a) that develops an interference color and a film (b) that does not develop an interference color.
【図3】 本発明に従って着色皮膜が形成される過程FIG. 3 is a process of forming a colored film according to the present invention.
【図4】 バリヤー層の調整による作用を説明する図FIG. 4 is a view for explaining the action of adjusting the barrier layer.
【図5】 形成された皮膜の断面構造FIG. 5 Cross-sectional structure of the formed film
【図6】 実施例で使用した電解槽FIG. 6 is an electrolytic cell used in the examples
1:アルミニウム材料 2:陽極酸化皮膜 3:微
細孔 4:電解析出物 5:バリヤー層 6:拡大部 7:電解析出物上面
での反射光 8:アルミニウム材料と陽極酸化皮膜の
界面での反射光 10:再陽極酸化皮膜層 11:下部微細孔 12,13:凹凸 T:干渉面間距離 t1 :拡大部の高さ t2 :再
陽極酸化皮膜の高さ t3 :バリヤー層の高さ t4 :電解析出物の高さ1: Aluminum material 2: Anodized film 3: Micropores 4: Electrolytic deposits 5: Barrier layer 6: Expanded portion 7: Reflected light on the upper surface of electrolytic deposits 8: At the interface between the aluminum material and the anodized film Reflected light 10: reanodized film layer 11: lower micropores 12, 13: unevenness T: distance between interference surfaces t 1 : height of expanded part t 2 : height of reanodized film t 3 : height of barrier layer It is t 4: the height of the electrolytic deposit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 義朗 東京都港区三田3丁目13番12号 日本軽金 属株式会社内 (72)発明者 宮坂 禧輝 東京都港区三田3丁目13番12号 日本軽金 属株式会社内 (72)発明者 若杉 邦男 富山県高岡市本郷2丁目5番8号 新日軽 株式会社北陸製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiro Tanaka, 3-13-12 Mita, Minato-ku, Tokyo Within Japan Light Metals Co., Ltd. No. Nippon Light Metal Co., Ltd. (72) Inventor Kunio Wakasugi 2-5-8 Hongo, Takaoka City, Toyama Prefecture Shin Nikkei Co., Ltd. Hokuriku Factory
Claims (4)
が垂直方向に延びた陽極酸化皮膜と、前記拡大部の範囲
内に上面が位置するように前記微細孔に析出させた電解
析出物とを備え、アルミニウム材料と前記陽極酸化皮膜
との界面及び前記電解析出物の上面が入射光に対する反
射面となっているアルミニウム材料表面に形成された暗
濃色感に富む着色皮膜。1. An anodic oxide film having a plurality of micropores formed in the middle of the enlarged portion and extending in the vertical direction, and an electric analysis deposited on the micropores so that the upper surface is located within the range of the enlarged portion. A colored film rich in dark and dark color, which is formed on the surface of an aluminum material, which has a product, and the upper surface of the electrolytic deposit and the interface between the aluminum material and the anodized film are reflection surfaces for incident light.
成されているアルミニウム材料表面に形成された着色皮
膜。2. A colored film formed on the surface of an aluminum material having irregularities formed at the lower ends of the fine holes according to claim 1.
ウム材料の電解着色法。 (1)アルミニウム材料に、複数の微細孔が垂直方向に
延びた陽極酸化皮膜を形成する陽極酸化処理工程 (2)リン酸を主成分とする溶液中で前記アルミニウム
材料に交流,正の直流又は正のパルス電圧を印加し、前
記微細孔の底部を拡大する中間処理工程 (3)前記アルミニウム材料を無機酸,有機酸或いはこ
れらの混合溶液に浸漬し、交流,正の直流又は正のパル
ス電圧を印加することにより、前記微細孔底部の拡大部
から更に垂直下方に延びた下部微細孔を有する再陽極酸
化皮膜を形成する再陽極酸化処理工程 (4)金属塩及びバリヤー型皮膜形成剤を含む溶液中で
前記アルミニウム材料に正の直流又は正のパルス電圧を
印加し、バリヤー層の厚さを調整するバリヤー層調整工
程 (5)引き続き同じ組成の溶液中で前記アルミニウム材
料に交流,負の直流,負のパルス電圧を印加し、前記下
部微細孔から前記拡大部の範囲内に電解析出物を析出さ
せる電解着色工程3. An electrolytic coloring method for an aluminum material, which comprises the following steps (1) to (5). (1) Anodizing treatment step of forming an anodized film in which a plurality of fine pores extend vertically in the aluminum material. (2) AC, positive DC or the like in the solution containing phosphoric acid as a main component. Intermediate treatment step of enlarging the bottom of the fine pores by applying a positive pulse voltage (3) Immersing the aluminum material in an inorganic acid, an organic acid or a mixed solution thereof, and applying an alternating current, a positive direct current or a positive pulse voltage Re-anodizing treatment step of forming a re-anodizing film having lower micropores extending vertically downward from the enlarged portion of the bottom of the micropores by applying (4) containing a metal salt and a barrier-type film forming agent A barrier layer adjusting step of applying a positive direct current or a positive pulse voltage to the aluminum material in a solution to adjust the thickness of the barrier layer (5). Electrolytic coloring step of applying alternating current, negative direct current, or negative pulse voltage to the material to deposit an electrolytic deposit within the range of the enlarged portion from the lower micropores
いて、再陽極酸化処理の終了直前に電流密度を1/10
0〜1/10に低下させて電解を継続するアルミニウム
材料の電解着色法。4. The reanodizing process according to claim 3, wherein the current density is reduced to 1/10 immediately before the end of the reanodizing process.
An electrolytic coloring method for an aluminum material in which the electrolysis is continued by reducing the amount to 0 to 1/10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5848693A JP2931176B2 (en) | 1993-03-18 | 1993-03-18 | Colored film formed on aluminum material surface and electrolytic coloring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5848693A JP2931176B2 (en) | 1993-03-18 | 1993-03-18 | Colored film formed on aluminum material surface and electrolytic coloring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06272082A true JPH06272082A (en) | 1994-09-27 |
JP2931176B2 JP2931176B2 (en) | 1999-08-09 |
Family
ID=13085766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5848693A Expired - Fee Related JP2931176B2 (en) | 1993-03-18 | 1993-03-18 | Colored film formed on aluminum material surface and electrolytic coloring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2931176B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001018281A1 (en) * | 1999-09-07 | 2001-03-15 | Alcan International Limited | Rapid colouring process for aluminum products |
JP2007247015A (en) * | 2006-03-17 | 2007-09-27 | Fujifilm Corp | Method for manufacturing fine structural body and fine structural body |
KR101534133B1 (en) * | 2015-05-07 | 2015-07-07 | 신영주 | Insert bonding injection method of multi electrolytic method |
-
1993
- 1993-03-18 JP JP5848693A patent/JP2931176B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001018281A1 (en) * | 1999-09-07 | 2001-03-15 | Alcan International Limited | Rapid colouring process for aluminum products |
JP2007247015A (en) * | 2006-03-17 | 2007-09-27 | Fujifilm Corp | Method for manufacturing fine structural body and fine structural body |
KR101534133B1 (en) * | 2015-05-07 | 2015-07-07 | 신영주 | Insert bonding injection method of multi electrolytic method |
Also Published As
Publication number | Publication date |
---|---|
JP2931176B2 (en) | 1999-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4414077A (en) | Method for production of colored aluminum article | |
AU633132B2 (en) | Improved electrolytic method for coloring anodized aluminum | |
WO2001018281A1 (en) | Rapid colouring process for aluminum products | |
JP2931177B2 (en) | Highly transparent colored film and electrolytic coloring method | |
US3795590A (en) | Process for coloring aluminum and alloys of aluminum having an anodized surface | |
JP2931176B2 (en) | Colored film formed on aluminum material surface and electrolytic coloring method | |
CA1153980A (en) | Method of producing colour-anodized aluminium articles | |
JPS633038B2 (en) | ||
JPS5948960B2 (en) | How to color aluminum or aluminum alloy with primary colors | |
JP3101606B2 (en) | Electrolytic coloring method of aluminum material | |
JP2820584B2 (en) | Electrolytic coloring method of aluminum material | |
CA1307763C (en) | Method for electrolytic coloring of aluminum or aluminum alloys | |
JP2000355795A (en) | Surface treatment of aluminum and aluminum alloy | |
JPH09143795A (en) | Method for electrolytically coloring aluminum material | |
JP2706681B2 (en) | Electrolytic coloring method of aluminum material | |
JP2908105B2 (en) | Electrolytic coloring of aluminum or aluminum alloy | |
JPS5943560B2 (en) | Patterned coloring method for aluminum or aluminum alloys | |
JP3344973B2 (en) | How to color aluminum material | |
KR850001214B1 (en) | Method for producing colored aluminum articles | |
JP2688639B2 (en) | Electrolytic coloring method of aluminum material | |
JPS616298A (en) | Chemical formation of colored anodically oxidized film consisting of aluminum and aluminum alloy | |
JPS6317919B2 (en) | ||
JPS6058316B2 (en) | Multicolor electrolytic coloring method for aluminum and aluminum alloys | |
JPH01127696A (en) | Anodic oxidation method for colored titanium material | |
JPS58213895A (en) | Electrolytic multicolor pigmentation method of aluminum and aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |