JPH06275261A - Alkaline storage battery - Google Patents
Alkaline storage batteryInfo
- Publication number
- JPH06275261A JPH06275261A JP5063662A JP6366293A JPH06275261A JP H06275261 A JPH06275261 A JP H06275261A JP 5063662 A JP5063662 A JP 5063662A JP 6366293 A JP6366293 A JP 6366293A JP H06275261 A JPH06275261 A JP H06275261A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- nickel electrode
- storage battery
- alkaline storage
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電池用ペースト式ニッケ
ル極を用いたニッケル−カドミウム電池,ニッケル−亜
鉛電池,ニッケル−水素電池などのアルカリ蓄電池に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery such as a nickel-cadmium battery, a nickel-zinc battery or a nickel-hydrogen battery using a paste type nickel electrode for a battery.
【0002】[0002]
【従来の技術】近年、各種の電源として使われるアルカ
リ蓄電池は高信頼性が期待でき、小形軽量化も可能など
の理由で小型電池は各種ポータブル機器用に、大型は産
業として広く使われてきている。2. Description of the Related Art In recent years, alkaline storage batteries used as various power sources are expected to have high reliability and can be made compact and lightweight. For this reason, small batteries have been widely used for various portable devices, and large batteries have been widely used as industry. There is.
【0003】以下に従来のアルカリ蓄電池及びその製法
について説明する。このアルカリ蓄電池において、負極
としてはカドミウムの他に亜鉛,鉄,水素などが対象と
なっている。一方、正極としては一部空気極や酸化銀極
なども取り上げられているが、ほとんどの場合ニッケル
極である。そして、ポケット式から焼結式に代わって活
物質の利用率が向上し、高放電が可能になり、しかも長
寿命が確保されてきている。さらに密閉化が可能になる
とともに用途も広がってきている。The conventional alkaline storage battery and its manufacturing method will be described below. In this alkaline storage battery, zinc, iron, hydrogen, etc. are targeted as the negative electrode in addition to cadmium. On the other hand, as the positive electrode, an air electrode, a silver oxide electrode, and the like are partially taken up, but in most cases, it is a nickel electrode. Then, instead of the pocket type instead of the sintering type, the utilization rate of the active material is improved, high discharge is possible, and long life is secured. In addition, it has become possible to make it airtight and its applications are expanding.
【0004】しかし、焼結式では基板の製造法や活物質
の充填などの点で工程が煩雑であり、高価である。基板
の多孔度を85%以上にすると、強度が大幅に低下する
ので活物質の充填に限界があり、したがって高容量化に
も限界がある。そこで高容量化を目的に焼結基板に代え
て、90%以上の高多孔度の基板、つまり芯材として発
泡状基板や繊維状基板が取り上げられ実用化される。However, the sintering method is complicated and expensive in terms of a method of manufacturing a substrate and filling of an active material. When the porosity of the substrate is 85% or more, the strength is significantly reduced, so that there is a limit to the filling of the active material, and thus there is a limit to the increase in capacity. Therefore, in order to increase the capacity, a substrate having a high porosity of 90% or more, that is, a foamed substrate or a fibrous substrate as a core material is taken up and put into practical use instead of the sintered substrate.
【0005】焼結式ニッケル極のもう一方の課題は低廉
化であり、この場合は芯材としてパンチングメタル,エ
キスパンドメタル,スクリーンなどを用い水酸化ニッケ
ルに導電材としてニッケルや黒鉛,活性炭,カーボンブ
ラックなどとカルボキシメチルセルロース,ポリビニル
アルコール,フッ素樹脂,ゴム系樹脂などの結着材を加
えて2次元構造の多孔体とともにシート状に加工して得
られる非焼結式が広く研究され、多くの製法上の提案が
されている。芯材としてパンチングメタルなどを用い水
酸化ニッケルに黒鉛などとカルボキシメチルセルロース
などの結着材を加えて得られる非焼結式は焼結式より低
廉になる。Another problem of the sintered nickel electrode is cost reduction. In this case, a punching metal, an expanded metal, a screen or the like is used as a core material, and nickel hydroxide is used as a conductive material and nickel, graphite, activated carbon or carbon black is used as a conductive material. Etc. and a binder such as carboxymethyl cellulose, polyvinyl alcohol, fluorocarbon resin, rubber resin, etc. are added and a non-sintered type obtained by processing into a sheet shape together with a porous body with a two-dimensional structure has been widely studied and used in many manufacturing methods. Has been proposed. The non-sintered type obtained by adding a binder such as graphite and carboxymethyl cellulose to nickel hydroxide using punching metal as the core material is less expensive than the sintered type.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、ニッケ
ル極の活物質である水酸化ニッケルは、充電,放電いず
れの状態でも電子伝導性がほとんどないことと充放電の
繰り返しで電極が膨潤する傾向がある。したがって焼結
式のように導電性であるニッケルによる微孔中に活物質
が保持されていることは好ましい。つまり電導性で有利
であり、膨張を抑えることもできる。しかし、非焼結式
においてパンチングメタルなどの2次元構造の芯材には
このような3次元な孔がなく、したがって電導性や膨張
抑制の上ではさらに不利である。However, nickel hydroxide, which is the active material of the nickel electrode, has almost no electronic conductivity in both charging and discharging states, and the electrode tends to swell due to repeated charging and discharging. . Therefore, it is preferable that the active material be held in the fine pores made of conductive nickel as in the sintering method. That is, it is advantageous in terms of electrical conductivity and can suppress expansion. However, in the non-sintered type, the core material having a two-dimensional structure such as punching metal does not have such three-dimensional holes, and therefore it is further disadvantageous in terms of electrical conductivity and expansion suppression.
【0007】そこでこれらの場合は活物質として用いる
水酸化ニッケルやオキシ水酸化ニッケルの粉末に導電材
としてニッケルや黒鉛,活性炭,カーボンブラックなど
を添加している。しかし、添加量が少ないと効果がほと
んど期待できなく、添加し過ぎると活物質の絶対量が減
少してしまう。Therefore, in these cases, nickel, graphite, activated carbon, carbon black or the like is added as a conductive material to the powder of nickel hydroxide or nickel oxyhydroxide used as the active material. However, if the added amount is small, the effect can hardly be expected, and if the added amount is too large, the absolute amount of the active material decreases.
【0008】また活物質の膨張や脱落抑制には耐アルカ
リ性の樹脂が好ましいが、フッ素樹脂やゴム系樹脂いず
れも撥水性を持ち、絶縁性であるので、とくに初期の充
電効率は低く、化成に長時間を要する。Alkali-resistant resins are preferable for suppressing the expansion and drop-off of the active material, but both fluororesins and rubber-based resins have water repellency and insulation properties, so that the initial charging efficiency is low, especially for chemical conversion. It takes a long time.
【0009】本発明は上記従来の課題を解決するもの
で、低廉で、活物質の絶対量も少なくなく、活物質の膨
張や脱落が抑制されるアルカリ蓄電池を提供することを
目的としている。The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an alkaline storage battery which is inexpensive, the absolute amount of the active material is not small, and the expansion and the fall of the active material are suppressed.
【0010】[0010]
【課題を解決するための手段】この目的を達成するため
に本発明のアルカリ蓄電池は、多孔性導電性芯材に水酸
化ニッケルを主とする活物質混合物と結着材からなる材
料を付着させてシート化したニッケル極の表面に、炭素
微粉末層を形成し、その炭素微粉末層上に撥水性樹脂層
を形成したペースト式ニッケル極を用いることを特徴と
する。そして、このペースト式ニッケル極は、水酸化ニ
ッケルを主とする活物質混合物にカルボキシメチルセル
ロース,ポリビニルアルコール,フッ素樹脂,ゴム系樹
脂などから選ばれた結着材を用いて、発泡状,繊維布
状,パンチングメタル,エキスパンドメタル,スクリー
ンなどから選ばれた多孔性導電性芯材に付着させてシー
ト化して得られたニッケル極の表面に、黒鉛などの炭素
微粉末層を形成し、さらに、フッ素樹脂などの撥水性樹
脂層を形成したものである。In order to achieve this object, the alkaline storage battery of the present invention has a porous conductive core material to which a material consisting of an active material mixture mainly containing nickel hydroxide and a binder is attached. It is characterized in that a paste type nickel electrode is used in which a fine carbon powder layer is formed on the surface of a nickel electrode formed into a sheet and a water repellent resin layer is formed on the fine carbon powder layer. This paste-type nickel electrode uses a mixture of active materials mainly containing nickel hydroxide and a binder selected from carboxymethyl cellulose, polyvinyl alcohol, fluororesin, rubber resin, etc. , A fine carbon powder layer such as graphite is formed on the surface of the nickel electrode obtained by adhering it to a porous conductive core material selected from punching metal, expanded metal, screen, etc. And a water-repellent resin layer such as
【0011】[0011]
【作用】この構成によって、2次元構造のパンチングメ
タル,エキスパンドメタル,スクリーンなどは、電極の
表面に炭素微粉末の層を形成することにより、活物質と
芯材とを電気的に接続することが可能になり少ない添加
量で焼結体のような導電層で活物質を包むような形とな
る。なお炭素微粉末層は多孔性であり、量も少なくてよ
いので充放電時で抵抗になって電圧を低下させることは
なく、むしろ導電層として抵抗を減少させる方に働く。
また、炭素微粉末の層の上にフッ素樹脂などの撥水性樹
脂層を形成して撥水性とすることにより、電解液を不必
要に吸収することが抑制され、長寿命化が可能になる。With this structure, in a punching metal, expanded metal, screen, etc. having a two-dimensional structure, a layer of fine carbon powder is formed on the surface of the electrode to electrically connect the active material and the core material. This makes it possible to wrap the active material in a conductive layer such as a sintered body with a small amount of addition. Since the carbon fine powder layer is porous and the amount thereof may be small, it does not become a resistance during charging / discharging to reduce the voltage, but rather serves as a conductive layer for reducing the resistance.
Further, by forming a water-repellent resin layer such as a fluororesin on the layer of carbon fine powder to make it water-repellent, unnecessary absorption of the electrolytic solution is suppressed, and the life can be extended.
【0012】[0012]
【実施例】以下本発明について具体的に説明する。図1
に本発明の一実施例によるアルカリ蓄電池のニッケル極
を示しており、1は多孔性導電性芯材、2は水酸化ニッ
ケルを主とする活物質層、3は炭素微粉末層、4は撥水
性樹脂である。The present invention will be described in detail below. Figure 1
1 shows a nickel electrode of an alkaline storage battery according to an embodiment of the present invention, where 1 is a porous conductive core material, 2 is an active material layer mainly containing nickel hydroxide, 3 is a carbon fine powder layer, and 4 is a repellant. It is an aqueous resin.
【0013】市販の水酸化ニッケル粉末75部、コバル
ト粉末6部それに導電体として黒鉛5部、ニッケル粉末
10部、補強剤としてアクリロニトリル系単繊維0.8
部これに市販のゴム系樹脂の4重量%ディスパージョン
水溶液をこの樹脂が水酸化ニッケルに対して3.5部に
なるように加えてペーストとする。このペーストを厚さ
0.17mm,孔径1.8mm,開口度53%の鉄製で
ニッケルメッキを施したパンチングメタル板に塗着し間
隙0.4mmとしたスリットを通して平滑化した。その
後100℃で1時間乾燥した。75 parts of commercially available nickel hydroxide powder, 6 parts of cobalt powder, 5 parts of graphite as a conductor, 10 parts of nickel powder, and acrylonitrile single fiber 0.8 as a reinforcing agent.
To this, a 4% by weight aqueous dispersion solution of a commercially available rubber-based resin is added so that the amount of this resin is 3.5 parts with respect to nickel hydroxide to form a paste. This paste was applied to an iron-made nickel-plated punching metal plate having a thickness of 0.17 mm, a hole diameter of 1.8 mm, and an opening degree of 53%, and smoothed through a slit having a gap of 0.4 mm. Then, it was dried at 100 ° C. for 1 hour.
【0014】このようにして得られたペースト式ニッケ
ル極を幅33mm,長さ200mmに裁断し、リード板
をスポット溶接により取り付けた。このニッケル極の実
際の放電容量は0.2Cで2.3Ahである。その後、
市販の黒鉛粉末のカルボキシメチルセルロースを0.5
重量%加えた懸濁液を用いて電極1cm2当り3mg程
度の黒鉛量を塗着して後乾燥した。最後に市販のポリ4
フッ化エチレンの8重量%ディスパージョン水溶液を添
加して後乾燥した。The paste type nickel electrode thus obtained was cut into a width of 33 mm and a length of 200 mm, and a lead plate was attached by spot welding. The actual discharge capacity of this nickel electrode is 2.3 Ah at 0.2 C. afterwards,
0.5% of commercially available graphite powder carboxymethyl cellulose
An amount of about 3 mg of graphite per 1 cm 2 of the electrode was applied using the suspension added by weight% and then dried. Finally commercially available poly 4
An 8 wt% dispersion aqueous solution of fluorinated ethylene was added and then dried.
【0015】相手極として、公知のペースト式カドミウ
ム極、ポリアミド不織布セパレータを用いて密閉型ニッ
ケル−カドミウム電池を構成した。電解液として比重
1.25の苛性カリ水溶液に25g/1の水酸化リチウ
ムを溶解して用いた。電池はSubC型である。この電
池をAとする。As a counter electrode, a known paste type cadmium electrode and a polyamide non-woven fabric separator were used to construct a sealed nickel-cadmium battery. As an electrolytic solution, 25 g / 1 of lithium hydroxide was dissolved in a caustic potash aqueous solution having a specific gravity of 1.25 and used. The battery is a SubC type. This battery is designated as A.
【0016】つぎに比較のためにフッ素樹脂を添加せず
黒鉛層のみを形成し、他はAと同じ工程で得られた電池
をBとして加えた。Next, for comparison, only the graphite layer was formed without adding the fluororesin, and the battery obtained by the same process as A was otherwise added as B.
【0017】この両電池各々10セルを用いて300m
Aで15時間充電をし、300mAで0.8Vまでの放
電の化成を3回繰り返して化成とした。その結果、A,
Bとも容量は2.25〜2.35Ahであった。Each of the two batteries has a capacity of 300 m using 10 cells each.
A was charged for 15 hours, and the formation of discharge at 300 mA to 0.8 V was repeated 3 times to form a formation. As a result, A,
The capacity of both B was 2.25 to 2.35 Ah.
【0018】化成終了後、0.5Cで容量の115%定
電流充電をし、0.7Cで0.9Vまでの放電を行うサ
イクル試験を行った。その結果、300サイクルで、A
では平均容量は2.19Ahであったのに対し、Bでは
1.77Ahであった。また500サイクルで、Aでは
平均容量は2.02Ahであったのに対しBでは1.6
3Ahであった。After the formation was completed, a cycle test was conducted in which a constant current charge of 115% of the capacity was carried out at 0.5C and a discharge up to 0.9V was carried out at 0.7C. As a result, in 300 cycles, A
The average capacity was 2.19 Ah, while that of B was 1.77 Ah. At 500 cycles, the average capacity was 2.02 Ah in A, but 1.6 in B.
It was 3 Ah.
【0019】[0019]
【発明の効果】以上のように本発明によれば、水酸化ニ
ッケルを主とする活物質混合物に結着材を用いて多孔性
導電性芯材とともにシート化して得られたニッケル極の
表面に、黒鉛など炭素微粉末層を形成し、炭素微粉末層
上に撥水性樹脂層を形成することにより、低廉で、活物
質の絶対量も少なくなく、活物質の膨張や脱落が抑制さ
れ、性能が長時間維持できるアルカリ蓄電池を提供する
ことが可能である。As described above, according to the present invention, the surface of a nickel electrode obtained by forming a sheet together with a porous conductive core material using a binder in an active material mixture mainly containing nickel hydroxide is formed. By forming a fine carbon powder layer such as graphite and a water repellent resin layer on the fine carbon powder layer, the cost is low, the absolute amount of the active material is not small, and the expansion and dropping of the active material are suppressed, and the performance is improved. It is possible to provide an alkaline storage battery that can be maintained for a long time.
【図1】本発明の一実施例によるアルカリ蓄電池のニッ
ケル極を示す断面図FIG. 1 is a sectional view showing a nickel electrode of an alkaline storage battery according to an embodiment of the present invention.
1 多孔性導電性芯材 2 活物質層 3 炭素微粉末層 4 撥水性樹脂層 1 Porous Conductive Core Material 2 Active Material Layer 3 Carbon Fine Powder Layer 4 Water Repellent Resin Layer
フロントページの続き (72)発明者 辻 庸一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 前川 奈緒子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Yoichiro Tsuji 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Naoko Maekawa, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.
Claims (4)
とする活物質混合物と結着材からなる材料を付着させて
シート化したニッケル極の表面に、炭素微粉末層を形成
し、その炭素微粉末層上に撥水性樹脂層を形成したアル
カリ蓄電池。1. A carbon fine powder layer is formed on the surface of a nickel electrode formed by adhering a material comprising an active material mixture mainly containing nickel hydroxide and a binder to a porous conductive core material to form a sheet. An alkaline storage battery in which a water-repellent resin layer is formed on the carbon fine powder layer.
載のアルカリ蓄電池。2. The alkaline storage battery according to claim 1, wherein the fine carbon powder layer is made of graphite.
ポリビニアルコール,フッ素樹脂,ゴム系樹脂などから
選ばれたものである請求項1記載のアルカリ蓄電池。3. The binding material is carboxymethyl cellulose,
The alkaline storage battery according to claim 1, which is selected from polyvinyl alcohol, fluororesin, rubber-based resin, and the like.
パンチングメタル,エキスパンドメタル,スクリーンな
どから選ばれたものである請求項1記載のアルカリ蓄電
池。4. The porous conductive core material is foam-like, fiber cloth-like,
The alkaline storage battery according to claim 1, which is selected from punching metal, expanded metal, screen and the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5063662A JPH06275261A (en) | 1993-03-23 | 1993-03-23 | Alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5063662A JPH06275261A (en) | 1993-03-23 | 1993-03-23 | Alkaline storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06275261A true JPH06275261A (en) | 1994-09-30 |
Family
ID=13235784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5063662A Pending JPH06275261A (en) | 1993-03-23 | 1993-03-23 | Alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06275261A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013206623A (en) * | 2012-03-27 | 2013-10-07 | Kawasaki Heavy Ind Ltd | Fiber electrode and fiber battery including fiber electrode |
-
1993
- 1993-03-23 JP JP5063662A patent/JPH06275261A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013206623A (en) * | 2012-03-27 | 2013-10-07 | Kawasaki Heavy Ind Ltd | Fiber electrode and fiber battery including fiber electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2993886B2 (en) | Anode and cathode for alkaline storage battery and method for producing the same | |
JP2007012572A (en) | Nickel hydrogen battery | |
JP2003317694A (en) | Nickel hydride storage battery | |
JP5557385B2 (en) | Energy storage device with proton as insertion species | |
JP3411365B2 (en) | Negative electrode active material containing Ga as main component and secondary battery using the same | |
JP3116681B2 (en) | Non-sintered nickel electrode and its manufacturing method | |
JPH06275261A (en) | Alkaline storage battery | |
JP3460509B2 (en) | Manufacturing method of alkaline storage battery and its electrode | |
JP3156485B2 (en) | Nickel electrode for alkaline storage battery | |
US20070077489A1 (en) | Positive electrode for an alkaline battery | |
JPH11288710A (en) | Foam-less nickel positive electrode and its manufacture | |
JP2002231240A (en) | Sintered nickel electrode for alkaline battery, method of manufacturing the same, and alkaline battery | |
JP2000285922A (en) | Alkaline storage battery, and manufacture of its electrode | |
JPH04269454A (en) | Nickel electrode for alkaline battery | |
JPH03165469A (en) | Manufacture of alkaline storage battery having nickel electrode | |
JP3075114B2 (en) | Nickel positive electrode for alkaline storage batteries | |
JP3150546B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JPH06150920A (en) | Hydrogen storage alloy electrode for battery and manufacture thereof | |
JP4085434B2 (en) | Alkaline battery electrode | |
TW202329508A (en) | Zinc battery | |
JP2932711B2 (en) | Manufacturing method of hydrogen storage alloy electrode for alkaline battery | |
JPH11149920A (en) | Nickel electrode for alkali secondary battery and alkali secondary battery | |
JP2001307764A (en) | Alkaline secondary battery and its production | |
JPH10334898A (en) | Alkaline storage battery, its electrode and manufacture thereof | |
JPH05198302A (en) | Sealed alkaline storage battery and formation thereof |