JPH0627020B2 - Method for producing long-fiber metal composite material - Google Patents
Method for producing long-fiber metal composite materialInfo
- Publication number
- JPH0627020B2 JPH0627020B2 JP61065986A JP6598686A JPH0627020B2 JP H0627020 B2 JPH0627020 B2 JP H0627020B2 JP 61065986 A JP61065986 A JP 61065986A JP 6598686 A JP6598686 A JP 6598686A JP H0627020 B2 JPH0627020 B2 JP H0627020B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- fiber
- composite material
- sheet
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は金属粉末を用いた長繊維金属複合材料、特に難
加工性のTi基,Ni基複合材料の製造方法に関するもので
ある。TECHNICAL FIELD The present invention relates to a method for producing a long fiber metal composite material using metal powder, particularly a difficult-to-process Ti-based and Ni-based composite material.
(従来の技術) 現在、長繊維金属複合材料は通常、0.05mm〜1mm厚
の金属箔と、ドラムに繊維フィラメントを一定間隔に巻
付け、樹脂固定する、所謂、ドラムワインディング法で
配列形成した繊維マットとを所定の大きさに切り出し、
交互に積層し、型に嵌め真空中で脱脂後、真空ホットプ
レス,熱間静水圧プレス(HIP)又は一旦真空ホット
プレスで予備固化し、後、HIP固化する箔冶金法で製
造されている。(Prior Art) At present, long-fiber metal composite materials are usually formed by a so-called drum winding method in which a metal foil having a thickness of 0.05 mm to 1 mm and a fiber filament are wound around a drum at regular intervals and fixed with a resin. Cut out the fiber mat and the specified size,
It is manufactured by a foil metallurgical method of alternately laminating, fitting in a mold, degreasing in a vacuum, preliminarily solidifying with a vacuum hot press, hot isostatic pressing (HIP) or vacuum hot pressing, and then HIP solidifying.
しかし一般に金属は合金化されると共に展延性が乏しく
なり、特に高合金化されたTi合金,Ni合金では薄い箔状
に加工できなくなるという問題に遭遇する。このうち、
Ti合金にあっては合金化された2相(α相β相)合金は
Ti−6 Al−4V合金箔が実験用Ti合金基複合材料用
として作られているが、価格が高く工業的に採算がとれ
るものではない。However, in general, metals are alloyed and have poor spreadability, and in particular, high alloyed Ti alloys and Ni alloys cannot be processed into thin foils. this house,
In the case of Ti alloy, the alloyed two phase (α phase β phase) alloy is
Although Ti-6 Al-4V alloy foil is made for experimental Ti alloy matrix composite material, it is expensive and not industrially profitable.
またNi基合金に至っては、多量にγ(Ni3Al・Ti)を含む
合金は変形抵抗が高く箔に加工することは困難である。With regard to Ni-based alloys, alloys containing a large amount of γ (Ni 3 Al · Ti) have high deformation resistance and are difficult to process into foil.
従って、前記箔治金法は箔加工が困難な上記Ti合金,Ni
基合金には適していない。Therefore, the above-mentioned foil metallurgy method uses the above-mentioned Ti alloy, Ni
Not suitable for base alloys.
ところが、近時、耐熱合金材料の利用拡大に伴ってTi合
金,Ni基合金の果たす機能的役割は大きく、これらを含
む複合材料の開発は重要な関心事の1つである。However, recently, as the use of heat-resistant alloy materials has expanded, the functional roles of Ti alloys and Ni-based alloys have been great, and the development of composite materials containing these is one of the important concerns.
(発明が解決しようとする問題点) そこで、本発明者らは、上述の如き趨勢に対処し、Ti
基,Ni基複合材料の開発に取り組み、これに適した製造
方法の検討を行った結果、Ti合金,Ni基合金の金属粉末
の利用化に到達した。(Problems to be Solved by the Invention) Therefore, the present inventors have dealt with the above-mentioned trends and
As a result of working on the development of Ni-based and Ni-based composite materials and investigating the manufacturing method suitable for them, we have reached the utilization of metal powder of Ti alloy and Ni-based alloy.
金属粉末の製造方法は従来より機械的方法、物理的方法
などがあって各金属粉末の製造に多用されているが、T
i,Ti合金,Ni基合金などにおいても物理的な回転電極
法,不活性ガスアトマイズ法などがあり、回転電極法は
粉末となる素材を電極とし、回転させながらアークある
いはプラズマを当てて溶融部を回転の遠心力で飛ばして
粉末を作る方法で、主にTi,Ti合金粉末の生産に利用さ
れており、一方、不活性ガスアトマイズ法は溶融した金
属を不活性ガスを用いて噴霧化し、粉末を得る方法でNi
基合金などが多くこれにより生産されている。Conventionally, there are mechanical and physical methods for producing metal powders, which are widely used for producing each metal powder.
For i, Ti alloys, Ni-based alloys, etc., there are physical rotating electrode method, inert gas atomizing method, etc. In the rotating electrode method, a powdered material is used as an electrode, and an arc or plasma is applied while rotating to melt the molten portion. It is a method of producing powder by spinning with centrifugal force, which is mainly used for the production of Ti and Ti alloy powders.On the other hand, the inert gas atomization method atomizes molten metal with an inert gas to produce powder. How to get Ni
Many base alloys are produced by this.
従って、何れにしても、Ti基,Ni基合金など箔に加工困
難な材料といえども粉末の生産は従来より行われてい
る。Therefore, in any case, even if it is a material such as a Ti-based or Ni-based alloy that is difficult to process into a foil, powder has been produced conventionally.
本発明は、かかるTi合金,Ni基合金の粉末に着目し、該
粉末を箔同様のシートに形成することにより、これを繊
維フィラメント配列マットと交互に積層し、従来、困難
視されていたTi基,Ni基複合材料を製造することを目的
とするものである。The present invention focuses on the powders of such Ti alloys and Ni-based alloys, and by forming the powders into a sheet similar to a foil, the powders are alternately laminated with a fiber filament array mat. The purpose is to produce Ni-based and Ni-based composite materials.
(問題点を解決するための手段) 即ち、上記目的に適合する本発明方法の特徴とするとこ
ろは、上記Ti合金,Ni基合金から選ばれた金属粉末をバ
インダーを用いて所望の厚さに成形してなるシートを用
い、これと繊維フィラメントを一定間隔に配列しバイン
ダー固定した繊維マットとを交互に積層し、予備成形体
とした後、該予備成形体を真空中で脱脂し、次いで真空
ホットプレス,HIP処理するか、あるいは一旦、処理
ホットプレスで予備固化し、後、HIP処理により固化
して長繊維金属複合材料を製造する粉末シート法による
上記複合材料の製造方法である。(Means for Solving Problems) That is, the feature of the method of the present invention that meets the above-mentioned object is that a metal powder selected from the above Ti alloy and Ni-based alloy is formed into a desired thickness by using a binder. Using a sheet formed by molding, this and a fiber mat having fiber filaments arranged at regular intervals and fixed with a binder are alternately laminated to form a preform, and the preform is degreased in vacuum and then vacuumed. A method for producing the above composite material by a powder sheet method, in which a long fiber metal composite material is produced by hot pressing, HIP treatment, or preliminary solidification by a treatment hot press, and then solidifying by HIP treatment.
ここで、前記金属粉末シートの成形は、例えばポリエス
テルフィルムなどの離型紙上にTi合金,Ni基合金か選ば
れた所要の合金粉末とバインダーとを混合したものをナ
イフエッジを用いて成形するが、合金粉末は成形後の粉
末シート厚の70%以下の粒径のものを用いる。具体的
にはシート成形に用いる粉末粒子径はシート厚さを制限
するため、繊維体積率を考えると、0.5mm以下が好適
である。Here, the metal powder sheet is formed by using a knife edge to form a mixture of a required alloy powder selected from a Ti alloy and a Ni-based alloy on a release paper such as a polyester film and a binder. The alloy powder used has a particle size of 70% or less of the powder sheet thickness after molding. Specifically, since the powder particle diameter used for sheet formation limits the sheet thickness, 0.5 mm or less is preferable in view of the fiber volume ratio.
又、下限については特に制限はないが、固化成形体の酸
素,窒素のトラップ量は粒子径が小さい程、高くなるた
めに10μ以上とするのが良好である。The lower limit is not particularly limited, but the trapped amount of oxygen and nitrogen of the solidified molded product increases as the particle size decreases, so that it is preferable to set it to 10 μm or more.
第1図はかかる合金粉末の粒径と、粉末シート厚との関
係(粉末−バインダー混合体粘度70,000〜13
0,000CP)を示しており、粉末シート厚を最大限
1mmとした場合において粉末の最大粒径は精々0.6mm
位までが好ましく、もし、粉末粒径が成形後の粉末シー
ト厚の70%を超える大きさのものを含むような場合に
おいては離型紙とナイフエッジの隙間に粉末が詰まり、
筋状の欠陥を生じるので好ましくない。FIG. 1 shows the relationship between the particle size of such alloy powder and the powder sheet thickness (powder-binder mixture viscosity 70,000-13
The maximum particle size of the powder is at most 0.6 mm when the powder sheet thickness is 1 mm at the maximum.
If the powder particle size includes more than 70% of the powder sheet thickness after molding, the powder is clogged in the gap between the release paper and the knife edge,
This is not preferable because it causes streak defects.
又、成形時における上記バインダーと粉末との混合体の
粘度もシート製造に影響があり、通常、50,000C
P〜150,000CPの範囲が効果的である。Also, the viscosity of the mixture of the binder and the powder at the time of molding has an influence on the sheet production.
A range of P to 150,000 CP is effective.
第2図はこの合金粉末の粒径と粘度との関係を示してお
り、50,000CP以下では成形時に合金粉末とハイ
ンダーが分離する傾向が強くなり、低粒子密度の縞模様
を生じる。FIG. 2 shows the relationship between the particle size and the viscosity of this alloy powder. At 50,000 CP or less, the alloy powder and the hinder tend to separate during molding, resulting in a stripe pattern of low particle density.
一方、150,000CP以上になると混合体の粘度が
高くなりすぎ、シート表面の肌荒れや混合体のとぎれた
シートができる。On the other hand, when it is 150,000 CP or more, the viscosity of the mixture becomes too high, so that the surface of the sheet is roughened and a sheet in which the mixture is discontinuous is formed.
又、上記粉末シートはナイフエッジで成形後、乾燥する
が、この乾燥は60℃以下で行うのがよく、それ以上で
はシートと離型紙間に気泡を生じ表面が凹凸になる恐れ
があるので望ましくない。Also, the powder sheet is dried after being shaped with a knife edge, but this drying is preferably carried out at 60 ° C. or lower, and if it is higher than that, bubbles may occur between the sheet and the release paper and the surface may become uneven, which is desirable. Absent.
なお、上記本発明方法において用いるバインダーとして
は通常、アクリル樹脂を有機溶剤で溶かしたアクリル樹
脂系バインダーである。溶剤としてはトルエン,アセト
ン等の蒸気圧が高いものよりも、ソルベッソ150(商
品名)のような蒸気圧が低いものの方が乾燥速度がゆる
やかで、乾燥後のシート表面肌が良好である。The binder used in the method of the present invention is usually an acrylic resin-based binder prepared by dissolving an acrylic resin in an organic solvent. As a solvent, a solvent having a low vapor pressure such as Solvesso 150 (trade name) has a slower drying speed than a solvent having a high vapor pressure such as toluene or acetone, and the surface texture of the sheet after drying is good.
一方、用いられる繊維マットは長繊維フィラメントを一
定間隔に配列し、バインダーで固定したものであるが、
繊維としてはSiC繊維が最も一般的に使用される。On the other hand, the fiber mat used is one in which long fiber filaments are arranged at regular intervals and fixed with a binder.
SiC fibers are most commonly used as the fibers.
SiC繊維としては炭素繊維又はタングステン線の表面に
熱分解SiCをCVD法により蒸着し、80〜100μのS
iCフィラメントとした繊維,SiCウイスカー,ポリカル
ボシランより立体重合することにより製造したSiC繊維
等が考えられるが、夫々の特性を勘案して使用する。As SiC fiber, pyrolytic SiC is deposited on the surface of carbon fiber or tungsten wire by the CVD method, and S
Fibers made into iC filaments, SiC whiskers, SiC fibers produced by stereopolymerization from polycarbosilane, etc. are conceivable, but they are used in consideration of their respective characteristics.
又、固定するバインダーとしては前述したアクリル樹脂
系バインダーの使用が実用的である。Further, it is practical to use the above-mentioned acrylic resin-based binder as the binder to be fixed.
叙上のようにして夫々得られた粉末シート繊維マットは
各々所望の寸法に切断の上、交互に重ね、バインダーで
貼り合わせて一体に乾燥し、予備成形体として爾後のプ
レス処理に付す。The powder sheet fiber mats respectively obtained as described above are cut into desired dimensions, alternately laminated, laminated with a binder and dried integrally, and then subjected to subsequent press treatment as a preform.
プレス処理としては真空下でホットプレス又はHIP処
理あるいは予めホットプレスにより予備固化した後、H
IP処理することの何れかの方式が実施可能であるが、
最も効果的な方法は最後のホットプレスにより予備固化
後、HIP処理する方式である。As the press treatment, hot pressing or HIP treatment under vacuum or pre-solidification by hot pressing in advance, and then H
Either method of IP processing can be implemented,
The most effective method is a method in which HIP treatment is performed after preliminary solidification by the final hot pressing.
このようにして固化成形された複合材料の繊維体積率は
粉末シートの粒子の見掛け密度,厚さ,繊維径,繊維間
隔などによって決まる。このうちシート厚さ,繊維径,
繊維間隔は前もって決められるので,粉末シート成形体
の粒子の見掛け密度を測定しておけば固化成形後の複合
材料の体積率を容易に設計することが可能となる。The fiber volume fraction of the composite material solidified and formed in this way is determined by the apparent density, thickness, fiber diameter, fiber spacing, etc. of the particles of the powder sheet. Of these, sheet thickness, fiber diameter,
Since the fiber spacing is determined in advance, it is possible to easily design the volume ratio of the composite material after solidification molding by measuring the apparent density of the particles of the powder sheet molded body.
(実施例) 以下、本発明方法の具体的な実施例を揚げる。(Examples) Specific examples of the method of the present invention will be described below.
後記表の試料1〜6に従って夫々本発明方法を適用して
各繊維金属複合材料を実験的に製造した。一方、比較の
ため従来の箔冶金法により複合材料を製造し、試料7と
して併記した。Each fiber-metal composite material was experimentally manufactured by applying the method of the present invention according to each of Samples 1 to 6 in the table below. On the other hand, for comparison, a composite material was manufactured by a conventional foil metallurgy method, and is also shown as Sample 7.
実験に用いた本発明法の各粉末はそれぞれの粒径以下に
ふるい供試材とした。Each powder of the method of the present invention used in the experiment was used as a test material having a particle size of not more than each particle size.
粉末・バインダー混合体の粘度は粉末・バインダー溶媒
量により調整した。ホットプレスは加熱前から0.5kg
/mm2を加え、加熱による樹脂の軟化などによる収縮
と、樹脂の気化による噴出による配列繊維の規則性の乱
れを防いだ。The viscosity of the powder / binder mixture was adjusted by the amount of the powder / binder solvent. Hot press is 0.5 kg before heating
/ Mm 2 was added to prevent the shrinkage due to softening of the resin due to heating and the disorder of the regularity of the arrayed fibers due to the vaporization of the resin.
又、0.5kg/mm2の加圧は繊維に傷を付けていない。
なお、加熱は200℃〜600℃で樹脂の気化が起こる
ため3℃〜5℃/minのゆるやかな加熱速度で実施し
た。The pressure of 0.5 kg / mm 2 does not damage the fiber.
The heating was carried out at a slow heating rate of 3 ° C to 5 ° C / min because vaporization of the resin occurs at 200 ° C to 600 ° C.
加圧力は900℃,5kg/mm2,15〜30分では未だ
十分に固化しないが、950℃,10kg/mm2,120
分では十分固化していた。The applied pressure is 900 ℃, 5 kg / mm 2 , 15-30 minutes, it does not solidify yet, but 950 ℃, 10 kg / mm 2 , 120
It was solid enough in minutes.
以下に各実施例を表記する。Each example will be described below.
上記表において各プレス処理と素材供試材の評価を繊維
体積率と引張強さで行い、その結果を第3図に示す。 In the above table, each press treatment and evaluation of the material test material were performed by the fiber volume fraction and the tensile strength, and the results are shown in FIG.
図中、○印はTi−6 Al−4V/SiC複合材料,△印
はTi−6 Al−2Sn−4Zr−6Mo/SiC複合材料であ
り、黒印は試験温度が室温の場合、他は試験温度450
℃の場合である。In the figure, ○ indicates Ti-6Al-4V / SiC composite material, △ indicates Ti-6Al-2Sn-4Zr-6Mo / SiC composite material, black indicates test temperature at room temperature, and others indicate test. Temperature 450
This is the case of ° C.
上記表ならびに第3図の結果より試料No.2の試験条件を
除いてTi−6 Al−4V/SiC複合材料はプロセス及
び粉末とフォイル(箔)の差が十分に認められないが、
通常、箔冶金法でできないTi−6 Al−2Sn−4Zr−
6Mo/SiC複合材料は本発明方法によって製造され、し
かも前記本発明方法により製造したTi−6 Al−4V
/SiC複合材料より室温,450℃ともに高い値が得ら
れている。From the results of the above table and FIG. 3, except for the test conditions of Sample No. 2, Ti-6Al-4V / SiC composite material has no process and the difference between powder and foil (foil) is not sufficiently observed.
Ti-6Al-2Sn-4Zr-, which is usually impossible by foil metallurgy
The 6Mo / SiC composite material is produced by the method of the present invention, and Ti-6Al-4V produced by the method of the present invention.
Higher values were obtained at room temperature and 450 ° C than the / SiC composite material.
(発明の効果) 本発明は以上のようにTi合金又はNi基合金からなる金属
粉末をバインダーを用いて所望の厚さに成形した金属粉
末シートと、繊維を一定間隔に配列しバインダー固定し
た繊維マットとを交互に積層し予備成形体とした後、こ
れを真空下でホットプレス,HIPあるいはホットプレ
スで予備固化した後、HIPを行って固化成形する方法
であり、箔状加工が困難なTi合金又はNi基合金素材に対
しても制限なく実施することが可能となり、従来の箔冶
金法に比べて合金の種類に制約を受けることなく繊維金
属複合材料を製造することができる実効を有し、従来難
加工性のため製造が困難とみられていたTi基,Ni基複合
材料を容易、かつ工業的に製造し得る顕著な効果を有す
る。(Effects of the invention) The present invention is a metal powder sheet obtained by molding a metal powder consisting of a Ti alloy or a Ni-based alloy to a desired thickness using a binder as described above, and a fiber in which fibers are arranged at regular intervals and fixed with a binder. This is a method in which a mat is alternately laminated to form a preformed body, which is then preliminarily solidified by hot pressing, HIP or hot pressing under vacuum, and then HIP is performed for solidifying and molding. It can be applied to alloys or Ni-based alloy materials without limitation, and has the effect of producing fiber-metal composite materials without being restricted by the type of alloy compared to conventional foil metallurgy. However, it has a remarkable effect that a Ti-based and Ni-based composite material, which has been considered difficult to manufacture due to difficult workability, can be easily and industrially manufactured.
しかも、本発明粉末シート法によるものは、その特性に
おいて従来の箔冶金法によるものと何ら遜色なく、十
分、所期の機能特性を有すると共に、箔冶金法で得られ
ない複合材料の特性においても充分、優れた性質を発揮
し、今後の各分野への広汎な利用に大きく期待される。In addition, the powder sheet method of the present invention is no different from the conventional foil metallurgy method in its characteristics, and has sufficient and desired functional characteristics, and also in the characteristics of the composite material which cannot be obtained by the foil metallurgy method. It has excellent properties and is expected to be widely used in various fields in the future.
第1図は本発明方法における粉末シートのシート厚と粉
末粒径との関係を示す図表、第2図は粉末−バインダー
混合体の粘度と粉末粒径との関係を示す図表、第3図は
実施例におけるTi合金/SiC(CVD)複合材料の繊維
体積率,引張強さを示す評価図表である。FIG. 1 is a chart showing the relationship between the sheet thickness of the powder sheet and the powder particle diameter in the method of the present invention, FIG. 2 is a chart showing the relationship between the viscosity of the powder-binder mixture and the powder particle diameter, and FIG. It is an evaluation chart which shows the fiber volume fraction and the tensile strength of the Ti alloy / SiC (CVD) composite material in an Example.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 14:34 2102−4G 14:38) Z 2102−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C04B 14:34 2102-4G 14:38) Z 2102-4G
Claims (3)
た金属粉末をバインダーを用いて所望の厚さに成形した
金属粉末シートと、繊維フィラメントを一定間隔に配列
し、バインダー固定した配列繊維マットとを交互に積層
し、予備成形体を得た後、該予備成形体を真空下でホッ
トプレス又は熱間静水圧プレスあるいはホットプレスで
予備固化したのち、熱間静水圧プレスを行って固化成形
することを特徴とする長繊維金属複合材料の製造方法。1. A metal powder sheet obtained by molding a metal powder selected from a Ti alloy powder and a Ni-based alloy powder to a desired thickness using a binder, and an array fiber in which fiber filaments are arrayed at regular intervals and fixed with a binder. After alternately laminating mats to obtain a preform, the preform is hot-pressed under vacuum or hot isostatic press or pre-solidified by hot press, and then hot isostatic press is applied for solidification. A method for producing a long-fiber metal composite material, which comprises molding.
粒径の金属粉末を用いて成形されたシートである特許請
求の範囲第1項記載の長繊維金属複合材料の製造方法。2. The method for producing a long fiber metal composite material according to claim 1, wherein the metal powder sheet is a sheet formed by using metal powder having a particle diameter of 70% or less of the sheet thickness.
150,000CPの粉末−バインダー混合体により成
形される特許請求の範囲第1項又は第2項記載の長繊維
金属複合材料の製造方法。3. The metal powder sheet has a viscosity of 50,000 CP.
The method for producing a long-fiber metal composite material according to claim 1 or 2, which is formed from a powder-binder mixture of 150,000 CP.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61065986A JPH0627020B2 (en) | 1986-03-26 | 1986-03-26 | Method for producing long-fiber metal composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61065986A JPH0627020B2 (en) | 1986-03-26 | 1986-03-26 | Method for producing long-fiber metal composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62222846A JPS62222846A (en) | 1987-09-30 |
JPH0627020B2 true JPH0627020B2 (en) | 1994-04-13 |
Family
ID=13302843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61065986A Expired - Lifetime JPH0627020B2 (en) | 1986-03-26 | 1986-03-26 | Method for producing long-fiber metal composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0627020B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105556642B (en) * | 2013-07-19 | 2017-10-31 | 国立大学法人名古屋工业大学 | Metal polishing pad and its manufacture method |
CN111734718A (en) * | 2020-07-30 | 2020-10-02 | 西南交通大学 | Continuous fiber reinforced composite material connecting structure and preparation method thereof |
-
1986
- 1986-03-26 JP JP61065986A patent/JPH0627020B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62222846A (en) | 1987-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4332220B2 (en) | Method for forming dendritic metal particles | |
JPH05318085A (en) | Method for incorporating hard wear resisting surface layer in metal article and article produced by said method | |
JPH0153324B2 (en) | ||
CN101003885A (en) | Composite building block of fiber enhanced intermetallic compound, and preparation method | |
DE2939225A1 (en) | METHOD FOR PRODUCING A FIBER REINFORCED METAL STRUCTURE | |
US5030277A (en) | Method and titanium aluminide matrix composite | |
JPH0627020B2 (en) | Method for producing long-fiber metal composite material | |
JPH0388785A (en) | Ceramic preform of high mechanical strength, its manufacture and metal-matrix complex obtained from said ceramic preform | |
EP0360468B1 (en) | Member of a refractory metal material of selected shape and method of making | |
US4849163A (en) | Production of flat products from particulate material | |
JP3618106B2 (en) | Composite material and method for producing the same | |
JP2921030B2 (en) | Vane pump vane material and manufacturing method thereof | |
JPS61538A (en) | Manufacture of sic whisker reinforced al alloy material | |
JP3569019B2 (en) | Powder injection molding composition and method for producing the same | |
JPH05222469A (en) | Process for producing fiber-reinforced metallic composite material and new preform thereof | |
JP2022123066A (en) | porous metal body | |
US3770492A (en) | Method of manufacture of materials from polycrystalline filaments | |
Waku et al. | Future trends and recent developments of fabrication technology for advanced metal matrix composites | |
JPS63206402A (en) | Production of metallic powder or the like | |
KR100547618B1 (en) | Copper / amorphous composite material using copper-plated amorphous composite powder and its manufacturing method | |
JPH0635630B2 (en) | Method for producing aluminum borate whisker reinforced metal matrix composite material | |
JP3370800B2 (en) | Manufacturing method of composite material | |
JP2973390B2 (en) | Method for producing metal in which fine particles of metal or metal oxide are dispersed | |
JP2002317207A (en) | Titanium powder sintered compact | |
KR100546048B1 (en) | Nickel / Amorphous Composite Powder without Oxidation at High Temperature and Manufacturing Method Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |